
HandFoldingNet: A 3D Hand Pose Estimation Network Using
Multiscale-Feature Guided Folding of a 2D Hand Skeleton

Wencan Cheng1, Jae Hyun Park1, Jong Hwan Ko2*

1Department of Artificial Intelligence, Sungkyunkwan University
2College of Information and Communication Engineering, Sungkyunkwan University

{cwc1260, xoxc4565, jhko}@skku.edu

Abstract

With increasing applications of 3D hand pose estimation
in various human-computer interaction applications, con-
volution neural networks (CNNs) based estimation models
have been actively explored. However, the existing models
require complex architectures or redundant computational
resources to trade with the acceptable accuracy. To tackle
this limitation, this paper proposes HandFoldingNet, an ac-
curate and efficient hand pose estimator that regresses the
hand joint locations from the normalized 3D hand point
cloud input. The proposed model utilizes a folding-based
decoder that folds a given 2D hand skeleton into the cor-
responding joint coordinates. For higher estimation accu-
racy, folding is guided by multi-scale features, which in-
clude both global and joint-wise local features. Experimen-
tal results show that the proposed model outperforms the ex-
isting methods on three hand pose benchmark datasets with
the lowest model parameter requirement. Code is available
at https://github.com/cwc1260/HandFold.

1. Introduction
3D hand pose estimation aims to estimate joint locations

from input hand images. Accurate and real-time estima-
tion is critical in various human-computer interaction appli-
cations, especially in virtual reality and augmented reality
[20, 7, 23]. Recently, many studies achieved impressive
progress by utilizing hand depth images from depth cam-
eras. However, it still remains challenging to achieve accu-
rate and real-time estimation, due to various issues such as
self-occlusion, noise, high dimensionality, and various ori-
entations of a hand [12, 9, 24, 6].

With the advancement of deep neural networks (DNNs),
various DNN-based hand pose estimation techniques
achieved powerful performances. In most of these tech-
niques, 2D convolution neural networks (CNNs) have been

*Jong Hwan Ko is the corresponding author.
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Figure 1. Illustration of the folding concept. The network can be
interpreted as emulating the ”force” through multi-scale features
extracted from the point cloud. The ”force” will drive a 2D hand
skeleton to ”fold” into the 3D joint coordinates representing the
hand pose.

adopted to perform direct hand depth image processing
[40, 10, 14, 30, 3]. However, 2D CNNs cannot fully take ad-
vantage of 3D spatial information of the depth image, which
is essential for achieving high accuracy. An intuitive solu-
tion is to discretize hand depth images into a 3D voxelized
representation and perform 3D-to-3D inference using a 3D
CNN [11, 24]. However, its critical limitation is the cubic
growth of memory consumption with an increase in the im-
age resolution [31]. Thus, application of 3D CNNs has been
limited to low-resolution images, which may lead to lose of
critical details for estimation.

In contrast, the point cloud is being regarded as an ef-
ficient and precise representation for 3D hand pose esti-
mation, as it models hand depth images into the continu-
ous 3D coordinates without discretization. However, the
point cloud could not be directly processed by conventional
DNNs due to the irregular order of points, until the emer-
gence of PointNet [28]. With a concise symmetric architec-
ture composed of a point-wise shared-weights multi-layer
perceptron (MLP) and a max-pooling layer, PointNet is in-
variant with the order of the input points.

Based on this architecture, a series of PointNet-based
hand pose estimation models [9, 12, 4, 21] have been pro-
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Figure 2. The HandFoldingNet architecture. It takes the preprocessed normalized point cloud with surface normal vectors from a 2D depth
image as an input. The hierarchical PointNet encoder is then exploited to extract features of various levels to summarize a global feature
from the input point cloud. The global folding decoder receives the global feature to guide the folding of a pre-defined 2D hand skeleton
into the initial joint coordinates. In the end, the local features near the initial joint coordinates are grouped and fed into the local folding
blocks to estimate the accurate joint coordinates.

posed. They can be summarized into two categories: 1)
regression-based methods and 2) detection-based methods.
Regression-based methods [9, 4] encode the hand shape into
a single global feature through a PointNet-based feature ex-
tractor. The global feature representing the hand pose in the
high dimensional latent space is fed into a non-linear regres-
sion network that performs inference of the joint coordi-
nates. On the other hand, detection-based methods [12, 21]
adopt hierarchical features to compute heat-map features
for each point. The point-wise features represent the pos-
sibility distribution of each joint. However, the existing
regression-based and detection-based strategies have limi-
tations. The regression-based methods process only a sin-
gle global feature, which is not sufficient for highly com-
plex mapping into 3D hand poses. On the other hand, the
detection-based methods propagate hierarchical features to
each point including the points that contribute little to the
specific joint estimation. Therefore, this redundant feature
propagation significantly increases the computational cost
and slows down the estimation.

To tackle these limitations, we propose HandFoldingNet,
an accurate and efficient 3D hand pose estimation network.
The key idea of HandFoldingNet is to fold a 2D hand skele-
ton into the 3D pose, guided by multi-scale features ex-
tracted from both global and local information. The mo-
tivation of adopting the folding-based design in FoldingNet
[45] is that it is suitable for a 3D hand pose estimation
task. Essentially, a specific hand pose is a result of ap-
plying a force on the human hand skeleton. The folding
operation can be interpreted as emulating the ”force” ap-
plied to the fixed 2D hand skeleton, as shown in Figure 1.
In order to guide folding, HandFoldingNet introduces two
novel modules that handle different scales of features: 1) a
global-feature guided folding (global folding) decoder and
2) a joint-wise local-feature guided folding (local folding)
block. Inspired by FoldingNet, a global folding decoder
folds a 2D hand skeleton into the 3D hand joint coordi-

nates. The global feature that guides folding is extracted
from the input hand point cloud by a PointNet-based en-
coder [29, 9, 12]. The local folding block utilizes local fea-
tures as well as spatial dependencies between the joints, in
order to augment joint-wise features and correct the coor-
dinate estimation. Utilization of local features is supposed
to compensate for the weakness of conventional regression-
based methods. Additionally, unlike the detection-based
methods that propagate local features to all the points, we
only extract a small region of local features near each joint,
in order to avoid massive computations.

We evaluate our network on ICVL [36], MSRA [35]
and NYU [40] datasets, which are challenging benchmarks
commonly used for evaluation of a 3D hand pose estimation
task. The results show that our network generally outper-
forms the previous state-of-the-art methods in terms of both
accuracy and efficiency. The proposed network achieves the
mean distance errors of 5.95mm, 7.34mm and 8.58mm on
the ICVL, MSRA and NYU datasets, respectively. Mean-
while, it contains only 1.28M parameters and runs in real-
time with 84 frames per second on a single GPU.

The key contributions of this paper are as follows:
• We propose a novel neural network, HandFoldingNet,

which takes the hand point cloud as input and estimates
the 3D hand joint coordinates based on the multiscale-
feature guided folding.

• We propose a global-feature guided folding decoder
that infers joint-wise features and coordinates. The
joint-wise features help the model exploit natural spa-
tial dependencies between the joints for better estima-
tion performance.

• We propose joint-wise local-feature guided folding to
capture local features and spatial dependencies that
augments joint-wise features for higher accuracy.

• We conduct extensive experiments to analyse the effi-
ciency and accuracy of our proposed network and its
key components.
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2. Related Work
2.1. Depth-based 3D Hand Pose Estimation

Traditional 3D hand pose estimation approaches based
on depth images are mainly implemented in three cate-
gories: generative methods [18, 41, 39, 32], discriminative
methods [17, 22], and hybrid methods [38, 34, 37]. In recent
years, DNN-based models showed superior performance on
3D hand pose estimation tasks. Representative 2D CNNs
are commonly adopted to pose estimation in various imple-
mentations. A series of studies [40, 10] exploited 2D CNNs
in order to extract a 2D heat-map that represents the possi-
bility distribution of hand joints from a depth image.

Another line of work proposed regression-based meth-
ods based on 2D CNNs [14, 30, 3], which act as feature ex-
tractors that provide efficient features for joint coordinates
regression. Instead of processing in the 2D space, several
approaches [11, 24] encoded 2D depth images into 3D vox-
els and adopted 3D CNNs to estimate the 3D hand pose.
As depth images can be easily transformed into the point
cloud by multiplying the camera intrinsic matrix, several
point cloud based models [9, 12, 4, 21] have been proposed.
They showed acceptable efficiency and performance by di-
rectly processing the input coordinates to estimate the joint
coordinates in the identical 3D space.

HandFoldingNet is inspired by these point cloud based
methods, but it differs from them in the following aspects.
The proposed network does not directly regress the hand
joint coordinates nor estimate the point-wise probability
distribution. Instead, it first regresses the initial joint co-
ordinates for grouping local features. Meanwhile, it also
provides joint-wise features for modeling spatial dependen-
cies. In the end, the network aggregates these local features
and spatial dependencies to estimate the accurate joint co-
ordinates.

2.2. Deep Point Cloud Reconstruction

Deep point cloud reconstruction aims to reconstruct the
point cloud based on the features extracted from images,
point clouds, or other types of data. An intuitive way
of achieving the point cloud reconstruction is to adopt
3D CNNs, as in [44, 2, 13, 33]. However, these ap-
proaches reconstruct the voxelized representation of the
point cloud. Instead of CNN-based methods, other ap-
proaches [1, 45, 43, 5] proposed direct reconstruction of the
point cloud.

Theoretically, our main task, estimating hand joint coor-
dinates for a given hand point cloud, can be transformed
into the point cloud reconstruction task, because the es-
timated joint coordinates can be treated as a small set of
points that need to be reconstructed. Therefore, we inherit
the idea of FoldingNet [45] to reconstruct the joint point
cloud. FoldingNet proposed a novel folding operation im-

plemented by a sequence of shared-weights MLPs. This
folding operation can be intuitively interpreted as learning
the ”force” to fold a given 2D grid lattice into the target
point cloud. There are two critical differences between our
network and FoldingNet: 1) we introduce folding of a 2D
hand skeleton instead of a regular grid lattice in order to
adapt it to the hand pose estimation task, 2) we exploit
multi-scale features for higher estimation accuracy, unlike
FoldingNet that processes only a single global feature.

3. HandFoldingNet
HandFoldingNet aims to perform hand pose estimation

using 2D hand joint skeleton folding. The network archi-
tecture is shown in Figure 2. It takes an N × 6 matrix
(Pnor,Fnor), which represents a set of normalized points,
as an input. Each row of the input matrix is composed of
a normalized 3D xyz coordinate pnor

i ∈ Pnor and the cor-
responding 3D surface normal vector fnori ∈ Fnor. The
output is a J × 3 matrix, representing the 3D coordinates
of estimated J joints. The N points are firstly input to the
hierarchical PointNet encoder that extracts local features of
various levels and a single global feature. Then the global
feature is fed into the global-feature guided folding decoder
and guides folding of the fixed 2D hand skeleton into the 3D
joint coordinates. In order to augment the estimation perfor-
mance, the output from the global folding decoder and local
features near them are processed by joint-wise local-feature
based folding blocks.

3.1. Point Cloud Preprocessing

First, the 2D depth image is converted into a point cloud
by reprojecting the pixels in the 3D space, forming the
model input (Pnor,Fnor). We follow the point cloud pre-
processing method described in HandPointNet [9]. The in-
put depth images are first transformed into point cloud rep-
resentations through camera intrinsic parameters, to adapt
to our point cloud based network. Then, in order to deal
with various hand orientations, an oriented bounding box
(OBB) is created from the 3D point cloud. After that,
the point cloud is rotated into the OBB coordinate system,
whose axes are aligned with the principle components of
the hand points distribution. The oriented points are sub-
sampled and normalized into the range of [-0.5, 0.5] to form
the final input coordinates Pnor. In the end, point-wise sur-
face normal vectors Fnor are calculated from the normal-
ized point cloud. Please refer [9] for more details.

3.2. Hierarchical PointNet Encoder

We exploit the same hierarchical PointNet encoder as
in [9, 12] to extract features from the unordered point
cloud. As shown in Figure 2, the encoder consists of a
cascade of L point set abstraction levels. The l-th level
(l ∈ {1, 2, . . . , L}) takes N l−1×(3+Cl−1) matrix from the
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Figure 3. Joint-wise local feature guided folding block. The local folding block accepts three inputs, which are the previously estimated
joint coordinates, folding embeddings from intermediate layers of the previous folding block, and a local feature map extracted by the
previous set abstraction level. The joint coordinates are used as centroids that group local features from the local feature map. Folding
embeddings are rearranged to be aligned with the corresponding adjacent joints to collect spatial dependencies. Ultimately, the aggregated
feature map composed with grouped local features and rearranged embeddings is fed into a symmetric architecture to compute the residual
with respect to the previously-estimated joint locations for more accurate joint estimation.

previous (l−1)-th level as an input, of which the i-th row is
composed of a 3D coordinate pl−1

i and the corresponding
feature fl−1

i . Then it outputs N l× (3+Cl) matrix, which is
composed of N l of sub-sampled centroids pl

i and their cor-
responding Cl-dim local features f li . Specifically, for the
first level, the input coordinate is pnor

i and the correspond-
ing feature is a 3D surface normal vector fnori .

The N l centroids are randomly sampled from the input
coordinates. Then, S neighbor points with their correspond-
ing features around each centroid pl

i are gathered as a local
region {pl−1

s,i , fl−1
s,i }Ss=1 by using the ball query [29] within

a specified radius r. The coordinates in the local region are
then translated to the local frame relative to their centroid:
pl−1
s,i − pl

i. For each local region, a symmetric PointNet
[28] with a 3-layer MLP is adopted to generate a Cl-dim
feature for each point in the region. Subsequently, a max-
pooling operation aggregates these point-wise features into
a single local feature representing the corresponding cen-
troid. Therefore, the local feature of the j-th sub-sampled
centroid in the l-th level is represented as:

fli = MAX
1≤s≤S

(h([pl−1
s,i − pl

i, fl−1
s,i ])), (1)

where h is the MLP, MAX is the channel-wise max-pooling
operation, and ’[·]’ is the concatenation operation.

For the last level, it directly adopts the shared-weights
MLP and max-pooling operation on the whole input (with-
out sampling) in order to generate the single Cg-dim global
feature, which is represented as:

g = MAX
1≤i≤NL−1

(h([pL−1
i , fL−1

i ])). (2)

3.3. Global-Feature Guided Folding Decoder

The proposed decoder folds a fixed 2D hand skeleton
into the 3D coordinates of joints, being guided by a global
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Figure 4. An example of a 2D hand skeleton based on the ICVL
dataset. The skeleton contains J = 16 points, each of which is
represented as a 2D coordinate.

feature. The hand skeleton is a set of hand joint coordinates
in a 2D plane and is handcrafted by the following steps: 1)
randomly choosing samples from the training set, 2) mea-
suring the average length of links between each pair of ad-
jacent ground truth joints from the samples, 3) unfolding
links in a 2D plane, 4) collecting the coordinates of joints
across every two connected links. An example of the 2D
hand skeleton for the ICVL dataset is shown in Figure 4.

After the hierarchical PointNet encoder extracts the
global feature g, it is fed into the global folding decoder.
Before inserting the global feature g, we replicate it J times
and concatenate the replicated features with the fixed hand
skeleton, whose size is J × 2. The result of the concate-
nation is supplied to a 2-layer MLP that generates a high-
dimensional folding embedding ej for each joint. A subse-
quent 1-layer MLP predicts the initial 3D joint coordinates
by processing input embeddings. Hence, the output coordi-
nate j0j of the j-th joint is represented as:

j0j = hp(ej) where ej = he([skelj , g]), (3)

where hp and he denote the MLPs, ej denotes the interme-
diate folding embedding, and skelj denotes the j-th point
of 2D coordinate of the fixed skeleton.
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3.4. Joint-Wise Local-Feature Guided Folding
Block

Using only a single global feature (i.e. global-feature
guided folding and other regression-based methods) is not
sufficient to accurately estimate the joint coordinates .
We believe that the use of additional joint-wise local fea-
tures encourages the network to correct the joint coordi-
nates.Therefore, we propose a novel joint-wise local-feature
guided folding block for capturing local features and spatial
dependencies that help better estimation.

As shown in Figure 3, the output coordinates from the
(k − 1)-th folding block are firstly used as centroids for the
current k-th local folding block. The J centroids group J
local regions from the output of the l-th set abstraction level
within radius r. From each region, S neighbors are sam-
pled, each of which is composed of a 3D local coordinate
pl
s,j − jk−1

j and a Cl-dim corresponding local feature fls,j ,
where 1 ≤ s ≤ S. Therefore, the output size of this group-
ing is J × S × (3 + Cl). Note that l is set to 1 as default,
while the selection of l will be discussed in Section 4.4.

In addition, we introduce a rearrangement process that
explicitly models spatial dependencies. It is worth men-
tioning that, the feature of a specific joint is represented by
the corresponding row of the folding embeddings from the
global folding decoder. Similarly, the local folding block
provides joint-wise folding embeddings as well, enabling
the network to stack more local folding blocks for accu-
rate estimation. The rearrangement process first permutes
the folding embeddings in order to form rearranged em-
beddings, which match the spatial dependency mapping as
shown in Figure 5. The j-th row of each rearranged em-
bedding is the folding embedding of the adjacent joints of
the j-th joint. Then, we form the spatial dependency fea-
ture map by concatenating rearranged embeddings with the
input folding embeddings. In the dependency mapping, as
shown in Figure 5, each joint links with the other two adja-
cent joints. Therefore, this rearrangement process takes the
folding embeddings of size J × Cf and outputs a spatial
dependency map with size J × (Cf + Cf + Cf ). Specif-
ically, since the fingertips only have one adjacent joint, we
concatenate them with themselves to keep a uniform shape
of the spatial dependency map. As shown in Figure 5, there
are self-relations for fingertips. Moreover, we replicate the
spatial dependency feature map S times to align the dimen-
sion with the previous grouping output before the following
aggregation.

After local features and the spatial dependency feature
map are prepared, we concatenate them together, to form
an aggregated feature map. The aggregated feature map
is then fed to aggregation folding layers with symmetric
structure, as shown in Figure 3. In this structure, we in-
troduce a 3-layer MLP and a max-pooling, which aggregate
the features into a single folding embedding for each joint.

… ……

Folding 
Embeddings

𝒆𝟐 𝒆 𝒆𝟏

Rearranged 
Embeddings 2

Rearranged 
Embeddings 1

For joint 1

For joint j

For joint J

Figure 5. The spatial dependency mapping between hand joints of
the ICVL dataset (left). Each joint permutes its embedding ej to
map with its two adjacent joints along the mapping direction of
the arrows forming two rearranged embeddings e1j and e2j (right).
Exceptionally, fingertips are forced to map with themselves (red
dotted arrows) to keep consistency.

Block type r S N l MLP channels max
SA (l=1) 0.12 64 512 32, 32, 128

√

SA (l=2) 0.2 64 128 64, 64, 256
√

SA (l=3) - 128 1 128, 128, 512
√

global fold (k=0) - - J 256, 256, 3 ×

local fold (k=1)
0.4 64 J 256, 256, 256

√

- - J 256, 256, 3 ×

local fold (k=2)
0.4 64 J 256, 256, 256

√

- - J 256, 256, 3 ×

Table 1. Implementation specifications. Each block contains four
types of hyperparameters: search radius (r), the number of group-
ing neighbors (S), sampling centroids (N l), and the number of
output channels of each MLP layer. Max stands for the existence
of a max-pooling layer at the end of the block. SA stands for the
set abstraction level of PointNet encoder. The local folding blocks
are divided into two parts at max-pooling for the clear representa-
tion.

Subsequently, we introduce another 3-layer MLP that maps
the high-dimensional embedding into the 3D coordinates.
Intuitively, since each joint focuses on its individual local
region, only a relative displacement can be effectively com-
puted by this MLP-MAX-MLP structure. Therefore, we in-
herit the residual block design [15]. The final joint coordi-
nates are calculated by adding relative displacement outputs
with the previously predicted coordinates. Hence, the j-th
estimated joint of the k-th block is represented as:

jkj = hr(MAX
1≤s≤S

(hf ([pl
s,j−jk−1

j , fls,j , ek−1
j ])))+jk−1

j , (4)

where hr and hf denote the shared-weights MLPs. jk−1
j

indicates the j-th output joint coordinate of the previous
global folding decoder or local folding block. pl

s,j and fls,j
are the s-th neighbor coordinate and feature of the j-th joint
where l denotes the l-th set abstraction level. ek−1

j indicates
the concatenation of the j-th row of the folding embeddings
and its two adjacent joints embeddings from the previous
global folding decoder or the local folding block.
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3.5. Loss Function

As our loss function, we adopt smooth L1 loss, which is
less sensitive to outliers than L2 loss. The smooth L1 loss
is defined as

L1smooth(x) =

{
0.5|x|, |x| < 0.01

|x| − 0.005, otherwise
. (5)

Since the global folding and local folding blocks of our
network output their respective estimated coordinates, we
supervise all outputs by the following joint loss function:

L =

J∑
j=1

L1smooth(j0j − j∗j ) +
K∑

k=1

J∑
j=1

L1smooth(jkj − j∗),

(6)
where j∗j indicates the ground-truth coordinate of the j-th
joint, and K indicates the quantity of stacked local folding
blocks.

4. Experiments
4.1. Experiment Settings

We conducted experiments on an NVIDIA TITAN RTX
GPU with PyTorch. For training, we used the Adam opti-
mizer [19] with beta1 = 0.5, beta2 = 0.999, and learning
rate α = 0.001. The number of input points to the net-
work was preprocessed to 1,024 and the batch size was set
to 32. The network implementation details are shown in
Table 1. Batch normalization [16] and the ReLU [25] ac-
tivation function are adopted in all MLP layers except the
layers that output coordinates and residuals. Meanwhile,
to avoid overfitting, we adopted online data augmentation
with random rotation ([-37.5, 37.5] degrees around z-axis),
3D scaling ([0.9, 1.1]), and 3D translation ([-10, 10]mm).
We evaluated the performance of the proposed model using
public hand pose datasets, the ICVL [36], MSRA [35] and
NYU [40] datasets. We trained the model for 400 epochs on
ICVL, 200 epochs on NYU and 80 epochs (with a learning
rate decay of 0.1 after 60 epochs) on MSRA.

4.2. Datasets and Evaluation Metrics

MSRA Dataset. The MSRA dataset [35] provides more
than 76K frames from 9 subjects. Each subject contains
17 hand gestures. The ground truth of each frame contains
J = 21 joints, including one joint for a wrist and four joints
for each finger. Following the most recent work [35], we
evaluate this dataset with the leave-one-subject-out cross-
validation strategy.

ICVL Dataset. The ICVL dataset [36] is a commonly-
used depth stream hand pose dataset that provides 22K and
1.6K depth frames for training and testing, respectively.

Methods
Mean error (mm)

Input Type
ICVL MSRA NYU

DeepModel [46] 11.56 - 17.04 2D R
DeepPrior [27] 10.4 - 19.73 2D R
Ren-4x6x6 [14] 7.63 - 13.39 2D R
Ren-9x6x6 [42] 7.31 9.7 12.69 2D R

DeepPrior++ [26] 8.1 9.5 12.24 2D R
Pose-Ren [3] 6.79 8.65 11.81 2D R

DenseReg [42] 7.3 7.2 10.2 2D D
CrossInfoNet [6] 6.73 7.86 10.08 2D R

JGR-P2O [8] 6.02 7.55 8.29 2D D
3DCNN [11] - 9.6 14.1 3D R
SHPR-Net [4] 7.22 7.76 10.78 3D R

HandPointNet [9] 6.94 8.5 10.54 3D R
Point-to-Point [12] 6.3 7.7 9.10 3D D

V2V [24] 6.28 7.59 8.42 3D D
Ours 5.95 7.34 8.58 3D R

Table 2. Comparison of the proposed method with previous state-
of-the-art methods on the ICVL, MSRA and NYU datasets. Mean
error indicates the mean distance error. Input indicates the input
representation of 2D (depth image) or 3D (voxel or point cloud).
Type D and R indicate the detection-based method and regression-
based method, respectively.

The ground truth of each frame contains J = 16 joints,
including one joint for a palm and three joints for each fin-
ger. Since the frames also contain the human body area,
we firstly crop the hand area from a depth image with the
method proposed in [26], and take the output joint locations
of the global folding decoder to segment the image of the
hand area.

NYU Dataset. The NYU dataset is captured from three
different views. Each view contains 72K training 8K test-
ing depth images captured with the Microsoft Kinect sensor.
Following recent works, we only use one view and 14 joints
out of total of 36 annotated joints for training and testing.
We also follow the same hand area segmenting process as
in the ICVL dataset.

Evaluation metrics. We evaluate the hand pose esti-
mation performance with two commonly-used metrics: the
mean distance error and the success rate. The mean dis-
tance error measures the average Euclidean distance be-
tween the estimated coordinates and ground-truth ones for
all the joints over the entire testing set. The success rate is
the fraction of the frames whose mean distance error is less
than a certain distance threshold.

4.3. Comparison with State-of-the-arts

We compare HandFoldingNet with other state-of-the-art
methods, including methods with 2D (depth image) input:
model-based method (DeepModel) [46], DeepPrior [27],
improved DeepPrior (DeepPrior++) [26], region ensemble
network (Ren-4x6x6 [14], Ren-9x6x6 [42]), Pose-Ren [3],
dense regression network (DenseReg) [42], CrossInfoNet
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Figure 6. Comparison with the state-of-the-art methods using the ICVL (left), MSRA (middle) and NYU (right) dataset. The success rate
is shown in this figure.

Figure 7. Qualitative results of HandFoldingNet on the ICVL (left), MSRA (middle) and NYU (right) dataset. Hand depth images are
transformed into 3D points as shown in the figure. Ground truth is shown in black, and the estimated joint coordinates are shown in red.

[6] and JGR-P2O [8], and methods with 3D (point cloud or
voxel) input: 3DCNN [11], SHPR-Net [4], HandPointNet
[9], Point-to-Point [12] and V2V [24]. Figure 6 shows the
success rate on the ICVL, NYU, and MSRA dataset. The
qualitative results are represented in Figure 7.

Table 2 summarizes the performance based on the mean
distance error on the three datasets. The results show that
our method outperforms the existing methods on the ICVL
dataset, achieving the mean distance error of 5.95mm. The
proposed model also achieves the second-lowest error on
the MSRA dataset and third-lowest error on the NYU
dataset. Among methods using the 3D input, our method
outperforms other state-of-the-art methods on both ICVL
and MSRA datasets. Also, HandFoldingNet shows the
state-of-the-art performance among regression-based meth-
ods on all three datasets. Figure 6 represents that our
method achieves the highest success rate when the error
threshold is lower than 10mm, 13mm and 25mm on the
ICVL, MSRA and NYU datasets, respectively.

4.4. Ablation Study

We conduct ablation experiments evaluating the perfor-
mance impact of each component in our model. The follow-
ing experiments are evaluated based on the ICVL dataset.
Effectiveness of the local folding block. This experiment
evaluates the accuracy improvement by attaching the pro-
posed local folding block. To compare with the proposed
network having one global folding and two local folding
blocks (triple fold), we introduce a shallow network (single
fold) that only provides the global folding, a network with

only one local folding block (double fold), and a network
with three local folding blocks (quadra fold). Table 3 shows
the performance comparison between the models with dif-
ferent number of local folding.

The result shows that local folding significantly reduces
the distance error. This experiment proves that the global
folding that only accepts a single global feature for estima-
tion is relatively weak, and the local features contributes the
correction of the final joint coordinates. Although attaching
more local folding blocks increases the inference overhead,
the number of parameters and operations of the proposed
model (triple fold) are not significant compared to the exist-
ing models, as analyzed in Section 4.5. However, the result
also shows that the model performance is saturated at triple
fold. The reason is that the additional gradients from the
third local fold corrupt the back propagation and make the
training harder. Note that double fold still outperforms sev-
eral point cloud based networks with smaller parameter size
and operation count.
Effectiveness of local features and spatial dependencies.
We evaluate the contribution of the critical feature com-
ponents of the aggregated feature map, which are the lo-
cal feature and spatial dependency feature. We conduct
two independent experiments: 1) without local feature and
2) without spatial dependency. For without local feature,
we remove the grouped local feature component of the ag-
gregated map and maintain the spatial dependency com-
ponent. For Without spatial dependency, we remove rear-
ranged folding embeddings and maintain the local feature.
Table 4 shows that the mean distance error increases by
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Global # Local Mean
#Params FLOPs

fold fold error (mm)√
× 8.13 0.38M 0.46G√
1 6.34 0.78M 0.78G√
2 5.95 1.28M 1.10G√
3 6.08 1.78M 1.48G

Table 3. Comparison of different numbers of local folding blocks
used in the model. # Local fold indicates the number of local fold-
ing blocks attached after the global folding decoder. # Params
indicates the total number of parameters of the network. FLOPs
indicates the total number of floating-point operations required for
the network inference.

Local Spatial Mean
# Params FLOPs

feature dependency error (mm)
×

√
7.90 1.21M 1.04G√

× 6.35 1.08M 0.91G√ √
5.95 1.28M 1.10G

Table 4. Comparison of different settings between the local feature
and spatial dependency.

Sampling level Mean error (mm) #Params FLOPs
input 6.58 1.21M 1.04G

first (l=1) 5.95 1.28M 1.10G
second (l=2) 6.48 1.34M 1.17G

Table 5. Comparison of different set abstraction levels for local
features.

Methods # Param Speed Time (ms) GPU Type
V2V-PoseNet [24] 457.5M 3.5 23 + 5.5 TITAN X
HandPointNet [9] 2.58M 48 8.2 + 11.3 GTX1080
Point-to-Point [12] 4.3M 41.8 8.2 + 15.7 TITAN XP

Ours 1.28M 84 8.2 + 3.7 TITAN RTX

Table 6. Comparison of the model size and inference time for the
methods using the 3D input. Speed stands for the frame rate (fps)
on a single GPU. Time stands for the total computation time in-
cluding preprocessing time and model inference time.

1.55mm without the local features. Similarly, without the
spatial dependency, the mean distance error increases by
0.40mm. These experiments show that the both features
are critical for improving estimation accuracy. Meanwhile,
the local feature contributes to the performance more effi-
ciently, as it requires smaller parameters and FLOPs while
achieving better performance than using the spatial depen-
dency.
Sampling level of local features. HandFoldingNet is com-
posed of three set abstraction levels in the PointNet encoder,
where each level has different input points density and fea-
ture complexity. Therefore, we should carefully determine
the abstraction level so that the local folding blocks can ef-
fectively collect extra local features. To analyze the per-

formance impact of the abstraction level, we experiment
with the input, first, and second set abstraction levels as
the input to the local folding blocks. Table 5 indicates
that adopting the output point cloud from the first set ab-
straction level achieves the highest performance because the
neighbor points around the joints are adequate (input points
are dense) and the features they provide are effectively in-
formed (input features are complex). On the other hand,
the input point cloud is not complex enough as it only in-
cludes 3D surface normal vectors. Consequently, directly
using the input point cloud for local folding is not effective
in capturing necessary features that can improve the per-
formance. Conversely, using higher abstraction level (sam-
pling level 2) degrades the performance. Although the sec-
ond level features are sufficiently complex, the points are
actually sparse in the 3D space. Therefore, the local folding
can not group enough points.

4.5. Runtime and Model Size

The runtime of HandFoldingNet measured on an
NVIDIA TITAN RTX GPU is 11.9ms per point frame in
average, including 8.2ms for preprocessing and 3.7ms for
network inference. Thus, it can run in real-time at about
84.0fps. Table 6 shows our method has the lowest total
latency among the 3D-input based methods. Our method
also achieves the fastest inference within the point cloud
based methods that require 8.2ms of preprocessing time.
Moreover, the number of parameters of our proposed net-
work is sufficiently small, which is only 1.28M. Compared
with previous state-of-the-art models, our model requires
the least parameters.

5. Conclusion
In this paper, we proposed HandFoldingNet, a novel and

efficient neural network that takes the point cloud as the
input and estimates the 3D hand pose. The proposed net-
work achieves the accurate joint coordinates estimation by
leveraging the multi-scale features, including the global fea-
ture and the joint-wise local feature. Experimental results
on three challenging benchmarks showed that our network
outperforms previous state-of-the-art methods while requir-
ing the minimal computational resources. Ablation experi-
ments demonstrated the contribution of its key components
for better accuracy and efficiency.
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