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Abstract

During the last years, convolutional neural networks (C-
NNs) have triumphed over video quality assessment (VQA)
tasks. However, CNN-based approaches heavily rely on
annotated data which are typically not available in VQA,
leading to the difficulty of model generalization. Recent ad-
vances in domain adaptation technique makes it possible
to adapt models trained on source data to unlabeled target
data. However, due to the distortion diversity and content
variation of the collected videos, the intrinsic subjectivi-
ty of VQA tasks hampers the adaptation performance. In
this work, we propose a curriculum-style unsupervised do-
main adaptation to handle the cross-domain no-reference
VQA problem. The proposed approach could be divided
into two stages. In the first stage, we conduct an adap-
tation between source and target domains to predict the
rating distribution for target samples, which can better re-
veal the subjective nature of VQA. From this adaptation,
we split the data in target domain into confident and un-
certain subdomains using the proposed uncertainty-based
ranking function, through measuring their prediction confi-
dences. In the second stage, by regarding samples in con-
fident subdomain as the easy tasks in the curriculum, a
fine-level adaptation is conducted between two subdomain-
s to fine-tune the prediction model. Extensive experimen-
tal results on benchmark datasets highlight the superiori-
ty of the proposed method over the competing methods in
both accuracy and speed. The source code is released at
https://github.com/cpf0079/UCDA.

1. Introduction
Benefitting from the evolution of affordable and reli-

able consumer capture devices, and the tremendous pop-
ularity of social media platforms, recent years have wit-
nessed an explosion of user-generated videos shared and
streamed over the Internet [8]. Improving the efficiency of
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Figure 1. The pipeline of the proposed model could be divided into
two stages, i) the model first learns domain-invariant features from
labeled source data and unlabeled target data; ii) supervised by
the pseudo labels obtained from the first stage, the performances
of those uncertain predictions are rectified through the adaptation
between two subdomains in the target domain.

video coding, storage, and streaming over communication
networks is a principle goal of video sharing and stream-
ing platforms. One relevant research direction is the per-
ceptual optimization of rate-distortion tradeoffs in video
encoding and streaming, where distortion (or quality) is
usually modeled using video quality assessment (VQA) al-
gorithms that can predict human judgements of perceptu-
al quality. This has motivated years of research on the
topics of perceptual image and video quality assessment
(IQA/VQA) [48, 36, 13, 22, 23, 12].

Compared to the most reliable subjective VQA study re-
lying on manual annotating, objective approach that auto-
matically predicts the visual quality of distorted videos has
long been a popular topic in VQA community. More re-
cently, convolutional neural networks (CNNs) have become
a hallmark backbone model to solve vision-related tasks.
Despite of the impressive progress in developing objective
VQA models, they often encounter challenges in practi-
cal applications, where prediction model trained on well-
labeled data could be easily crippled given the target sam-
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ples due to the domain disparity [21, 11]. This is because
benchmark VQA datasets are usually biased to specific en-
vironments, and in practice, it is often hard to acquire new
training sets that fully cover the huge variability of real-life
test scenarios. Admittedly, generalizing models learned on
one visual domain to novel domains has been a major ob-
stacle to the development of VQA techniques.

A natural idea to improve the generalization ability of
the trained model is to adopt domain adaptation technique
that is invented to handle the cross-domain tasks by learn-
ing domain-invariant representations. It has experienced
an impressive series of successes in many computer vision
tasks such as semantic segmentation, classification and de-
tection [31, 41], but remains a challenge for the particular
task of VQA due to the subjective nature of quality assess-
ment. Since videos collected from the testing scenario are
bound to have diverse distortions and varied visual contents,
part of them tend to be more difficult to be rated than other-
s [25]. This leads to different difficulty degrees for the net-
work to learn transferable knowledge for each target sam-
ple, resulting in uncertain predictions and inferior adapta-
tion performance (Figure 1, where we assume that predic-
tions with more concentrated distributions, which show uni-
modal patterns, have higher prediction confidences as men-
tioned in [25]).

The conventional wisdom of objective VQA methods is
learning a regression model to predict the mean-opinion-
score (MOS). However, the subjective nature of quality as-
sessment progress may not be adequately represented by a
single scalar number, considering such a scheme ignores the
fact that the video to be evaluated would receive divergen-
t opinions from different subjects [44]. This is particular-
ly profound on complex, real-world distorted videos com-
pared to their image counterparts. For instance, the average
standard deviation of the subjective scores of the videos in
the LIVE-VQC database [34] is 18 on the MOS scale of
[0,100]. In this case, we argue that one possible way to
better reveal this intrinsic subjectivity may reside in explor-
ing the potentially useful and predictive information con-
tained in the distributions of subjective scores, which has
been rarely discussed or utilized in the literature.

In light of the above issues, in this paper, by casting
the quality assessment task as a rating distribution predic-
tion problem, we take steps toward a novel domain adap-
tation approach, dubbed as Unsupervised Curriculum Do-
main Adaptation (UCDA), to handle the cross-domain no-
reference VQA task. The proposed curriculum-style adap-
tation could be performed in two stages as shown in Fig-
ure 1. In the first stage, feature distributions between the
labeled source data and unlabeled target data are aligned to
produce the prediction for target samples. Then, the tar-
get domain data is further split into two subdomains based
on the their prediction confidences. In the second stage, a

fine-level adaptation is further conducted between two sub-
domains in a self-supervised manner, aiming to improve the
performance of those uncertain predictions in target data by
enforcing high prediction confidence. The contributions of
this work could be summarized with the following points:

• We propose a novel unsupervised domain adaptation
approach for no-reference VQA task, where the rating
distribution is used as the predict target to better reveal
the intrinsic subjectivity of the quality assessment. To
our best knowledge, this is an earlier attempt to ex-
plicitly highlight the transferable knowledge for VQA
across different domains.

• We develop an uncertainty-based ranking function to
sort the samples from target domain into different sub-
domains based on their prediction confidences, which
are used to construct easy/hard tasks in the curriculum.

• We build a two-stage adversarial adaptation to improve
the adaptation performance based on the designed cur-
riculum. This is enabled by enforcing high prediction
confidence on those uncertain predictions.

2. Related Works
Objective VQA methods can be divided into full refer-

ence (FR), reduced reference (RR), and no reference (N-
R) in terms of the the availability of reference information.
While entire or partial information of reference videos is at-
tainable in FR/RR-VQA metrics [24, 35, 1, 42], NR-VQA
metrics exploit distortion-specific or natural video statistical
models without the participation of any information from
original videos, which is the major advantage in practical
applications and also the primary concern in this work.

Early NR-VQA metrics mainly focus on the distortion-
specific problems, such as rate adaptation and motion
blur [43, 3]. These metrics demonstrate the advantages for
the specific distortions, but not for other situations. By con-
trast, general-purpose NR approaches aim to deal with di-
versified distortions. Saad et al. [32] proposed V-BLIINDS
where a model in the discrete cosine transform (DCT) do-
main and a motion model that quantifies motion coherency
were combined to predict video quality. Mittal et al. [28]
proposed a metric called VIIDEO, which models the in-
trinsic statistical regularities to quantify disturbances intro-
duced by distortions. Recently, Korhonen [19] selected a
comprehensive feature set comprising of empirical motion
statistics, specific artifacts, and aesthetics to build the two
level video quality model, dubbed TLVQM. In [39], Tu et
al. proposed a fusion-based VQA model called VIDEVAL,
using a feature ensemble and selection procedure on top of
existing efficient NR-VQA models.

Performance of NR-VQA models has been significant-
ly boosted by end-to-end optimization of feature engineer-
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Figure 2. The overall structure of the proposed network. It consists of three parts: a) a domain-adaptive quality prediction network, b)
an uncertainty-based ranking function, c) a self-supervised subdomain adaptation network. Given the labeled source data and unlabeled
target data, DPHd is trained to learn domain-invariant features via trying to fool Dd which is optimized to predict a domain label. Then,
an uncertainty-based ranking function is introduced to split the target data into confident and uncertain subdomains based on their predic-
tion confidences. Afterwards, DPHs is further trained to improve the adaptation performance with the help of Ds, which is enabled by
conducting adaptation between subdomains self-supervised by the subdomain labels.

ing and quality regression with the help of deep learning
technique. Notably, Zhang et al. [47] applied weakly su-
pervised learning with CNN and resampling strategy for
VQA. Liu et al. [26] exploited the 3D-CNN model for
codec classification and quality assessment of compressed
videos. In [21], a NR-VQA method named VSFA for in-
the-wild videos by incorporating content-dependency and
temporal-memory effects was validated. A very recent deep
learning-based model called RIRNet was developed in [11],
where spatio-temporal features from different temporal fre-
quencies were fused to deliver a comprehensive distortion
description. In [7], Chen et al. obtained generalized spatio-
temporal feature representations for NR-VQA task.

While the boundaries of benchmark performance have
been pushed to new limits, these models are designed to be
domain-specific and tend to encounter challenge in cross-
scenario generalization due to the domain gap. In contrast,
our work tries to investigate the suitability of representa-
tions learned across different domains, a flexibility we be-
lieve is necessary for training quality-aware representations
intended for different applications.

3. Proposed Approach
In this section, we present the details of the proposed

model, where Figure 2 illustrates the entire framework. The
whole model could be disentangled into three parts: 1) a
domain-adaptive quality prediction network to produce pre-

diction for target samples through aligning the feature dis-
tributions between source and target domains, which con-
sists of the Backbone network (B), the Distribution Predic-
tion Head (DPHd, where the subscript d indicates which
part it belongs to) and the Domain classifier (Dd); 2) an
uncertainty-based ranking function to rank the target sam-
ples based on their prediction confidences and sort them
into confident and uncertain subdomains; and 3) a self-
supervised subdomain adaptation network to conduct an
adaptation between two subdomains, where the backbone
network B is further optimized with the help of DPHs and
Ds. By adversarially optimizing the domain classifiers in
both stages with the backbone network, the domain gap of
learned features could be alleviated effectively.

3.1. Domain-adaptive Quality Prediction

Formally, we have access to the labeled source video xs
with its associated rating distribution ydiss drawn from the
source domain {(Xs,Ydis

s )}, as well as the unlabeled target
video xt drawn from the target domain {Xt}. Intuitively,
the objective of the domain-adaptive quality prediction loss
is summarized as:

Lpre1 = LDPHd
(Xs,Ydis

s ), (1)

where LDPHd
(Xs,Ydis

s ) denotes the classification objec-
tive for rating distribution prediction from source data.
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The concept behind the domain adaptation is to optimize
the shared parameters of the backbone network so that the
learned features are discriminative for the primary task of
video quality prediction, but are uninformative for the task
of domain classification [31]. To close the domain gap be-
tween the source and target domains, Dd is trained to pre-
dict the domain labels for the input feature, where the gradi-
ent reverse layer (GRL) [14] is employed to flip the sign of
gradients and jointly train all parameters. The optimization
of Dd is achieved via the following adversarial loss func-
tion:

Ladv1 =
1

2
(Ladv(Xs) + Ladv(Xt)), (2)

Ladv(Xs) = −
1

Ns

Ns∑
i=1

log(Dd(B(xis))), (3)

Ladv(Xt) = −
1

Nt

Nt∑
j=1

log(1−Dd(B(xjt ))), (4)

in which Ns and Nt are the numbers of example from
source and target domains, respectively. Therefore, the ob-
jective for model training in the first stage is given by:

min
B,D1

max
Dd

Lpre1 − λ1 · Ladv1, (5)

where D1 refers to the DPHd. λ1 is a hyperparamter con-
trolling influence degree of the prediction loss and adver-
sarial loss in the first stage.

3.2. Uncertainty-based Ranking

Despite the progress achieved by the domain adapta-
tion techniques, they often encounter prediction uncertain-
ty problem in the context of VQA task. While uncertain
predictions with scattered distributions hinder the adapta-
tion performance, one straight way to solve the problem
is by enforcing high prediction confidence on those uncer-
tain predictions. To achieve this goal, we decide to adopt
a curriculum-style learning scheme following the “easy-to-
hard” pattern in target domain. By solving easy tasks first
which aim to infer some necessary properties about the tar-
get domain, the prediction network could be trained in such
a way following those inferred properties to encourage con-
fident predictions on hard tasks [46].

However, it remains intractable to define these easy and
hard tasks due to the lack of basis of division for target
data. To meet this challenge, we propose an information
theory-based distance measurement to determine the confi-
dence levels for target predictions from the first stage. In
specific, for each target video xt, based on the rating dis-
tribution prediction ŷdist generated from DPHd (for brevity,
we omit the superscript in the rest part of this section), we
define a simple-yet-effective way for measuring the predic-
tion confidence of the target video, I(ŷt), as:

I(ŷt) = DUD(ŷt) + ε ·MED(ŷt), (6)

where DUD(·) and MED(·) are calculated to measure the
distance from the uniform distribution and the maximum
entropy distribution over the quality scale having the same
mean value, respectively. A low value ofDUD implies that
the predicted distribution is more similar to the uniform dis-
tribution with a higher degree of subjectivity (low prediction
confidence). The introduction of MED aims to overcome
the vulnerability that the DUD measurement tends to pe-
nalize more skewed distributions having mean values close
to extremes of the quality scale [17], while the parameter
ε is used to balance their weights. Detailed calculations of
the DUD(ŷt) and MED(ŷt) are given as:

DUD(ŷt) = dw(ŷt, ut) =

[
N∑
i=1

(Ŷt(i)− Ut(i))
2

]1/2

,

(7)

MED(ŷt) = dw(ŷt, vt) =

[
N∑
i=1

(Ŷt(i)− Vt(i))2
]1/2

,

(8)
where N denotes the quality rankings, dw(·) refers to the
2-Wasserstein distance [6]. ut is the discrete uniform dis-
tribution while vt is the maximum entropy distribution de-
rived using the maximum entropy model [16]. Ut and Vt
are their corresponding cumulative distribution functions,
respectively.

Given a ranking of measurements from I(ŷt) (the larg-
er the I(ŷt), the higher the prediction confidence), the hy-
perparameter η is introduced as a ratio to split the videos
from target domain into two subdomains in terms of their
prediction confidences, which we denote as confident and
uncertain subdomains. That is, the predicted distributions
of videos contained in the confident subdomain tend to be
more concentrated and unimodal-like than those in the un-
certain subdomain.

3.3. Self-supervised Subdomain Adaptation

Let Xc and Xu denote the target samples assigned to the
confident and uncertain subdomains. On the basis of two
divided subdomains, we refer to the predictions of sam-
ples from the confident subdomain as the easy tasks in the
curriculum considering their high prediction confidences,
which have already been solved in the first stage. The sec-
ond stage training aims to fine-tune the prediction model
through confronting the hard tasks, where the data from
the uncertain subdomain are enforced high prediction con-
fidence. This could be enabled by conducting adaptation
between the two subdomains.

To this end, we opt for the predictions from the first stage
as pseudo-ground truth labels for data in the confident sub-
domain. With the aid of pseudo labels, DPHs could be op-
timized by minimizing the prediction loss:

Lpre2 = LDPHs
(Xc,Ydis

c ), (9)
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where LDPHs(Xc,Ydis
c ) serves as the classification objec-

tive for rating distribution prediction from the confident
subdomain. To encourage confident predictions on uncer-
tain subdomain, we adopt the alignment on the latent fea-
ture spaces for both subdomains, which is self-supervised
by the subdomain labels derived from the ranking function.
The adversarial learning loss to optimize Ds is formulated
as:

Ladv2 =
1

2
(Ladv(Xc) + Ladv(Xu)), (10)

Ladv(Xc) = −
1

Nc

Nc∑
p=1

log(Ds(B(xpc))), (11)

Ladv(Xu) = −
1

Nu

Nu∑
q=1

log(1−Ds(B(xqu))), (12)

whereNc andNu are the numbers of example from the con-
fident and uncertain subdomains, respectively. Also, the
objective for model training in the second stage could be
represented by:

min
B,D2

max
Ds

Lpre2 − λ2 · Ladv2, (13)

where D2 stands for the DPHs, and λ2 acts as the trade-off
weighting for the prediction loss and adversarial loss in the
second stage.

The final output of DPHs is the predicted rating distribu-
tionQdis, which could be further aggregated into the quality
score Qsco the same way the MOS computes from:

Qsco =

N∑
m=1

m ·Qdis(m), (14)

where N represents total rankings of the rating distribution.

4. Experiments and Analysis
4.1. Experimental Protocols

Database. To evaluate the performance of our method,
we leverage LBVD database [10] which contains subjective
data with rating distributions as the source domain database,
and five other popular VQA databases as the target domain
databases. They could be further classified into two cat-
egories: LIVE VQA [33] and CSIQ VQA [40] are com-
posed of videos with artificial distortion, while the contents
in CVD2014 [29], KoNViD-1k [15] and LIVE-VQC [34]
suffer from authentic distortion where no reference video is
available.
LBVD database [10] (MOS and rating distribution). This
database is a large-scale video quality assessment database
for distorted live broadcasting videos, where 1013 samples,
each lasts 10s, were collected in the database.
LIVE Video Quality database [33] (only MOS). The
database contains 160 videos divided into 10 groups with

a resolution of 768×432. Each group contains one refer-
ence video and its corresponding 15 distorted videos whose
length are 10s.
CSIQ Video Quality database [40] (only MOS) This
database contains 12 reference videos and 216 distorted
videos generated from 6 distortion types, with a resolution
of 832×480.
CVD2014 video database [29] (only MOS). This database
aims at complex distortions introduced during video acqui-
sition. It contains 234 videos of resolution 640×480 or
1280×720. The videos are 10-25s with 11-31fps.
KoNViD-1k database [15] (only MOS). This database
aims at natural distortions. It comprises a total of 1,200
videos of resolution 960×540 that are fairly filtered from
a large public video dataset. The videos are 8s long with
24/25/30fps.
LIVE-VQC database [34] (only MOS). This database con-
tains 585 videos of unique content, captured using 101 dif-
ferent devices (43 device models) by 80 different users with
wide ranges of levels of complex, authentic distortions.

Evaluation criteria. We adopt two popular performance
criteria, the Pearson Linear Correlation Coefficient (PLCC)
and the Spearman Rank-order Correlation Coefficient (SR-
CC) to measure the accuracy and the monotonicity of the
results, respectively. A well-performing quality assessmen-
t method is expected to deliver PLCC, SRCC values close
to 1. Considering the inconsistency of the scale between
objective predictions and the subjective scores, we adopt a
four-parameter logistic function for mapping the objective
score to the subjective score as outlined in [4].

4.2. Implementation Details

We initialize the backbone network B with a C3D [38]
network pre-trained on Kinetics [5]. In the first stage, the ar-
chitecture of the DPHd model could be denoted by FC(128)
- GDN - FC(N ) - Softmax using shorthand notations, where
FC(n) indicates a fully connected layer with n nodes. GDN
is a generalized divisive normalization (GDN) joint nonlin-
earity layer that is inspired biologically, and has proven ef-
fective in quality assessment [27]. In the second stage, the
DPHs model shares the same architecture with DPHd. We
adopt the same architecture in [41] to train both Dd and
Ds. With respect to the parameters, we empirically adopt
ε = 0.5, λ1 = λ2 = 0.8 in all experiments.

We employ PyTorch framework in all experimental im-
plementations. To train DPHd, the Adam optimizer [18]
with a learning rate of 5e − 4 is deployed to minimize the
EMD loss [20] for classification task which benefits from
taking into account of the relations between ordered ratings.
In the second stage for training DPHs, a learning rate of
1e − 4 decayed by a factor of 0.2 every 20 epochs is used.
To train Dd and Ds, we apply an SGD optimizer [2] with a
learning rate of 1e− 4 and momentum 0.9.
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Table 1. Quantitative results of different methods on five publicly available target databases. All the results are trained using the LBVD
database [10] as the source domain dataset. Larger PLCC, SRCC values indicate better performance. Best and second best performances
of both settings (supervised/unsupervised) are highlighted and underlined. Note that VMAF [24] and STRRED [35] are FR/RR metrics
that could not be evaluated on those authentic distorted databases. (†) indicates the variants of predicting the rating distribution.

Database LIVE VQA [33] CSIQ VQA [40] CVD2014 [29] KoNViD-1k [15] LIVE-VQC [34]

Method Dis. PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑

Su
pe

rv
is

ed

VMAF [24] 0.7124 0.7220 0.7483 0.7697 – – – – – –
STRRED [35] 0.7985 0.7967 0.8155 0.8490 – – – – – –
V-BLIINDS [32] 0.7482 0.7244 0.7710 0.7843 0.7222 0.7068 0.6273 0.6158 0.6592 0.6413
TLVQM [19] 0.7511 0.7338 0.7740 0.7956 0.8215 0.8352 0.7608 0.7692 0.7514 0.7522
VIDEVAL [39] 0.7781 0.7636 0.7994 0.8067 0.8445 0.8580 0.7865 0.7804 0.7961 0.7816
VSFA [21] 0.7278 0.7001 0.7816 0.7980 0.8277 0.8431 0.7391 0.7452 0.7807 0.7645
RIRNet [11] 0.8091 0.7828 0.8426 0.8574 0.8780 0.8891 0.7812 0.7755 0.7982 0.7713

U
ns

up
er

vi
se

d

NoAdapt 0.5873 0.5615 0.6051 0.6172 0.7002 0.6597 0.6547 0.6371 0.6335 0.6219
VIIDEO [28] 0.6518 0.6240 0.5447 0.4906 0.2083 0.1544 0.3058 0.3412 0.1146 0.0734
TCoN [30] 0.6868 0.6727 0.7231 0.7245 0.7527 0.7479 0.7336 0.7305 0.6741 0.6918
TCoN† [30] X 0.6923 0.6749 0.7260 0.7318 0.7581 0.7405 0.7380 0.7421 0.6805 0.6947
TA3N [9] 0.6917 0.6993 0.7397 0.7305 0.7707 0.7412 0.7193 0.7030 0.6932 0.6962
TA3N† [9] X 0.7005 0.7016 0.7422 0.7434 0.7743 0.7560 0.7177 0.7104 0.7019 0.7071
UDA 0.6749 0.6837 0.7005 0.6989 0.7582 0.7604 0.6981 0.7085 0.7082 0.7007
UDA† X 0.6833 0.6870 0.7042 0.7069 0.7693 0.7760 0.7146 0.7278 0.7114 0.7052
UCDA(Ours) X 0.7797 0.7835 0.8283 0.8167 0.8414 0.8475 0.7909 0.7851 0.7702 0.7622

4.3. Performance Evaluation
We evaluate the proposed UCDA in two variants (NoAd-

apt indicates the model is trained on the source domain and
directly test on the target domain without adaptation; UDA
has exactly the same architecture as our proposed method
in the first stage except that the predicted target is the scalar
score, and without further curriculum-style adaptation), and
by comparing with several competitors including: 1) eight
VQA methods, among which VIIDEO [28] is the only unsu-
pervised type that is training-free, and the other seven met-
rics are the supervised type (VMAF [24], STRRED [35], V-
BLLINDS [32], TLVQM [19], VIDEVAL [39], VSFA [21]
and RIRNet [11]) which are directly trained and test on
the target dataset; 2) two general video domain adaptation
methods (TCoN [30] and TA3N [9]) as the baseline models
to demonstrate the effectiveness of the designed curriculum-
style adaptation considering no existing domain adaptation
method are specialized in VQA task (we evaluate their per-
formances with the same settings as our approach).

Experiments on each database are processed by k-fold (k
= 10) cross-validation, ensuring the training sets and test-
ing sets are not overlapped in content. This procedure is
repeated 10 times and the average values of PLCC and S-
RCC results across all repetitions for the mentioned com-
petitors and the proposed algorithm are given in Table 1.
We also evaluate whether predicting the rating distribution
contributes to the prediction performance by reporting the
performances achieved by invariants of UDA, TCoN and

TA3N, where the regression quality score prediction is re-
placed by the rating distribution prediction.

From the experimental results, we have several obser-
vations. First, the proposed metric convincingly outper-
forms all other unsupervised metrics with respect to pre-
diction accuracy (PLCC) and monotonicity (SRCC) on all
target datasets, providing clear quantitative evidence of the
effectiveness of the proposed UCDA. Specifically, it outper-
forms the variant UDA by a large margin (0.1048, 0.1278,
0.0836, 0.0928 and 0.0620 in terms of PLCC on five target
datasets, respectively), which highlights the benefit of the
designed curriculum-style adaptation on enforcing high pre-
diction confidence on those uncertain predictions. Second,
although unsupervised VQA method VIIDEO is designed
for arbitrary distortion types, it does not perform well on
realistic distortions in CVD2014, KoNViD-1k and LIVE-
VQC datasets. Third, in general, better performances are
attained by these variants that try to predict the rating dis-
tributions. This finding further strengthes our observation
that predicting the rating distributions instead of the scalar
scores leads to a higher correlation to the intrinsic nature
of quality assessment, which can benefit the overall qual-
ity prediction. Last but not least, an inspiring discovery is
that the performance of the proposed UCDA surpasses most
of the comparison supervised methods without any supervi-
sion from the target dataset, and even achieves the best per-
formance in KoNViD-1k dataset which has the largest size
in all test datasets. We stress that there are very few VQA
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algorithms in the literature that work well on unsupervised
setting, and our UCDA is very competitive in that sense.

4.4. Ablation Study
Impact of adopting different datasets as the source

domain. To check the effectiveness of UCDA beyond lever-
aging the LBVD as the source domain dataset, we go a fur-
ther step by evaluating the proposed method with respec-
t to choosing source domain from other datasets contain-
ing only MOS values. Since our method requires training
on labels of quality rating distributions, we follow [37] to
approximate them from the available MOS values through
maximum entropy optimization. In particular, the rating
distribution is calculated as the maximum entropy distribu-
tion corresponding to the MOS as the mean value. We then
report the prediction performances of the proposed UCDA
compared with UDA in Table 2. According to the results, it
is desirable that the selection of the source domain has an
impact on the performance of the adaptive prediction mod-
el. Compared to UDA, our method consistently achieves
much better performances. What is more important, it could
maintain well-performing regardless on all transfer tasks.
This manifests to some extent that the introduction of the
curriculum-style adaptation in our framework facilitates the
generalization ability of the learned model.

Table 2. Prediction performances of the proposed method and U-
DA with respect to different source domain datasets measured by
PLCC. The column-wise and the row-wise datasets are selected as
the source and target domain datasets, respectively.

Source\Target LIVE CSIQ CVD KoNViD VQC

U
C

D
A

LIVE N/A 0.8291 0.7747 0.7280 0.7314
CSIQ 0.7850 N/A 0.7531 0.7397 0.6821
CVD 0.7607 0.7917 N/A 0.7655 0.7447

KoNViD 0.7582 0.8126 0.8462 N/A 0.7598
VQC 0.7614 0.8103 0.8215 0.7817 N/A

Average 0.7663 0.8109 0.7938 0.7537 0.7295

U
D

A

LIVE N/A 0.7419 0.6244 0.5990 0.5918
CSIQ 0.7273 N/A 0.5987 0.5746 0.5676
CVD 0.6115 0.6842 N/A 0.6676 0.6715

KoNViD 0.5987 0.6990 0.7505 N/A 0.7132
VQC 0.6336 0.7063 0.7323 0.7247 N/A

Average 0.6428 0.7079 0.6765 0.6415 0.6360

Effect of Hyperparameter η. We conduct an ablation
study on finding a proper value for the hyperparameter η to
split the samples of the target domain into two subdomains.
Different values of η are selected for setting up the deci-
sion boundary for the separation on the validation set. Fig-
ure 3 exhibits the experimental results on all five target do-
main databases. When the number of η is small, an obvious
performance gap could be observed when we incremental-
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Figure 3. Impact of hyperparameter η on prediction performances,
which are measured by PLCC.

ly increase η (compared to the configuration where η is 0),
indicating that effectiveness of the designed scheme. How-
ever, once, the number of η comes up to a certain value (0.6
in this work), increasing the number does not improve the
performance further or even tends to witness a declining.
These findings suggest that the scale of the partition does
affect the prediction performance, and thus 0.6 is chosen as
the proportion to split the target domain in our experiments.

4.5. Extension to Semi-supervised Case
To further study the robustness of the proposed algorith-

m, we extend the proposed approach to a semi-supervised
setting, where a part of target labels are available for taking
part in the training of DPHd (labels from target datasets are
processed the same way described in Section 4.4). Exten-
sive experiments are conducted on adapting from the LB-
VD to KoNViD-1k and LIVE-VQC datasets. Results with
varying ratios of target labels, ranging from 0.1 to 0.5, are
reported in Table 3, where other domain adaptation methods
are included for comparison. There we show, by adding the
available number of target labels, we consistently observe
that the proposed UCDA achieves the best prediction per-
formance on both transfer tasks regardless of the amount of
annotated training data for the target domain. At the same
time, by comparison with other metrics, the performance of
our model is positively correlated with the number of train-
ing samples available from the target domain. This shows
the benefit of the designed curriculum-style adaptation on
taking full advantages of the supervision information.

Table 3. Experimental results measured by PLCC under the semi-
supervised setting on two transfer tasks.

LBVD→KoNViD LBVD→VQC

Method 10% 30% 50% 10% 30% 50%

NoAdapt 0.6547 0.6547 0.6547 0.6335 0.6335 0.6335

TCoN [30] 0.7442 0.7517 0.7595 0.6920 0.6985 0.7056
TA3N [9] 0.7257 0.7316 0.7385 0.7091 0.7206 0.7237
UDA 0.7063 0.7134 0.7205 0.7160 0.7251 0.7314
UCDA(Ours) 0.8029 0.8202 0.8386 0.7893 0.8085 0.8237
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Figure 4. Qualitative comparison by examples from KoNViD-
1k [15] database. For each example video, right of the sampled
frames are the predicted rating distributions before and after the
curriculum-style adaptation, corresponding quality scores calcu-
lated from the distributions combined with their MOS labels are
provided at the bottom. Note that the predictions with red text in-
dicate the results of the DPHd model, while green indicating the
predictions of the DPHs model.

4.6. Qualitative Evaluation of UCDA

We take the KoNViD-1k database to visualize the per-
formance boost brought by UCDA. A representative set of
videos belonging to the uncertain subdomain, along with
their predicted rating distributions and quality scores, are
visible in Figure 4. To further investigate how our curricu-
lum mechanism works, we also include the prediction re-
sults made by DPHd before the self-supervised subdomain
adaptation as the baseline model for comparison.

It can be observed that the prediction distributions tend
to be more unimodal-like, and the calculated quality scores
are closer to the MOS labels than the baseline model, prov-
ing that the curriculum-style adaptation could encourage
high prediction confidence and further improve the perfor-
mances. It is interesting to see that the scene and content of
the video clips from the uncertain subdomain are general-
ly complex where more than one object are contained. An
interpretation is that multiple objects are more likely to dis-
tract the attention of the subjects, affecting their judgements
to some extent. Besides, the MOS labels corresponding to
these samples are mainly concentrated near the mid-quality
range, which is consistent with the observation in [45] as-
suming that humans tend to give more consistent ratings
(smaller variances) to videos at the two ends of the quality
range than those in the mid-quality range.

2.672

5.464 

37.343

84.252

107.016

1.826

3.275

23.061

49.168

67.713

0 20 40 60 80 100 120

Processing speed (FPS)

 1280×720

  640×480

Figure 5. Average processing speed in frames-per-second (FPS) of
different NR-VQA models on CVD2014 video database.

4.7. Computational Efficiency
Besides the performance, computational efficiency is al-

so crucial for NR-VQA methods. We compare the average
processing speed of V-BLIINDS, VIIDEO, VSFA, RIRNet,
and the proposed UCDA on CVD2014 dataset, where all the
video samples share the spatial resolution of 640×480 and
1280×720. To provide a fair comparison for the computa-
tional efficiency of different methods, all tests are carried
out on a computer with a E5-2630 CPU and 64 GB RAM.
The default settings of the original codes are used without
any modification. We repeat the tests ten times and the FP-
S for each method is shown in Figure 5. It is worth noting
that all deep learning-based models are much faster than the
conventional ones, where V-BLIINDS and VIIDEO can on-
ly process less than 6 frames per second. Our method could
achieve real-time processing speed (over 67 fps) on 720p
videos, which is very helpful for practical applications.

5. Conclusion
This paper presented a novel path for unsupervised do-

main adaptation approach in cross-domain NR-VQA task
based on two ideas, i.e., rating distribution prediction and
curriculum-style adaptation. The former, compared to sim-
ply predicting the scalar quality score, is more informative
and with higher correlation to the subjective nature of qual-
ity assessment. By measuring the prediction confidence of
the predicted rating distributions, the latter helps to devel-
op a two-stage adaptation to improve the adaptation per-
formance by enforcing high prediction confidence on those
uncertain predictions in target domain. Results from exten-
sive experiments consistently validated the the effectiveness
and efficiency of the proposed method.
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