
Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained
Image Generation

Tianyi Chen1, Yi Liu1, Yunfei Zhang1, Si Wu1,3∗, Yong Xu1, Feng Liangbing2, and Hau San Wong3

1School of Computer Science and Engineering, South China University of Technology
2Cosmos Vision Technology Co., Ltd

3Department of Computer Science, City University of Hong Kong
{csttychen, csly, cszhangyunfei}@mail.scut.edu.cn, {cswusi, yxu}@scut.edu.cn

lb.feng@cosmosvisiontech.com, cshswong@cityu.edu.hk

Abstract

Previous state-of-the-art deep generative models im-
prove fine-grained image generation quality by design-
ing hierarchical model structures and synthesizing images
across multiple stages. The learning process is typical-
ly performed without any supervision in object categories.
To address this issue, while at the same time to alleviate
the level of complexity of both model design and train-
ing, we propose a Single-Stage Controllable GAN (SSC-
GAN) for conditional fine-grained image synthesis in a
semi-supervised setting. Considering the fact that fine-
grained object categories may have subtle distinctions and
shared attributes, we take into account three factors of vari-
ation for generative modeling: class-independent content,
cross-class attributes and class semantics, and associate
them with different variables. To ensure disentanglement
among the variables, we maximize mutual information be-
tween the class-independent variable and synthesized im-
ages, map real data to the latent space of a generator to
perform consistency regularization of cross-class attributes,
and incorporate class semantic-based regularization into a
discriminator’s feature space. We show that the proposed
approach delivers a single-stage controllable generator and
high-fidelity synthesized images of fine-grained categories.
SSC-GAN establishes state-of-the-art semi-supervised im-
age synthesis results across multiple fine-grained datasets.

1. Introduction

Deep generative learning [6, 21, 22, 23, 26, 7] has gained
a wide range of research interests due to the high capaci-
ty of the generative models in learning complex data dis-
tributions. Most of them are based on generative adver-
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Figure 1. The representative images are synthesized by SSC-GAN
in semi-supervised (top row) and fully supervised (middle row)
settings on the CUB dataset [42]. Although only half of training
data are labeled in the semi-supervised case, the synthesis quality
of SSC-GAN is comparable to that of the model with full supervi-
sion, and can be close to the quality of real data (bottom row).

sarial networks (GANs) [17] and variational autoencoders
(VAEs) [27]. Unsupervised or supervised training patterns
are typically adopted to achieve remarkable success in im-
age synthesis [16, 43, 29, 44, 11, 12, 1, 2]. However, the
resulting generators are either unable to control class se-
mantics or require massive labeled samples. To address this
issue, semi-supervised generative learning has been studied
[13, 25, 31, 33, 40]. Generic semi-supervised generative
modeling is based on the assumption that the amount of un-
labeled data is adequate. This does not hold when learning
on fine-grained data, due to the reason that both data acqui-
sition and annotation may be expensive and require exten-
sive expertise.

Training high-fidelity generators for fine-grained objec-
t categories is inherently challenging [48, 47, 49], due to
the difficulties in the following aspects: On the one hand,
both training samples and labels are insufficient; on the oth-
er hand, the distinctions among different categories can be
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Figure 2. The model structure of SSC-GAN for fine-grained image generation. Generative modeling is performed based on a class-
independent variable b, a cross-class variable z and a class variable yz . An encoder M is incorporated to map images into the latent space
of a generator G via adversarial training with a discriminator Dz . On the other hand, the code M(x) is used to synthesize a new image
x̃, and z is associated with cross-class attributes by requiring x and x̃ to have similar content independent of b and yz . In order to make
the most of the unlabeled data, an additional discriminator Dx b is incorporated to distinguish real images from fake ones without the
condition of class labels, while at the same time to maximize the mutual information between b and the synthesized images. As a result,
b is associated with class-independent content. Further, we impose regularization on the feature space of a class-conditional discriminator
Dx y to enhance class separability, which is beneficial for class-conditional distribution matching between real and synthesized data.

subtle. To induce a generator to capture the underlying fac-
tors which give rise to fine-grained data, previous works
[5, 32, 37, 18, 30, 20, 10] adopt hierarchical model struc-
tures, and the image generation process consists of multiple
stages. To make the generation controllable, different vari-
ables are incorporated in different stages to associate with
the discovered factors. The model and training complexity
can be extremely high. In addition, object-level annotation-
s are usually needed for background and mask generation.
More importantly, there is no attempt so far to explicitly
control class semantics in fine-grained image synthesis. In
this work, we explore an effective way to model the fac-
tors of variation without any object-level annotations, while
performing class-conditional image generation with limited
supervision as shown in Figure 1.

More specifically, we aim to perform semi-supervised
class-conditional generative modeling for fine-grained ob-
ject categories, while at the same time the factors of vari-
ations are encoded for generation controllability. We pro-
pose a Single-Stage Controllable GAN (SSC-GAN), which
learns to synthesize high-fidelity fine-grained images in
semi-supervised scenarios. To achieve this goal, fine-
grained images are synthesized conditioned on a class-
independent variable, a cross-class variable and a class vari-
able. Considering the inadequate amount of training data
and labels, the disentanglement of these variables is im-
portant for a generator to capture class semantics, and we
thus improve a generic semi-supervised GAN-based model
in the following three aspects. First, we incorporate an addi-
tional discriminator to impose marginal distribution match-
ing between real and synthesized data, while at the same

time to maximize the mutual information between the class-
independent variable and synthesized images. Second, we
leverage an encoder to map images into the latent space of
a generator, and generate new images by changing the val-
ues of class-independent and class variables. The gener-
ator is induced to learn cross-class attributes by minimiz-
ing the differences of the latent codes of the original and
resulting images. Third, a class label-embedded discrimi-
nator is often used for class-conditional distribution align-
ment. However, the discriminator’s features are not neces-
sarily effective for reflecting the distinctions between fine-
grained categories. To guide the generator to capture what
the class variable essentially represents, we further regular-
ize the discriminator’s feature space. The model structure
of SSC-GAN is illustrated in Figure 2.

We summarize the main contributions of this work as
follows: (1) We propose a semi-supervised GAN-based
generative model, SSC-GAN, which is single-stage and
controllable for conditional fine-grained image generation.
(2) Generative modeling is performed based on a class-
independent variable, a cross-class variable and a class vari-
able, which are disentangled by incorporating effective reg-
ularizers accordingly without requiring any object-level an-
notations. (3) An effective solution can be obtained for the
optimization problem without heavy tuning.

2. Related Work

Deep generative learning has led to remarkable success
in the field of image synthesis. VAE-based [9, 25, 39, 52]
models learn data distribution by performing maximum
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likelihood estimation, while GAN-based models [6, 21, 22,
23, 51, 50] adopt adversarial learning. In this section, we
briefly review the works related to semi-supervised genera-
tive learning (SSGL) and fine-grained image synthesis.

2.1. Semi-Supervised Generative Learning

SSGL [13, 25] aims to synthesize high-fidelity condi-
tional images while reducing the dependence of models on
labeled data. A common strategy is to make a discriminator
play two roles: identifying real and fake images, and infer-
ring class labels of real ones. Springenberg [40] proposed a
categorical GAN (CatGAN), in which a discriminator was
trained to provide high-confidence class predictions on re-
al instances, while the predicted class probability distribu-
tions of fake ones were constrained to be uniform. In [36],
Salimans et al. explored a variety of training techniques
to improve both training stability and synthesis quality of
CatGAN. Further, Wei et al [45] applied Wasserstein GANs
[3] to SSGL, and found that the generation performance can
benefit from applying Lipschitz continuity regularization on
the discriminator’s parameters. Another widely used strate-
gy is to incorporate a classifier into the minimax game. Li
et al. [31] designed a Triple-GAN model, in which a classi-
fier together with a generator compete with a discriminator
by synthesizing label-instance pairs to as realistic an extent
as possible. Wu et al. [46] enhanced Triple-GAN by im-
posing regularization of feature-semantics matching on the
generator. On the other hand, Dong and Lin [14] modified
Triple-GAN by allowing the generator to compete with both
discriminator and classifier. In their model, the classifier
was trained to maximize the class margin of real instances
while minimizing that of fake ones. To better utilize readily
available unlabeled data, Gan et al [15] proposed a Triangle-
GAN model, in which an additional discriminator was in-
corporated to identify the two types of fake label-instance
pairs: real unlabeled images with predicted labels, and syn-
thesized image with specified labels. In [33], the generation
performance of Triangle-GAN was improved by applying
a random regional replacement-based data augmentation s-
trategy to regularize the classifier and discriminator.

2.2. Fine-Grained Image Synthesis

While image synthesis has been widely studied through
GAN-based models, conditional generative learning for
fine-grained object categories has not been extensively ex-
plored. To capture object categories with subtle distinc-
tions, Bao et al. [4] adopted a CVAE-GAN-based fine-
grained image generation model, which has the advantages
of both conditional VAE (CVAE) [38] and GAN in mod-
el training. In [47], Yang et al. presented a layered re-
cursive GAN, in which image background and foreground
were generated separately and then stitched to produce a
complete fine-grained image. To semantically control syn-

thesized images, a commonly used strategy is to perform in-
herent disentanglement of a generator’s latent space. Chen
et al. [8] proposed an InfoGAN model to discover attributes
on unlabeled data by imposing mutual information regular-
ization on a GAN’s training process. Along this direction,
Singh et al [37] developed a hierarchical disentanglement
method, which is referred to as FineGAN. Different vari-
ables were incorporated into different generation stages to
associate with the discovered attributes. Furthermore, Ben-
ny and Wolf [5] and Li et al [32] extended FineGAN by
modeling more factors of variation and enhancing the gen-
eration capability.

The key differences between SSC-GAN and the above
GAN-based methods are in terms of task setting and mod-
eling techniques: (1) We focus on semi-supervised fine-
grained image synthesis, while the existing fine-grained
generative models [4, 37, 5, 32] are based on supervised
or unsupervised training strategies. (2) The generation pro-
cess of FineGAN and variants typically consists of multiple
stages, and bounding boxes of objects are needed for back-
ground and mask generation. In contrast, SSC-GAN is a
single-stage controllable generation model without requir-
ing any object-level annotations. (3) A number of effective
regularizers are applied to disentangle the factors of varia-
tion, such that we can manipulate the semantics of the syn-
thesized images. However, generic semi-supervised gener-
ative models [31, 15, 14, 33] do not possess this capability.

3. Proposed Approach
In a semi-supervised setting, a large amount of unlabeled

data U are observed. In addition, there are a small amoun-
t of labeled data L with |L| ≪ |U|, where the class label
of each instance is available. Considering that the fine-
grained image synthesis process is typically determined by
a number of factors beyond the object category, it is neces-
sary to consider other factors which are not associated with
class semantics. In the proposed model, we consider class-
independent content, cross-class attribute and class seman-
tics as the factors of variation. We aim at conditional gener-
ative modeling, in which an image generator learns to asso-
ciate the factors with the different variables. In addition to
explicitly controlling image synthesis, the synthesized data
can better match the statistics of real ones.

3.1. Overview

In SSC-GAN, image generation is controlled by a class-
independent variable b, a cross-class variable z and a class
variable yz . To associate the variables to specific semantics
of interest, we define the constituent networks of our model
as follows: a generator G : (z, b, yz) → xz synthesizes im-
ages conditioned on the variables; an encoder M : x → z
maps images into G’s latent space; a classifier C : xz → yz
infers the class labels of images; a discriminator Dz iden-
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tifies z sampled from a prior distribution and generated by
M ; and two other discriminators Dx b and Dx y distinguish
real instances from fake ones without and with class labels,
respectively. We perform adversarial training between M
and Dz and between G and {Dx b, Dx y} to match real and
fake data distributions. SSC-GAN aims to learn from L

⋃
U

what semantics the variables essentially represent.

3.2. Conditional Image Synthesis

The generator G has an input variable z and two side
input variables b and yz . Let xz denote an image synthe-
sized by G from a variable triplet (z, b, yz), the formulation
is expressed as follows:

xz , G(z, b, yz), (1)

where z is sampled from a prior distribution p0. For sim-
plicity, the class-independent and class-label codes b and yz
are randomly specified in the form of one-hot vectors. We
can also synthesize another type of images as follows:

x̃ , G(M(x), b, yz), (2)

where a real image x is mapped into the G’s latent space,
and the resulting latent code M(x) is used to synthesize a
new image x̃ together with the randomly specified b and
yz . To ensure that the quality of x̃ is as good as xz , the
distribution of M(x) is required to match with p0. Toward
this end, we adopt an adversarial training strategy, in which
Dz is trained to identify z sampled from p0 and generated
by M , while M is trained to deceive Dz . The adversarial
training loss Ladv

Dz
is defined as follows:

Ladv
Dz

= Ex∼pdata
[log(1−Dz(M(x)))]

+ Ez∼p0 [logDz(z)],
(3)

where pdata denotes the distribution of real images, and
Dz(·) represents the predicted probability of a latent code
sampled from p0.

3.3. Regularization for Controlling the Factors

To encourage M to capture cross-class attributes, we ex-
plicitly impose constraints between the latent codes of x and
x̃, and the corresponding consistency loss Lcons

z is formu-
lated as follows:

Lcons
z = Ex∼pdata

[∥M(x)−M(x̃)∥22]. (4)

Minimizing the consistency between M(x) and M(x̃) is
beneficial for disentangling {b, yz} from z, since their latent
codes are from the original image, regardless of the varia-
tions of other variables.

Considering the issues that the labeled data is limited
and the distinction between fine-grained classes can be s-
mall, we incorporate two discriminators Dx b and Dx y into

SSC-GAN. Both of them are different from the ones used
in generic class-conditional image synthesis. More specif-
ically, matching the marginal distributions of real and syn-
thesized data is useful for addressing the issues, since we
can use the whole set of real training data to learn class-
independent content and cross-class attributes. For instance,
different species of birds share similar living environments,
shapes and poses. For this purpose, Dx b is introduced to
judge whether an image is from real data or synthesized by
G without the condition of object category, and the adver-
sarial loss Ladv

Dx b
is formulated as follows:

Ladv
Dx b

= Ez∼p0
[log(1−Dx b(xz))]

+ Ex∼pdata
[log(1−Dx b(x̃))]

+ Ex∼pdata
[logDx b(x)],

(5)

where Dx b(·) denotes the estimated probability of an image
being from real data. On the other hand, a prediction head
Hb is built on top of Dx b, and learns to predict the code b
of synthesized data, given the features of Dx b. We define
the evaluation loss over Hb’s predictions as follows:

Lsem
b = Ez∼p0

[ℓ(b,Hb(fDx b
(xz))]

+ Ex∼pdata
[ℓ(b,Hb(fDx b

(x̃))],
(6)

where fDx b
(·) denotes the features associated with the last

hidden layer of Dx b, Hb(·) represents the estimated prob-
ability distribution over all possible b values, and ℓ(·, ·) is
the cross entropy function. Minimizing Lsem

b leads to the
maximization of the mutual information between b and syn-
thesized images, such that b is enforced to correlate with
class-independent content in an unsupervised way.

To match the statistics of real data of each class, G also
competes with Dx y , which is used to distinguish the real
images from the fake ones, conditioned on the given class
labels. In our setting, only a small portion of real images
are labeled. When feeding them into Dx y , their labels are
determined as follows:

yx =

{
label(x), if x is labeled,
one-hot(C(x)), otherwise,

(7)

where C(·) denotes the predicted class probability distribu-
tion of an unlabeled image by the classifier C. We formulate
another adversarial training loss Ladv

Dx y
as follows:

Ladv
Dx y

= Ez∼p0 [log(1−Dx y(yz, xz))]

+ Ex∼pdata
[log(1−Dx y(yz, x̃))]

+ Ex∼pdata
[logDx y(yx, x)].

(8)

Minimizing Ladv
Dx y

enforces G to synthesize diverse images
that are indistinguishable from real ones on each class. Due
to the embedding of class label in Dx y , it focuses on identi-
fying real and synthesized images of the specified class, and
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the learnt features are not necessarily effective for reflecting
the distinctions between classes. To improve class separa-
bility, we incorporate a contrastive constraint to regularize
the feature space of Dx y as follows:

Lcntr
y = Ex,x′∼pdata

yx=yx′
[max(φ(x, x′)−φ(x, x̃)+m, 0)], (9)

where

φ(x, x′) = ∥fDx y
(x)− fDx y

(x′)∥22, (10)

fDx y
(·) represents the features associated with the hidden

layer of Dx y before class label embedding, and m denotes
a margin that separates the positive pairs (x, x′) from the
negative ones (x, x̃). Compared to Dx y , the classifier C
has a different view to verify the class semantics of synthe-
sized images. To ensure that the synthesized images hold
precise class semantics, we further require that they can be
correctly recognized by C, and the corresponding evalua-
tion loss Lsem

y is formulated as follows:

Lsem
y = Ez∼p0 [ℓ(yz, C(xz)] + Ex∼pdata [ℓ(yz, C(x̃)]. (11)

Inclusion of Lcntr
y and Lsem

y promotes class separabili-
ty, which in turn facilitates class-conditional distribution
matching between real and synthesized data.

3.4. Model Training

All the constituent networks of SSC-GAN are jointly op-
timized via adversarial training. For M and G, the overall
loss function consists of three adversarial training loss terms
associated with three discriminators {Dz, Dx b, Dx y} and
three regularization terms associated with the three vari-
ables {z, b, y}, and the corresponding formulation is pre-
sented as follows:

min
M,G

Ladv
Dz

+Lcons
z +Ladv

Dx b
+Ladv

Dx y
+Lsem

b +Lsem
y . (12)

To compete with {M,G}, the optimization formulation of
the discriminators is presented as follows:

max
Dz,Dx b,Dx y

Ladv
Dz

+Ladv
Dx b

+Ladv
Dx y

−Lsem
b −Lcntr

y . (13)

To improve the performance of C, both types of synthesized
data {xz, x̃} are also used to optimize C as well as labeled
data, and we formulate the optimization problem as follows:

min
C

Ex∼pdata &
x is labeled

[ℓ(yx, C(x)) + ℓ(yz, C(x̃)]

+ Ex∼pdata
[KL(C(x)||C(x))]

+ Ez∼p0
[ℓ(yz, C(xz)],

(14)

where KL(·∥·) denotes the Kullback-Leibler divergence to
measure the difference between the predictions of C and
its own aggregated network C. Since C typically provides
more reliable predictions than C, it can be used to regularize
the network on both labeled and unlabeled data.

4. Experiments

We perform extensive experiments to evaluate the per-
formance of SSC-GAN in disentangling the factors of vari-
ation, capturing class semantics, and reducing the depen-
dence on labeled data, by comparing with state-of-the-art
generative models in terms of the extent to which the quali-
ty of the generated images is enhanced.

4.1. Experimental Setup

Datasets. The experiments are conducted on diverse
fine-grained image datasets: CUB [42], FS-100 [46] and
Stanford-Cars [28]. CUB contains about 6K/6K train-
ing/test images of resolution 128×128 from 200 bird class-
es. FaceScrub is a human face dataset. FS-100 consists
of about 13K/2K training/test images of resolution 64×64
from the 100 largest classes of FaceScrub [35]. In Stanford-
Cars, there are 196 car classes and about 8K/8K images of
size 128×128 for training/testing.

Semi-supervised settings. Unless otherwise indicated,
we randomly sample 2.8K, 2K and 4K training images to
be used as labeled data, and the remaining images are un-
labeled for semi-supervised learning on CUB, FS-100 and
Stanford-Cars, respectively.

Implementation details. We implement SSC-GAN us-
ing PyTorch, and the hardware includes an Intel Core-i7
CPU and a NVIDIA Titan RTX GPU. All the constituen-
t networks are jointly optimized from scratch. The num-
ber of training epochs is set to 500, and there are 16/16/16
labeled/unlabeled/synthesized images in each batch. We
adopt the Adam optimizer [24] with a learning rate of
ς = 0.0002 and momentum parameters of β1 = 0.5 and
β2 = 0.999. The hyper-parameter m in Eq.(9) is set to
0.5. We find that the model performance is relatively stable
when m < 1. We also adopt equal weighting factors of the
loss terms in Eqs.(12-14) without heavy tuning.

Baseline. To verify the effectiveness of the adopted im-
provement techniques, we build a baseline model, which
is based on Triple-GAN [31], and performs generic class-
conditional image generation without variable disentangle-
ment and related regularization. For fair comparison, we
adopt the same backbone architecture as SSC-GAN.

Evaluation protocol. We assess synthesis quality in
terms of Inception Score (IS) [36] and Fréchet Inception
Distance (FID) [19]. We also measure the extent to which
generated images match with the statistics of real ones on
each class, and report the average score of class-wise FIDs
(cFID). To further verify the class semantics of generated
images, we adopt an independent classifier, which is pre-
trained with full supervision, to infer their class labels. The
class labels specified in the generation process are used as
ground truth to calculate the recognition accuracy (RA).

9268



(a) CUB (b) FS-100 (c) Stanford-Cars

Figure 3. The representative images are synthesized by SSC-GAN with varying variables z, b and yz .

4.2. Controllable Image Synthesis

We first assess the SSC-GAN’s capability of disentan-
gling the three variables (z, b, yz) and synthesizing images
of fine-grained categories. The synthesized images shown
in Figure 3 demonstrate how well the proposed approach
control image semantics. The results suggest that the three
variables are able to associate with the semantics of our in-
terest, and we find that the associated semantics are human-
interpretable. On CUB and Stanford-Cars, the variable
z/b/yz controls object shape and pose/background/object
appearance. On FS-100, the variable z/b/yz encodes facial
expression and pose/image style/person’s identity.

4.3. Model Analysis

Effectiveness of model components. We quantitatively
investigate what contributes to the performance margin be-
tween the baseline model and SSC-GAN. In this experimen-
t, the baseline model is progressively enhanced in the fol-
lowing order: the class-semantic regularization Lcntr

y and
Lsem
y , the discriminator Dx b and variable b-based regular-

ization, and the encoder M and sample x̃-based regulariza-
tion. The performance of the resulting models are evaluated
in terms of four metrics in Table 1. The class-semantic reg-
ularization leads to a RA increase from 11.04% to 90.43%
on CUB. In Figure 4, we also plot the RA scores of the syn-
thesized images on a representative class in the training pro-
cess. One can find that SSC-GAN is able to efficiently con-
verge to a much better solution. As a result, the images syn-
thesized by SSC-GAN hold more precise class semantics
than the ones synthesized by Baseline. In addition, inclu-
sion of Dx b and M leads to a FID/cFID decrease of about
30/56 points. The results demonstrate that the techniques
are effective in improving the class semantics, realism, and
diversity of synthesized data.

Encoding cross-class content. To obtain more insights

Table 1. The results of the baseline model and variants on CUB.
Method FID↓ cFID↓ IS↑ RA↑

Baseline 82.87 196.99 4.42±0.07 11.04
+ Class-semantic Reg. 50.35 157.97 4.45±0.03 90.43

+ Dx b & b-based Reg. 30.48 113.42 4.59±0.05 92.49
+ M & x̃-based Reg. 20.03 101.58 4.68±0.04 97.85

Improvement -62.84 -95.41 +0.26 +86.81

(a) RA curves (b) Synthesized images

Figure 4. Comparison between Baseline and SSC-GAN in synthe-
sizing bird images of a specified class. (a) Recognition accuracy
of synthesized images. (b) Representative images generated by
Baseline (upper row) and SSC-GAN (bottom row).

on the encoder M and associated regularization, we visual-
ize the synthesized images x̃, which is based on the laten-
t code M(x) of real reference images x and the random-
ly specified b and yz . Figure 5 shows that the synthesized
images can have different background and class semantic-
s from the reference images, but the shapes and poses be-
tween them are similar. The results suggest that M encodes
the content independent of background and class semantics,
which is consistent with what the variable z controls.

Associated with class-independent content. To give
meaning to the variable b, we incorporate a prediction head
Hb on top of the discriminator Dx b to predict the value
of b, given a synthesized image. We adopt a class activa-
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Figure 5. Synthesized images with the latent codes of real refer-
ence images (first column) and varying variables b and yz .

tion mapping (CAM) method [53] to visualize the spatial
regions where Hb focuses on. In Figure 6, we observe that
Hb applies more attention on the background (hot areas).

Improving class-conditional distribution matching.
Furthermore, we show the t-SNE [41] embedding of the
features fDx y

associated with the hidden layer of the class-
conditional discriminator Dx y , given real labeled images
and synthesized images. For simplicity, we randomly select
5 classes of CUB to visualize the data distribution in Figure
7. We find that SSC-GAN performs better than Baseline in
aligning real and synthesized data on each class.

4.4. Comparison with State-of-the-arts

We perform a comparison between SSC-GAN and a
number of competing GAN-based generative models with-
out any advanced GAN’s training strategies in Table 2.

Unsupervised models. The unsupervised competing
methods include SN-GAN [34], FineGAN [37] and MixN-
Match [32] as representative generic and fine-grained gen-
erative models. The unsupervised models are trained on the
same data as SSC-GAN, without using the class labels of
labeled data. The fine-grained generative models perform
much better than SN-GAN, especially on CUB. Compared
to FineGAN and MixNMatch, the superiority of SSC-GAN
is still significant. On CUB/FS-100/Stanford-Cars, the FID
score of SSC-GAN reaches 20.03/20.65/39.02, which is
lower than that of MixNMatch by about 26/5/7 points. As
shown in Figure 8, the images synthesized by our model
have higher visual quality than FineGAN. This suggests that
synthesis quality can greatly benefit from the limited super-
vision in object categories.

Semi-supervised models. We also conduct a compari-
son with a number of semi-supervised GANs: Triple-GAN
[31], Triangle-GAN [15], EnhancedTGAN [46], and R3-
CGAN [33]. All the competing models are trained in the
same semi-supervised setting and experiment configuration
as SSC-GAN. Among the test datasets, synthesizing FS-
100 images is a relatively easy task, and the FID score of

Figure 6. Examples to visualize where the prediction head Hb fo-
cuses on (bottom row), given the real images (upper row).

(a) Baseline (b) SSC-GAN

Figure 7. t-SNE visualization of real labeled instances and synthe-
sized instances on 5 classes of CUB.

synthesized data drops from the previous best result 25.28
(achieved by R3-CGAN) to 20.65. On all the three datasets,
SSC-GAN is able to achieve lower FID scores and higher
IS/RA scores than R3-CGAN. On CUB, the performance of
R3-CGAN is less satisfactory. We consider that the disen-
tanglement of class semantics and other variation factors is
beneficial for capturing fine-grained categories and increas-
ing the diversity of synthesized data.

4.5. Impact of Labeled Data

The existing semi-supervised generative models rarely
take the levels of supervision into consideration. To
verify that the proposed approach is robust to this fac-
tor, we define the proportion of labeled data as ρ =
|L|/|L

⋃
U|, and conduct experiments on CUB with ρ limit-

ed to {0.2, 0.3, 0.4, 0.5, 1} (ρ = 1 means full supervision).
Figure 9 demonstrate that SSC-GAN exceeds the baseline
model by a large margin under all the supervision levels. In
particular, the performance of the baseline model degrades
drastically with ρ < 0.4, while the proposed approach per-
forms steadily. This suggests that the adopted improvement
strategies are effective in reducing the dependence on la-
beled data. Further, we train SSC-GAN in the setting of full
supervision to provide an upper bound of semi-supervised
generative learning. In Table 3, we find that the genera-
tion performance of SSC-GAN can be close to that of ‘SSC-
GAN w/ Full Sup.’.
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Table 2. Comparison between SSC-GAN and state-of-the-art un(semi-)supervised GAN-based models in fine-grained image synthesis. ∗
indicates that an unsupervised model is trained on the same data as semi-supervised models, without using the class labels of labeled data.

CUB FS-100 Stanford-Cars

Method FID↓ IS↑ RA↑ FID↓ IS↑ RA↑ FID↓ IS↑ RA↑

SN-GAN∗ [34] 160.09 4.21±0.05 - 41.26 1.66±0.05 - 53.20 2.80±0.05 -
FineGAN∗ [37] 46.68 4.62±0.03 - 24.63 1.76±0.02 - 45.72 2.85±0.04 -
MixNMatch∗ [32] 45.59 4.78±0.08 - 25.63 1.71±0.05 - 45.94 2.60±0.05 -

Triple-GAN [31] 140.94 3.94±0.06 9.35 91.05 1.45±0.03 36.21 114.12 2.45±0.06 4.43
EnhancedTGAN [46] 133.57 4.17±0.03 9.16 57.58 1.57±0.02 62.69 105.20 2.43±0.05 3.48
Triangle-GAN [15] 96.42 4.36±0.05 9.01 35.49 1.71±0.04 94.99 61.44 2.77±0.10 4.74
R3-CGAN [33] 88.62 4.43±0.06 8.60 25.28 1.73±0.02 74.30 44.57 3.05±0.04 5.48

SSC-GAN 20.03 4.68±0.04 97.85 20.65 1.82±0.03 96.86 39.02 3.10±0.03 87.45

(a) FineGAN (b) SSC-GAN

Figure 8. Visual comparison between FineGAN and SSC-GAN on
CUB, FS-100 and Stanford-Cars.

5. Conclusion

We focus on class-conditional generative modeling for
fine-grained object categories in semi-supervised scenar-
ios, where only a small amount of labeled data can be ac-
cessed. Toward this end, we present a single-stage control-
lable GAN in this paper. Image generation is conditioned
on class-independent variable, cross-class variable and class
variable to model the factors of variation. We extend the
structure of a generic semi-supervised GAN and apply ef-
fective regularizers to reduce the dependence of the model
on labeled data, as well as enhance class separability. Bene-
fiting from the regularization, the variables are disentangled
and associated with corresponding image properties. Our
design not only makes the image generation process con-

Figure 9. The impact of the levels of supervision on the final gen-
eration performance on CUB.

Table 3. The results of SSC-GAN in the semi-supervised and su-
pervised settings.

CUB FS-100 Stanford-Cars

Method FID↓ RA↑ FID↓ RA↑ FID↓ RA↑

Baseline 82.87 11.04 30.63 88.30 50.78 5.32

SSC-GAN 20.03 97.85 20.65 96.86 39.02 87.45
w/ Full Sup. 18.34 98.54 16.28 98.35 37.48 89.54

trollable, but is also beneficial to the matching of the class-
conditional distributions of real and synthesized data.
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