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Abstract

We develop a novel self-supervised learning method
named Shape Self-Correction for point cloud analysis. Our
method is motivated by the principle that a good shape
representation should be able to find distorted parts of a
shape and correct them. To learn strong shape representa-
tions in an unsupervised manner, we first design a shape-
disorganizing module to destroy certain local shape parts
of an object. Then the destroyed shape and the normal
shape are sent into a point cloud network to get represen-
tations, which are employed to segment points that belong
to distorted parts and further reconstruct them to restore
the shape to normal. To perform better in these two asso-
ciated pretext tasks, the network is constrained to capture
useful shape features from the object, which indicates that
the point cloud network encodes rich geometric and con-
textual information. The learned feature extractor transfers
well to downstream classification and segmentation tasks.
Experimental results on ModelNet, ScanNet and ShapeNet-
Part demonstrate that our method achieves state-of-the-art
performance among unsupervised methods. Our framework
can be applied to a wide range of deep learning networks
for point cloud analysis and we show experimentally that
pre-training with our framework significantly boosts the
performance of supervised models.

1. Introduction

3D shape understanding is in tremendous demand due to
many important tasks like autonomous driving. Point cloud
is a simple but effective representation of 3D data, which
makes it popular for 3D vision analysis. With the help of
extensive manually-labeled supervised information, many
ingenious works [21, 22, 26, 40, 17, 42, 20, 14, 18] are pro-
posed to directly consume point clouds and achieve remark-
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Figure 1: Illustration of our main idea. As shown, we
destroy the shape parts with certain heuristic methods and
there is a huge mismatch between the distorted parts and the
normal parts. We can easily distinguish the distorted parts
because we know the geometric characteristics of the ob-
ject. Hence we think a strong representation which encodes
effective structure information should also have the ability.
We destroy shape parts and train a network to distinguish
the destroyed parts and restore them to normal unsupervis-
edly in a pretext task. Success in the pretext task indicates
the network captures strong shape representations, which
can transfer well to downstream tasks.

able performance on 3D vision tasks like classification, de-
tection and segmentation. However, an enormous amount
of 3D point cloud data has not been effectively utilized be-
cause of the expensive labeling. Hence utilizing these unla-
beled data to perform effective representation learning is an
important opportunity for 3D analysis.

Unsupervised learning on point clouds aims to learn
useful information and representations from points with-
out manually-labeled supervised information, which opens
up the possibility to take advantage of unlabeled data.
Several works focus on 3D unsupervised feature learning
through using autoencoders and generative adversarial net-
works [2, 8, 15, 43, 47, 7]. Certain recently devoted self-
supervised works [10, 25, 11, 1, 31] design target related
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pretext tasks to encourage the network to capture structural
and low-level information. PointGLR [24] effectively cap-
tures the underlying high-level semantic knowledge through
bidirectional reasoning between the local structures and the
global shape and achieves superior performance on classi-
fication tasks. Nevertheless, PointGLR relies on the hierar-
chical local features and it is not suitable for networks like
PointNet [21] and DGCNN [34]. The goal of our work is
to explore a backbone-agnostic self-supervised framework
that is capable of fully utilizing local structure of shape parts
and boosting the performance of unsupervised learning.

Each 3D shape can be divided into several shape
parts/primitives in an unsupervised manner and all the shape
parts are closely related through geometric constraints. The
geometric constraints reflect robust geometric characteris-
tics and imply local structure information and semantic
knowledge of the object. Hence, one can easily distinguish
distorted parts of a shape if he knows the geometric struc-
ture of such shape. Motivated by such principle, we think
that a good shape representation which encodes effective
structural and semantic information should also have the
ability to find distorted parts of a shape and correct them.

Inspired by such observations, we propose a self-
supervised framework for learning strong representations of
3D shapes by destroying local parts of a 3D shape and en-
couraging the network to distinguish the destroyed shape
parts and then restore them to normal. For success in this
pretext task, the network is constrained to capture richer ge-
ometric and structural information of the 3D point cloud.
The overview of our main idea is shown in Figure 1. Our
proposed framework is agnostic of point-based networks
like PointNet, KPConv [28], and RSCNN [20]. In this pa-
per, we modify PointNet and RSCNN as our feature ex-
tractor respectively to evaluate our proposed method. We
concatenate the normal shape and disorganized shape as the
input of the backbone network during pre-training. With
the features of the normal shape, accurate structure informa-
tion is obtained so that the network is capable of performing
well on the pretext tasks. In addition to the backbone net-
work, our proposed framework has three other components ,
which can be summarized as: 1) Shape-disorganizing mod-
ule: we design a cluster of heuristic methods to effectively
destroy the geometric structure of normal shape parts; 2)
Distinguishing Branch: we implement a point-wise clas-
sifier to segment points that belong to the distorted parts;
3) Restoring Branch: we also design a self-reconstruction
module to correct the distorted shape based on the seg-
mentation results of the Distinguishing branch. Notably,we
propose an approach cluster in Shape-disorganizing module
and a wide range of methods that destroy geometric struc-
ture of shape parts can be included in.

In this paper, we utilize the ShapeNet [3] dataset as
our source set for self-supervised pre-training and evalu-

ate the learned features on two important 3D understanding
tasks, i.e., shape classification and segmentation. Experi-
mental results on several datasets indicate that our method
achieves state-of-the-art performance among unsupervised
models on both classification and segmentation tasks. Note
that our model achieves remarkable performance on a real-
world scanned dataset (ScanNet [4]), which demonstrates
the transferability and robustness of learned features. We
also show experimentally that pre-training with our frame-
work significantly boosts the performance of supervised
models. On the segmentation task, we also explore the ef-
fectiveness of the learned features in a semi-supervised set-
ting and our method outperforms previous methods [39, 11]
, especially when labels are most limited. In addition, our
per-trained model achieves competitive results on down-
stream tasks when only using PointNet as the backbone net-
work, which demonstrates the strong feature learning ability
of our framework.

2. Related Work
Deep Learning on Point Cloud Understanding. Point-
Net [21] is a pioneering work to directly consume un-
ordered and unstructured 3D point clouds, where MLPs and
global max-pooling are utilized to obtain both point-wise
features and global structure information. Despite PointNet
well handles order invariances of input data and achieves
strong performance, it fails to aggregate point-wise em-
beddings and capture local contextual information among
points. PointNet++ [22] mitigates this issue by propos-
ing a hierarchical learning architecture, where multi-scale
local point embeddings are grouped. Several subsequent
works [41, 9, 13, 32, 37, 33, 35] employ methods similar
to CNNs to aggregate the contributions of neighbor points
and capture local structure. All of the mentioned meth-
ods achieve remarkable performance on 3D point cloud un-
derstanding tasks with the help of labeled data. Our pro-
posed self-supervised feature learning framework is suited
for most of these methods and can learn strong representa-
tions without any human annotations.
Unsupervised Point Cloud Understanding. Unsuper-
vised point cloud understanding aims to capture effective
information from unlabeled point cloud data and utilize
the learned features to handle downstream tasks. Classic
methods perform unsupervised point cloud feature learn-
ing mainly based on auto-encoders [2, 5, 27, 47, 43] and
generative adversarial networks [15, 2, 29]. Despite the
promising performance on several specific tasks, these
methods suffer from lacking local structural supervision,
which limits the feature learning ability and transferabil-
ity. Certain recent efforts focus on learning both struc-
ture information and semantic knowledge by defining pre-
text tasks [25, 11, 10, 24, 1]. RS [25] splits the shape into
3x3x3 voxels and trains the network to reconstruct the shape
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whose parts have been randomly rearranged by finding cor-
rect voxel assignment. The way RS uses to displace shape
parts can be employed in our framework. However, RS re-
stores the shape by simply rearranging shape parts accord-
ing to predicted voxel assignment. Thus many methods that
distort the shape do not apply to RS but they work well in
our framework. PointGLR [24] explores high-level seman-
tic knowledge contained in point clouds by bidirectional
reasoning between local representations at different abstrac-
tion hierarchies in a network and global representation of
the 3D object, which achieves extraordinary performance
on classification tasks. Under this perspective, we propose
a new scheme called Shape Self-Correction, which simulta-
neously employs local and global self-supervision and cap-
tures effective features that outperform other unsupervised
methods on downstream tasks.
Point Cloud Denoising. Deep denoising approaches [6, 23,
45, 46] require pairs of clean and noisy point clouds, which
in practice are produced by adding noise to original point
clouds [12]. The formulation of our method is similar to
point cloud denoising in that they both try to find and elim-
inate outliers. However, simply adding noise to the point
cloud does not effectively alter geometric characteristics of
the original shape. Thus the unsupervised model based on
the denoising task is not able to extract effective geometric
information of the object, which is demonstrated in Sec-
tion 4.4. In contrast, our method destroys the geometric
structure of shape parts and encourages the model to uti-
lize geometric features to discern and restore the distortion.
Through training with this pretext task, the network is con-
strained to capture useful structure information of the shape.

3. Methodology
To learn discriminative, robust and generalizable shape

representations from unlabeled point cloud data and en-
hance the network’s ability in 3D point cloud understand-
ing, we propose a novel self-supervised framework named
Shape Self-Correction. Our method enables the model to
capture effective structural and contextual information by
destroying the local shape parts and constraining the net-
work to distinguish and restore them to normal.

3.1. Overview

Our framework contains a Shape-disorganizing module,
a point cloud Encoder, a Distinguishing Branch D and a
Restoring Branch R, as illustrated in Figure 2. Firstly, we
disorganize the 3D shape and destroy the geometric struc-
ture of the normal shape. Then we use the encoder to gener-
ate features of both the normal shape and the disorganized
one. The features are concatenated as the input of branch D
and R to distinguish the disorganized shape parts and restore
them to normal. Here, the features of the normal shape are
utilized as the template to provide accurate structure infor-

mation so that the network is capable of performing well on
the pretext tasks, which enables the model to exploit effec-
tive features. Notably, Branch R does not utilize the results
of Branch D as inputs so that we can arrange them in paral-
lel.

Assume a shape S = {s1, s2, ..., sN} is a point set with
N points, the Shape-disorganizing module randomly sam-
ples two parts P , Q and then utilizes a combination of var-
ious approaches to distort the sampled parts. We define the
points of distorted parts as incorrect points. The incorrect
points together with the parts that are not selected form a
new shape S∗. Intuitively, the new shape may not conform
the geometric characteristics of the original shape. Consid-
ering the geometric characteristics explicitly represent the
relationships among different shape parts and imply seman-
tic knowledge of the shape, we design the Distinguishing
branch D to seek out the incorrect points that break the geo-
metric construction of the original shape, which encourages
the model to better understand 3D shapes and learn effective
structure and semantic information. Based on the distin-
guishing results, if the model is able to move the incorrect
points to correct positions and restore the geometric char-
acteristics of the normal shape, we can conclude that the
model explores more fine-grained geometric and contextual
features of input shapes. Hence the Restoring Branch R is
designed to reconstruct input shapes. To succeed in such
pretext task, the encoder is constrained to fully exploit use-
ful shape information.

3.2. Shape Disorganizing

The Shape-disorganizing module is designed to destroy
the geometric structure of input 3D shapes by disorganiz-
ing the shape parts. In our method, we design a method
cluster to disorganize the input shape, including (1) ran-
domly rotate the sampled part along X,Y or Z axis; (2) ran-
domly translate sampled points to new positions; (3) ran-
domly scale the sampled part; (4) crop the sampled part and
replace it with a random sphere; and (5) exchange the coor-
dinates of two sampled parts. For the input shape, this mod-
ule randomly samples two shape parts and then randomly
selects certain distortion approaches from the cluster to gen-
erate the disorganized shape. Specifically, from the input
points S = {s1, s2, ..., sN}, we randomly select two cen-
ter points si = (xi, yi, zi) and sj = (xj , yj , zj). Following
the grouping layer in PointNet++, we employ ball query to
sample two clusters of points P = {p1,p1, ...,pK} and
Q = {q1, q2, ..., qK} from S , where all points in P /Q
are within a radius to si/sj (an upper limit of K is set in
our implementation). S

′
= S \ {P ∪Q} denotes the point

set that is not sampled. For the sampled parts P and Q, a
combination of distortion approaches is utilized to gener-
ate distorted versions P ∗ and Q∗. Then the new shape S∗

can be expressed as S∗ = S
′ ∪ P∗ ∪Q∗, which denotes
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Figure 2: Framework of the proposed self-supervised method Shape Self-Correction. The framework consists of a
shape-disorganizing module, a point cloud encoding network and two task-related branches. We design a cluster of methods
to distort shape parts. Abnormal part distinguishing branch and abnormal part restoring branch are designed to segment
points that belong to destroyed parts and restore the disorganized shape to normal respectively.

the disorganized shape that breaks the original geometric
structure. The visual examples of normal shapes and disor-
ganized shapes are shown in Figure 3.

As shown in Figure 2, to encourage the network to bet-
ter understand the geometric characteristics of the correct
shape, we employ the original shape as a template and the
encoder extracts high-dimensional features of both the new
shape and original shape. Intuitively, if the two shapes
have a point-to-point correspondence, the Distinguishing
Branch tends to learn point transformation and gives triv-
ial solutions. To avoid such correspondence in coordinates,
we use random sampling to choose two subsets of points
T = {t1, t2, ..., tN ′}, T ∗ = {t∗1, t∗2, ..., t∗N ′} from S and
S∗ respectively, where N ′ = N/2. Moreover, we perform
simple random data augmentation on both T and T ∗ for
the purpose of better representation learning, which further
breaks the point-to-point correspondence between normal
shapes and disorganized shapes. In the meanwhile, Shape-
disorganizing module generates pseudo-labels for T ∗. We
express it as Y = {y1, y2, ..., yN ′} such that yi ∈ {0, 1},
where yi = 1 means the corresponding point belongs to
distorted parts (i.e., P ∗ and Q∗). The output of Shape-
disorganizing can be expressed as a tuple t = [T ,T ∗,Y].

3.3. Point Cloud Encoding

Any learning-based network that takes point clouds as
the input and outputs high-dimensional features can be uti-
lized as the encoder of Shape Self-Correction. In our imple-
mentation, we employ RSCNN and PointNet as the encoder
that maps input point sets from Euclidean space Rn×3 into
the latent space Z ∈ Rn×d. Specifically, for each shape T ∗,
the encoder extracts its point-wise features l∗ ∈ Rn×dl and
global feature g∗ ∈ R1×dg to encode richer local and global
information than the original space. When using PointNet
as the encoder, global and point-wise features are defined

Figure 3: Visualization of normal shapes (row 1 and 3)
and abnormal shapes disorganized by Shape Disorganizing
module (row 2 and 4).

the same as proposed in [21]. For RSCNN [20], we uti-
lize the architecture for classification (single-scale neigh-
borhood version) as our backbone and generate point-wise
features by attaching certain feature propagation layers. For
the purpose of guiding the network to correctly discern
those disorganized parts, we also extract the global feature
g of the original shape T . The concatenation of g, g∗ and
l∗ is fed into the Distinguishing Branch D and Restoring
Branch R simultaneously. Through the task of discerning
the disorganized parts and restoring the original shape, the
encoder is encouraged to generate strong shape represen-
tations that facilitate high-quality classification, segmenta-
tion, and other 3D point cloud understanding tasks.
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3.4. Abnormal Part Distinguishing

For a disorganized shape, the task of distinguishing the
parts that make the shape violate the geometric construction
enables the model to better understand 3D shapes and cap-
ture more effective shape features. Hence the Distinguish-
ing Branch is designed to seek out all incorrect points of the
disorganized shape. We formulate the task as a point-wise
classification. This task is defined as Fζ : Z ∈ RN ′×d 7→
Y ∈ RN ′×2, which maps the high-dimensional features ex-
tracted by the point cloud encoder into predicted categories,
i.e., the corresponding point belongs to distorted parts or
not. In our method, we use RSCNN/PointNet as the en-
coder, we concatenate the global features g∗, g ∈ R1×dg

and the point-wise features l∗ ∈ RN ′×dl as the input of
this branch. The classification is formed by several MLP
layers. The output of Distinguishing Branch is denoted as
Ŷ = {ŷ1, ŷ2, ..., ˆyN ′}, where ŷi represents the probability
distribution formulated by softmax function.

3.5. Abnormal Part Restoring

Paralleled with Distinguishing Branch, we develop a
Restoring Branch and encourage the model to restore the
original shape, which constrains the encoder to capture
more contextual and geometric information contained in
point clouds. Thus the Restoring Branch is naturally de-
signed to move the incorrect points to original locations. We
formulate the task as reconstruction. We define the function
of Restoring Branch as Rϕ : Z ∈ RN ′×d 7→ P ∈ RN ′×3.
Through decoding the high-dimensional features extracted
by the encoder, the Restoring Branch performs point-wise
displacement prediction and tries to output a point cloud T̄
as similar as possible to the original point set T by the func-
tion R. Here, we use Chamfer Distance (CD) to measure
the distance between the reconstructed T̄ and the original
T . The Chamfer Distance is often applied as the cost of the
reconstruction task, which finds the nearest neighbour of
each point and computes their Euclidean distance in a bidi-
rectional way between two point sets. In our method, con-
sidering the disorganized parts dominate the performance
of reconstruction, we modify the Chamfer Distance and at-
tach larger weights to the predicted incorrect points than the
correct ones, which is written as:

Lc =
∑
p∈T

λp̄ min
p̄∈T̄

∥p− p̄∥22 +
∑
p̄∈T̄

λp̄ min
p∈T

∥p− p̄∥22, (1)

where λp̄ denotes the weight attached to each point in the
reconstructed set. Here, we set λp̄ ∈ {0.5, 1.0}, where λp̄

is set to 0.5 and 1.0 for points that belong to normal and
distorted parts respectively.

To accurately restore the coordinates of incorrect points,
the point-wise local features l∗ and global feature g∗ are
utilized because features of the correct points are favorable

for the network to exploit the point relation information and
then find proper locations of incorrect points. The same as
Distinguishing Branch, we employ the global feature of the
original shape g as a template. Thus the input of Restoring
Branch is the concatenation of l∗, g∗ and g. The output is
a reconstructed point set T̄ ∈ RN ′×3.

3.6. Objective Function

The Distinguishing Branch is trained by classical cross-
entropy loss and supervised by the pseudo-labels Y =
{y1, y2, ..., yN ′}, which is written as:

Ls = − 1

N ′

N ′∑
i=1

yi log ŷi, (2)

where yi ∈ Y and ŷi denotes the output probability distribu-
tion formulated by softmax function. We train the Restoring
Branch with a modified Chamfer Distance Loss as formu-
lated in Equation (1).

The two branches are jointly optimized and the over-
all objective function of Shape Self-Correction scheme is
a combination of two losses:

L = Ls + βLc, (3)

where β is used to balance contributions of the two terms
such that two branches contribute equally to the whole net-
work.

Our common goal is to encourage the encoder to learn
more discriminative shape features through training it with
the Shape Self-Correction tasks. We define the encoder as
Eθ : P ∈ RN ′×3 7→ Z ∈ RN ′×d and any parametric non-
linear function parameterized by θ can be used as the en-
coder. Hence the optimal problem of Shape Self-Correction
can be expressed as:

min
{θ,ζ,ϕ}

Ls + βLc. (4)

After optimization, the encoder generates more effective
features and performs better on specific downstream tasks
like shape classification and segmentation.

4. Experiments
In this section, we evaluate the proposed Shape Self-

Correction framework qualitatively on two of the most
important 3D tasks, i.e., classification and segmentation.
Specifically, the encoder trained with Shape Self-Correction
scheme can be used as a pre-trained model for the two
downstream tasks. Our framework is general and we mod-
ify PointNet and RSCNN as our encoder respectively. For
training and evaluation regarding the tasks, we use multiple
benchmark datasets, i.e., ShapeNet [3], ShapeNetPart [44],
ModelNet [38] and ScanNet [4].
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4.1. Experimental setups

Datasets. ShapeNet [3] contains more than 50,000
3D shapes across 55 categories of man-made objects.
ShapeNetPart dataset [44] contains 16,681 objects from 16
categories of ShapeNet dataset. Each category contains 2-6
parts and there are 50 parts in total. ModelNet dataset [38]
has two variants, i.e., ModelNet40 and ModelNet10, com-
prising 9832/3991 training objects and 2468/908 test ob-
jects in 40 and 10 classes respectively. ScanNet [4] contains
1513 scanned and reconstructed real-world indoor scenes.
We follow the practice in [17, 24] to obtain point clouds
from ScanNet according to the semantic voxel labels, which
contain 17 categories.
Evaluation Metrics. For the classification task on Model-
Net and ScanNet, we use the classification accuracy as the
metric. On ShapeNetPart dataset, we evaluate our scheme
with part classification accuracy and mean Intersection-
over-Union (mIoU). For each sample, IoU is computed for
each part that belongs to that object category. The mean of
all part IoUs is regarded as the IoU for that sample.
Model Pre-Training. Following the experimental protocol
introduced in [2], we pre-train the encoder with our pro-
posed scheme across all categories of the ShapeNet dataset,
and then transfer the pre-trained model to the downstream
tasks (i.e., classification on ModelNet&ScanNet and part
segmentation on ShapeNetPart). We take PointNet and
RSCNN as our backbone. The Shape-disorganizing mod-
ule, Distinguishing Branch and Restoring Branch are all
discarded and only the encoder is used in downstream tasks.
During pre-training, each shape in ShapeNet is sampled
to 2048 points initially. The Shape-disorganizing module
samples two clusters of points from the input point set as
stated in Section 3.2 and we set the upper limit number of
part points K to 256. After disorganizing the input shape,
we sample the new point set to 1024 points to weaken the
point-to-point correspondence between the new shape and
the original one. During pre-training, adam optimizer is
used. The learning rate is set to 0.001 and the loss weight
coefficient β for Lc is set to 4.0. Notably, only 3D coordi-
nates are used during self-supervised training.

4.2. Shape Classification

To evaluate the performance of the Shape Self-
Correction scheme on shape feature learning, we first
conduct transfer experiments from ShapeNet to Model-
Net/ScanNet dataset. Following [2, 11], we extract the
shape features of the ModelNet/ScanNet samples with the
pre-trained model without any parameter fine-tuning. Then
we train a linear SVM on the embeddings of Model-
Net/ScanNet train split and report the classification accu-
racy on the ModelNet/ScanNet test split. Each point cloud
contains 1024 points and we only use the coordinates as
the input. Results on ModelNet/ScanNet are shown in

Supervision Method MN10(%) MN40(%)
PointNet [21] - 89.2

Supervised PointNet++ [22] - 90.7

Learning SpecGCN [30] - 91.5
DGCNN [34] - 92.2
DensePoint [19] - 92.8
3D-GAN [36] 91.0 83.3
FoldingNet [43] 94.4 88.4
MAP-VAE [10] 94.8 90.2
Multi-task [11] - 89.1

Unsupervised MT-PointNet [11] - 86.2
Transfer RS-PointNet [25] 91.6 87.3
Learning RS-DGCNN [25] 94.5 90.6

GLR-RSCNN [24] 94.2 91.3
Ours-PointNet 93.3 89.9
Ours-RSCNN 95.0 92.4
RI-PointNet 93.2 89.1

Supervised Ours-PointNet 93.9(+0.7) 90.0(+0.9)

Fine-Tuning RI-RSCNN 94.8 91.7
GLR-RSCNN [24] 94.8(+0.0) 92.2(+0.5)
Ours-RSCNN 95.5(+0.7) 93.0(+1.3)

Table 1: Shape Classification Results on ModelNet. Re-
sults of both supervised and unsupervised models are re-
ported. “Unsupervised Transfer Learning” denotes the pa-
rameters of the pre-trained models are fixed on downstream
tasks, while “Supervised Fine-Tuning” denotes the pre-
trained models are fine-tuned on target tasks. “RI” denotes
the model is trained on target dataset from scratch. Our re-
sults are measured without using tricks like voting.

Supervision Method Acc.% Inc.%

Unsupervised GLR-RSCNN [24] 88.1 -

Transfer Ours-PointNet 84.2 -
Ours-RSCNN 89.0 -
RI-PointNet 87.8 -

Supervised Ours-PointNet 89.7 +1.9

Fine-Tuning RI-RSCNN 90.1 -
GLR-RSCNN [24] 90.8 +0.7
Ours-RSCNN 92.9 +2.8

Table 2: Shape Classification Results on ScanNet. The
classification accuracy of our method and the state-of-the-
art unsupervised method are reported. “RI” denotes the
model is trained on ScanNet from scratch. We also list the
increments of pre-training.

Table 1&2 (“Unsupervised Transfer Learning”). To per-
form fair comparisons, we reproduce PointGLR [24] with-
out using annotated normal information as unsupervised
signals. Our method achieves competitive results when only
using PointNet as the encoder. When utilizing RSCNN,
our method outperforms all previous unsupervised counter-
parts and the results on ModelNet are comparable to certain
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fully-supervised models. Since the pre-training of the en-
coder and the training of the SVM are based on different
datasets, the results imply the strong transferability of our
framework, which is regarded as a significant application of
self-supervised representation learning. Notably, ShapeNet
is a synthetic dataset sampled from CAD models and Scan-
Net is a scanned real-world dataset, the domain gap between
these two datasets is considered to be large. Thus the supe-
rior performance on ScanNet further demonstrates that our
model generalizes well to unseen categories and the learned
features are robust and generic.

As stated in Section 2, RS [25] also disorganizes the
shape and discerns the incorrect points. However, our
method is motivated to offer a pipeline to destroy the ge-
ometric structure of shape parts and then distinguish and
restore the distortion. We utilize a cluster of approaches
to distort shape parts, which do not apply to RS. Also, we
employ the features of the original shape as the template to
facilitate feature learning. The Restoring Branch also con-
tributes a lot for training the encoder, thus our method out-
performs RS by a large margin.
Supervised Fine-Tuning. We think the most important
application of self-supervised learning is to make full use
of abundant unlabeled data and boost the performance of
supervised methods. Following [39], we employ the su-
pervised fine-tuning strategy to evaluate the effectiveness
of our proposed Shape Self-Correction. Specifically, we
pre-train the model with our framework and fine-tune the
weights on downstream tasks and compare the results with
the randomly initialized model (not pre-trained). Under this
perspective, we conduct extensive experiments on Model-
Net/ScanNet and the results are also shown in Table 1&2
(“Supervised Fine-Tuning”). Note that pre-training with
PointGLR [24] slightly benefits the supervised tasks while
our method significantly boosts the performance, especially
on ScanNet. Pre-training with our framework can be uti-
lized as a strong initializer for supervised models.

4.3. Part Segmentation

Shape part segmentation is formed as a fine-grained
point-wise classification task to predict the part category la-
bel of each point in a given object. Hence we explore the
learned point-wise embeddings through such task. In this
section, we evaluate the learned features on ShapeNetPart
dataset and report part classification accuracy and mIoU.

Following [47, 11], we first conduct the shape segmen-
tation experiments in a semi-supervised manner, i.e., we
randomly sample 1% and 5% of the ShapeNetPart train
set as training data. We use the pre-trained model to ex-
tract the point features of all samples without any pa-
rameter fine-tuning, and then train a 4-layer MLP-based
[2048,4096,1024,50] classifier on the sampled training set.
The evaluation is conducted on the whole test set.

Model 1% of train data 5% of train data
Accuracy IoU Accuracy IoU

SO-Net [16] 78.0 64.0 84.0 69.0
PointCapsNet [47] 85.0 67.0 86.0 70.0
Multi-task [11] 88.6 68.2 93.7 77.7
Ours-PointNet 84.9 69.7 88.1 74.0
Ours-RSCNN 89.8 74.1 94.3 80.1

Table 3: Shape part segmentation results without fine-
tuning. Part classification accuracy and Ins.mIoU on
ShapeNetPart datast are reported. All compared methods
are evaluated in a semi-supervised manner (i.e., 1%, 5%
of training data is sampled), where the parameters of pre-
trained models are fixed.

Figure 4: The segmentation results on ShapeNetPart
dataset. Row 1: Ground Truth. Row 2/3: Results predicted
by the model trained on 1%/5% data with encoder fixed.

The results are shown in Table 3. Our method sig-
nificantly outperforms other unsupervised models, which
shows that our pre-trained model captures more effec-
tive point embeddings that transfer well to segmentation
tasks. Especially when using only 1% of training data, our
RSCNN model outperforms all previous methods by a large
margin. Considering Multi-Task [11] employs a heavier
graph-based backbone, our PointNet model is also competi-
tive. The results demonstrate that, through pre-training with
the proposed Shape Self-Correction scheme, a very small
number of labelled samples are sufficient to achieve strong
performance on the downstream task. Some results are vi-
sualized in Figure 4. Despite the training data is limited,
our model segments the fine-grained details well.
Supervised Fine-Tuning. The shape segmentation exper-
iments under supervised fine-tuning strategy are also con-
ducted. We report mIoU under several training-data sam-
pling strategies (i.e., 1%, 5%, 100%) and make compar-
isons with PointContrast [39] in Table 4. As shown, our
RSCNN model fine-tuned on 5% labeled samples achieves
a Ins.mIoU that is only 3.9% less than the fully-supervised
model trained from scratch. Compared to the randomly
initialized model, our pre-trained model achieves remark-
able performance improvements, especially when only 1%
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Model IoU (1%) IoU (5%) IoU (100%)
PContrast (RI) [39] 71.8 79.3 84.7
PContrast (FT) [39] 74.0 (+2.2) 79.9 (+0.6) 85.1 (+0.4)
Ours-PointNet (RI) 68.6 76.9 83.2
Ours-PointNet (FT) 72.9 (+4.3) 78.5 (+1.6) 84.1 (+0.9)
Ours-RSCNN (RI) 71.6 79.4 84.3
Ours-RSCNN (FT) 74.3 (+2.7) 80.4 (+1.0) 85.2 (+0.9)

Table 4: Shape part segmentation results with fine-
tuning strategy. “RI” denotes the model is not pre-trained.
“FT” denotes the model is pre-trained with the correspond-
ing unsupervised scheme and fine-tuned on target task.
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Figure 5: (a). T-SNE visualization of shape representations
of ModelNet10 test data. (b). Parameter analyses on the
point number of distorted parts.

labelled data is obtained (+4.3% for PointNet and +2.7%
for RSCNN). We can conclude that pre-training with our
framework on unlabeled data significantly boosts the per-
formance and can be regarded as a strong initializer for su-
pervised models, especially when labelled data is limited,
which is a critical application of self-supervised learning.

4.4. Ablation Study

In this section, we explore the crucial components and
hyper-parameters of Shape Self-Correction. All the experi-
ments in this section are conducted on ModelNet40 dataset
and we fix the encoder (RSCNN) after pre-training.

Branch Branch Aug.& Temp Acc.
D R Down-sample Feature %

√ √ √
88.1√ √ √
89.3√ √ √
90.9√ √
88.0√ √
87.6√ √ √
87.8√ √ √ √
92.4

Table 5: Component analyses. Accuracy results on Mod-
elNet40 are shown.

Component Analyses. We first conduct ablation study to
investigate the effectiveness of each branch in Shape Self-
Correction. We remove the corresponding loss when in-
vestigating the effect of such branch. Besides, we perform

points down-sampling and data augmentation to break the
coordinate correspondence. Hence we also conduct experi-
ments to explore the effectiveness of such operations.

The results shown in Table 5 indicate that the Dis-
tinguishing Branch plays a more important role than the
Restoring Branch, while Restoring Branch can further im-
prove performance. We also compare the ablated version
without features from the template shape and the accuracy
degrades to 87.8%, which convincingly verifies the effec-
tiveness of utilizing the features of original shapes.

A second experiment is conducted to explore how the
approach cluster in shape-disorganizing module affects the
performance of the scheme. The results are shown in Ta-
ble 6. As shown, exchanging and replacing points are the
most important distortion methods. Notably, our method
achieves competitive performance by only randomly trans-
lating and rotating sampled parts. We also generate abnor-
mal objects by only adding noise to the original shapes and
the accuracy degrades to 87.2%, which proves the impor-
tance of altering geometric structure on the pre-task as il-
lustrated in Section 2.

Rot. Trans. Scale. Exchange. Replace. Acc.%√ √
89.2√ √ √
89.5√
91.1√
90.7√ √
92.0√ √ √ √ √
92.4

Table 6: Effectiveness of the distortion approaches. Ac-
curacy results on ModelNet40 are shown.

Parameter Analyses. We also explore how the number
of incorrect points (i.e., the hyper-parameter K as stated in
Section 3.2) affects the performance of the model. The re-
sults are shown in Figure 5(b). We can observe that good
performance is achieved when K is set to 256. No obvious
improvements show up when further increasing K.

5. Conclusion

We propose an unsupervised framework for point cloud
analysis named Shape Self-Correction. Experimental re-
sults on various datasets demonstrate that our method trans-
fers well to downstream tasks and achieves state-of-the-art
performance among unsupervised methods. Notably, Shape
Self-Correction can be regarded as a pipeline and we pro-
vide a simple and effective implementation. For future di-
rections, we are intending to explore more effective ap-
proaches to distort the shape parts and extend our scheme
to more scenarios like point cloud completion.
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