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Figure 1: (a) Our IICNet can embed a high-resolution sequency into one low-resolution embedding image, which can be
used to restore the original content when necessary. (b-e) Our IICNet is the first approach that can generalize among various
reversible image conversion (RIC) tasks. We show the whole process of IICNet in (a) but only the restoration process in (b-e).

Abstract

Reversible image conversion (RIC) aims to build a re-
versible transformation between specific visual content (e.g.,
short videos) and an embedding image, where the original
content can be restored from the embedding when necessary.
This work develops Invertible Image Conversion Net (IIC-
Net) as a generic solution to various RIC tasks due to its
strong capacity and task-independent design. Unlike pre-
vious encoder-decoder based methods, IICNet maintains a
highly invertible structure based on invertible neural net-

*Joint first authors

works (INNs) to better preserve the information during con-
version. We use a relation module and a channel squeeze
layer to improve the INN nonlinearity to extract cross-image
relations and the network flexibility, respectively. Exper-
imental results demonstrate that IICNet outperforms the
specifically-designed methods on existing RIC tasks and
can generalize well to various newly-explored tasks. With
our generic IICNet, we no longer need to hand-engineer
task-specific embedding networks for rapidly occurring vi-
sual content. Our source codes are available at: https:
//github.com/felixcheng97/IICNet.
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1. Introduction

Visual media can be classified into different types, in-
cluding live photos [3], binocular images or videos [14],
and dual-view images or videos [1]. Usually, specific de-
vices or platforms are required to view the visual media con-
tent. For example, binocular content may only be applicable
in 3D devices, so we may need to generate corresponding
monocular content to make them compatible with common
devices [14]. Instead of simply dropping parts of the orig-
inal content, a better choice is to build a reversible trans-
formation, where the embedding is compatible with com-
mon devices, and the original content can be restored when
necessary. Also, the single embedding image can help save
the storage cost and transmission bandwidth. As a result,
many researchers are motivated to study several reversible
image conversion (RIC) tasks [14, 33, 40] to establish a re-
versible transformation between visual content and an em-
bedding image. Some examples are shown in Figure 1.

RIC tasks are challenging since we often need to em-
bed much richer information implicitly in one single im-
age, which may lead to unavoidable information loss. Previ-
ous works [14, 33, 40] usually employ an encoder-decoder
based framework, which learns the informative bottleneck
representation but has limited ability to capture the lost in-
formation [29, 34]. For example, Zhu et al. [40] embed
a video preview into a single image and restore the origi-
nal content with cascaded encoders and decoders, in which
they sacrifice the quality of the embedding image to em-
bed more information, but their restored frames are still not
highly accurate due to the information loss problem. Hence,
one key objective in RIC tasks is to mitigate such informa-
tion loss. Another concern is that although RIC tasks share
the same embedding-restoration procedure for high-quality
embedding and restored images, previous methods usually
have task-specific designs (e.g., optical flow in [40]), mak-
ing them challenging to generalize to other types of visual
content. Hence, with the rapid growth of media formats plus
the increasing interest in the RIC tasks, it is desirable to de-
velop a generic framework for solving all types of RIC tasks.

Considering these aspects, we propose Invertible Image
Conversion Net (IICNet) as a generic framework for RIC
tasks. To alleviate the information loss problem, we utilize
invertible neural networks (INNs) [12, 13] as a strictly in-
vertible embedding module. A channel squeeze layer [35]
is used and integrated into INNs for flexible reduction of di-
mensions, with only very minor deviations introduced to the
invertible architecture. Furthermore, we introduce a relation
module to strengthen the limited nonlinear representation
capability of INNs [12] to better capture cross-image rela-
tions, in which independent cross-image convolution layers
are used, with residual connections for better maintaining a
highly reversible structure.

With the strong embedding capacity and the generic

module design, IICNet does not rely on any task-specific
technique, making it capable of dealing with different con-
tent types. We also allow lower-resolution embedding for
higher compression rates.

Figure 1(a) gives a concrete example for illustration.
Given a sequence of video frames, our IICNet can embed the
spatial-temporal information of the sequence into one lower-
resolution image that is visually similar to the downsampled
middle reference frame. There are some promising applica-
tions. First, we may embed a short video clip or live photo in
one image. Second, we can embed a high-resolution high-
FPS video into a low-resolution low-FPS video. In this way,
we can allow flexible adoptions for different devices and
save storage. Other potential applications are shown in Fig-
ure 1(b-e), including mononizing binocular images, embed-
ding dual-view images or multi-layer images, and even the
general image hiding steganography task.

This paper presents the first generic framework IICNet
for different RIC tasks, supported by extensive experiments
on five tasks, including two newly-explored tasks: (1) em-
bedding a dual-view image into a single-view one; (2) the re-
versible conversion between multi-layer images and a single
image. Both quantitative and qualitative results show that
our method outperforms the existing methods on the studied
tasks. Ablation studies are conducted for the network mod-
ules and loss functions. More information and demo results
are included in the supplementary materials.

2. Related Work

2.1. Reversible Image Conversion

Our work solves the embedding-and-restoration problem,
which belongs to the category of reversible image conver-
sion (RIC). Xia et al. [33] first propose to encode the orig-
inal color information into a synthesized grayscale image,
from which the color image can be decoded. Recently, Zhu
et al. [40] try to embed a sequence of video frames into one
image for single image motion expansion. Hu et al. [14] fur-
ther attempt to build an invertible transformation between
binocular and monocular views. Although these approaches
perform well in their tasks using different technical designs,
none of them can generalize to solve all the tasks above due
to the task-specific designs. Also, these methods are gen-
erally based on an encoder-decoder framework with limited
ability to handle the information loss problem.

The reversible property is also explored in steganogra-
phy, where concealing and recovering the hidden informa-
tion can be viewed as a reversible task. It aims to hide in-
formation within different information carriers like images.
Recently, several learning-based methods [9, 25, 30, 31, 38,
39] leverage the pair of encoder and decoder to hide differ-
ent kinds of information in images. Still, some works have a
limited hiding capacity with some artifacts. In this work, we
mainly focus on RIC tasks related to the image carrier only.
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Figure 2: Overview of the proposed network. IICNet sequentially contains a relation module, an invertible embedding module
(an optional downscaling module plus several coupling layers), a channel squeeze layer, and a quantization layer.

2.2. Invertible Neural Networks

Invertible neural networks (INNs) [12, 13, 16] guaran-
tee the invertibility property with a careful mathematical
design of network architecture and several invertible opera-
tions. In general, the forward process of an INN architecture
can learn a bijective mapping between a source domain x to
a target domain y, with the forward process fθ(x) = y and
the inverse process f−1θ (y) = x. A tractable Jacobian is an-
other great characteristic of INNs to compute the posterior
probabilities explicitly for the bijective mapping.

Normalizing Flow based methods [17, 22] map a com-
plex distribution x with INNs to a latent distribution z (e.g.,
Gaussian), usually trained by minimizing the unsupervised
negative log-likelihood loss. Different from Normalizing
Flow based methods, IRN [34] maps a high-resolution im-
age to a low-resolution image by utilizing additional latent
output variables to capture the lost high-frequency infor-
mation [24] with a cross-entropy loss in the image rescal-
ing task. However, the information loss or residual is usu-
ally more complex in other general RIC tasks, making the
generalization issue a big challenge for IRN. Recent works
also investigate the application of INNs on different tasks,
such as conditional image super-resolution [19], image gen-
eration [6, 32], point cloud generation [21], segmentation
tasks [32], and image signal processing pipeline [36].

3. Method

The proposed IICNet for general reversible image con-
version (RIC) tasks aims to encode a series of input images
into one reversible image (embedding image), which can
have either the same or lower resolution. The embedding
image can be decoded back to the original inputs with the
network backward passing. The key is to use invertible neu-
ral networks (INNs) to model such a bijective mapping. An
overview of our generic framework is shown in Figure 2.

3.1. Model Formulation

Formally, the input of IICNet is a series of K input im-
ages {ik}Kk=1 with ik ∈ RC×H×W , where C, H , and W are
the image channel number, height, and width, respectively.
IICNet can forwardly encode the input images into an em-
bedding image e, which is visually indistinguishable from
the reference image eref ∈ RCe×He×We . Note that the
embedding Ce, He, and We may be different from C, H ,
and W . IICNet can then backwardly decode the quantized
embedding image ê and restore the input images {̂ik}Kk=1.
Note that in actual implementations, K input images are
stacked along the channel dimension, with input channel
size of N = CK, denoted as x1:N ∈ RN×H×W .

Relation module. INNs have strong architecture con-
straints, limiting the nonlinear representation capacity [12].
Thus, we propose a relation module to add some nonlin-
ear transformation to help capture cross-image relations. To
minimize information loss, we add residual connections to
greatly preserve the network reversibility.

Details of the relation module are shown as the orange
part in Figure 2. K parallel convolutional headers inde-
pendently transform K images into their feature space. The
concatenation of the K image features then goes through K
independent convolutional tailers plus residual connections
to obtain the corresponding images with relational informa-
tion extracted. The convolutional blocks used here are based
on the Dense Block [15]. We can express the forward pro-
cess fkrel for the kth image x(kC−C+1):kC as follows:

r(kC−C+1):kC = fkrel(x1:N ) + x(kC−C+1):kC . (1)

We then obtain r1:N ∈ RN×H×W . For the inverse process,
we apply a symmetric relation module.

Invertible downscaling module. If we optionally acti-
vate the invertible downscaling module, IICNet can embed
the input images into a lower-resolution embedding image.
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Figure 3: Illustration of the channel squeeze layer.

This module is composed of either a pixel shuffling layer
(squeezing operation) [13] or a Haar wavelet transformation
layer [27], followed by an invertible 1× 1 convolution [16].
This module offers an invertible operation to halve the res-
olution of the input images, transforming the size of input
tensor from (N,H,W ) to (4N, 12H,

1
2W ) = (M,He,We).

We describe the forward process of this module fdown as:

u1:M = fdown(r1:N ). (2)

If downscaling is disabled, fdown is simply an identical
function, yielding u1:M = r1:N .

Coupling layers. Following the design proposed in [5,
12, 13], we structure a deep INN architecture with sev-
eral basic inveritble building blocks using two complemen-
tary affine coupling layers each. Considering the lth block,
the corresponding input tensor u1:M is split into top parts
ult = ul1:m̃ and bottom parts ulb = ul(m̃+1):M at posi-
tion m̃. The two corresponding affine transformations are
formulated as follows, with element-wise multiplication �,
exponential function exp(·), and centered sigmoid function
σc(·) = 2σ(·)− 1:

ul+1
t = ult + h2(u

l
b), (3)

ul+1
b = ulb � exp(σc(g(ul+1

t ))) + h1(u
l+1
t ). (4)

Then ul+1
t and ul+1

b are concatenated to get ul+1
1:M . We can

show that the two transformations are invertible:

ulb = (ul+1
b − h1(ul+1

t ))� exp(−σc(g(ul+1
t ))), (5)

ult = ul+1
t − h2(ulb). (6)

Letting finn be the forward pass of our INN architecture,
the output tensor v1:M can be formulated as follows:

v1:M = finn(u1:M ). (7)

Channel squeeze layer. Similar to [35], we use a chan-
nel squeeze layer but without attention to reduce the chan-
nel dimension to obtain the embedding image e. The chan-
nel squeeze layer forwardly treats its input tensor v1:M as
a stack of preliminary embedding images {ek}Ke

k=1, where
Ke = M/Ce. The embedding image e is calculated by av-
eraging the preliminary embedding images:

e = fcs(v1:M ) = average({ek}Ke

k=1). (8)

While for the backward pass, the channel squeeze layer
copies the quantized embedding image ê multiple times as
{êk}Ke

k=1 and concatenates them along the channel dimen-
sion to match the channel size.

Note that our network is jointly trained as a whole
with inherent inverse functions of INNs, and the inverse
pass takes the copied (same) quantized embedding images
{êk}Ke

k=1 as input. This implicitly guides the embedding im-
age e and all the preliminary embedding images {ek}Ke

k=1

to look similar to each other. Hence, only minor noise is
introduced to the invertibility, and there is no need to pose
any explicit constraints on {ek}Ke

k=1 during the forward pass.
Figure 3 shows some visual patches of the preliminary em-
bedding images during training, where all the preliminary
embedding images are similar to each other. Also, we find
that such implicit guidance on the preliminary embedding
images helps stabilize the overall training process.

During experiments, we try to pose explicit L2 con-
straints between {ek}Ke

k=1 and e or to model the information
loss for the channel squeeze layer by simple CNNs. But
such designs cause worse performance or unstable training.

Quantization layer. A quantization loss is unavoidable
when one saves the embedding image in the common PNG
format with only 8 bits per pixel per channel. There are
many proposed methods like [7, 10, 26] to address this prob-
lem. In this paper, we choose to employ the method in [8]
to add uniform noise during training and do integer round-
ing during testing to obtain the quantized embedding im-
age ê. The quantized embedding image further needs to be
clamped between 0 and 255.

Inverse process. To restore the original input images, we
can load the quantized embedding image ê and let it sequen-
tially go through the inverse pass of IICNet:

x̂1:N = (f ′rel ◦ f−1down ◦ f
−1
inn ◦ f

′
cs)(ê), (9)

where f ′rel, f
−1
down, f−1inn, f ′cs are the inverse pass functions of

the corresponding modules. Then we can obtain the restored
images {̂ik}Kk=1.

3.2. Loss Functions

As discussed in the channel squeeze layer, we only need
to employ loss functions at the two ends: the embedding
image and the restored images.

Embedding image. We employ L2 loss to guide the
embedding image e to be visually like the reference im-
age eref . In the case of downscaling, we use the Bilinear
method to downsample the reference image:

Lemb = ||eref − e||22. (10)

In our experiments, we find that with L2 loss only, the
embedding image usually contains many high-frequency
patterns. Hence, we further apply one-sided Fourier trans-
form (FT) [11] on both the embedding image and the ref-
erence image to obtain their frequency domain and add a
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Step
Embedding Restored

Zhu et al. [40] Ours Zhu et al. [40] Ours
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 25.277 0.5608 37.908 0.9412 34.356 0.9363 36.698 0.9519
3 24.561 0.5214 37.068 0.9252 33.099 0.9227 36.302 0.9490
5 24.246 0.5056 36.739 0.9190 32.608 0.9170 36.074 0.9475

Table 1: Comparison on temporal video embedding test set with embeding range of 9 and time step of 1.

frequency loss Lfreq in terms of L2 distance:

Lfreq = ||FT (eref )− FT (e)||22. (11)

Restored images. The restored images {̂ik}Kk=1 should
match the original ones {ik}Kk=1, so we have another ba-
sic restored loss Lres to minimize the average L1 distance
among each pair of the restored and original image:

Lres =
1

K

K∑
k=1

||ik − îk||1. (12)

Total loss. To sum up, our proposed IICNet is optimized
by minimizing the compact loss Ltotal, with corresponding
weight factors λ1, λ2, λ3:

Ltotal = λ1Lemb + λ2Lfreq + λ3Lres. (13)

4. Experiments
We first report experiments conducted on the studied RIC

tasks in Section 4.1 and 4.2, followed by the results of two
newly-explored tasks in Section 4.3 and 4.4. In Section 4.5,
we try the steganography task to hide several images in one
image. The main paper reports multiple-and-single RIC
tasks that build a conversion between multiple images and
a single image. Our supplements present more results of
single-and-single RIC tasks like invertible image rescaling
and invertible grayscale. Please also check our supplements
for detailed experimental settings.

4.1. Spatial-Temporal Video Embedding

The method proposed in [40] aims to embed a sequence
of video frames into one embedding image with the same
resolution, which can be converted back to the original video
sequence. Our proposed IICNet not only performs better
but also extends to embed the video frames spatiotemporally
into a lower-resolution embedding image.

Dataset and processing. We use the high-quality DAVIS
2017 video dataset [20] in this task. To make our model
more robust on different motion levels of video inputs, for
each video sample in the train set, we subsample all the pos-
sible video subsamples with a time step of 5 between con-
secutive frames, where we select the middle frame as the
reference image.

Zhu et al. [40] Ours

Figure 4: Visual result comparisons on embedding images.

Result comparison. Table 1 only reports the compari-
son results on the test set with embedding range N = 9,
since the baseline method [40] only provides the pre-trained
N = 9 model. We study the performance at different time
step levels of 1, 3, 5 to test the capacity of the models in
handling small and large motions. Statistics show that our
method significantly outperforms the baseline method at all
time step levels by large margins. Without dependence on
optical flow, our method has less performance drop as the
time step grows. We also offer grayscale PSNR and SSIM
comparisons in our supplements for reference.

Figure 4 and Figure 5 show the visualization results of
the embedding images and the restored frames, respectively.
Evident artifacts are found in baseline results, especially for
the embedding image. In contrast, our embedding and re-
stored images contain very few artifacts, demonstrating the
effectiveness of the employed INN architecture in RIC tasks.

Embedding ranges and resolutions. To investigate the
embedding capacity of our method, we conduct experiments
using different embedding ranges (5, 7, 9 input images) in
Table 2. Similarly, we subsample the training videos with
a time step of 5 and test at a time step level of 1. Intu-
itively, more input images indicate more challenges because
there is usually more motion information to embed into the
embedding image. Table 2 further shows the experimental
results of our method to embed the input video sequence
spatially and temporally into a lower-resolution embedding
image. To the best of our knowledge, no previous work tries
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Figure 5: Visual result comparisons on restored frames.

Range Embedding Restored
(Res.) PSNR SSIM PSNR SSIM

5 38.900 0.9522 41.729 0.9807
7 38.157 0.9437 38.785 0.9660
9 37.908 0.9412 36.698 0.9519

3 (×2) 37.585 0.9584 36.914 0.9540
5 (×2) 36.692 0.9477 33.977 0.9205

Table 2: Results on spatial-temporal video embedding test
set with different embedding ranges and resolutions.

to do the spatial-temporal embedding task. We report the re-
sults of embedding N = 3, 5 into a 2 times lower-resolution
image, conducted with a time step of 5 and 1 for training
and testing, respectively. We can see that even we compress
the input frames up to 20 times smaller; still, the model can
have a good preview image and restored frames.

4.2. Mononizing Binocular Images

We also experiment on another studied mononizing
binocular images task [14], which aims to convert binocular
images or videos into monocular ones with the stereo infor-
mation implicitly encoded. In this way, monocular devices
can cope with stereoscopic data, and the original stereo con-
tent can be restored when necessary. We demonstrate that
our framework outperforms state-of-the-art methods.

Same as [14], we train on the Flickr1024 dataset [28]
with the official train and test splits. Quantitative results
are shown in Table 3. We achieve the best performance,
especially for the restored images, with an improvement of
6.6dB for the left views and 1.1dB for the right views. Al-
though Mono3D already achieves good performance, we
can still see some structural artifacts like the street lamp
and the electric tower in the zoomed-in restored patches,

Mono-view L. Bino-view R. Bino-view
PSNR SSIM PSNR SSIM PSNR SSIM

Baluja [9] 26.1 0.81 - - 27.9 0.88
Xia et al. [33] 28.0 0.89 28.7 0.92 30.7 0.92
Hu et al. [14] 37.8 0.97 38.3 0.99 37.3 0.98

Ours 37.5 0.95 44.9 0.99 38.4 0.98

Table 3: Results on mononizing binocular images test set.

as shown in Figure 6. In contrast, our method can restore
nearly artifact-free binocular views. Although we only train
our network on images, results show strong temporal con-
sistency when we apply our model to videos in a per-frame
manner. Some demos are in the supplementary video.

4.3. Embedding Dual-View Images

Dual-view camera mode is an advanced technology in
the field of smartphone cameras, which is first available on
HUAWEI P30 Pro [1]. Users can record split-screen images
or videos with the primary camera capturing normal-view
images or videos on the left and the zoom lens capturing
zoomed-view (×4) images or videos on the right.

Similarly, not all devices support dual-view images. Our
method can serve as a backward-compatible solution to
embed the dual-view images into one normal-view image.
We train and test our method using pairs of zoomed-view
(×2,×4,×8) and normal-view images generated from the
DIV2K dataset [4], with the normal view images as refer-
ence. Some setting details are in the supplements.

Quantitative results in Table 4 show that our method
achieves great performance to embed dual-view images in
terms of both PSNR and SSIM. We also show some visual
results in Figure 7, where we can see that both the embed-
ding and restored images are nearly perfect.
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Figure 6: Visual comparison results of the restored Binocular Images. We show the zoomed-in patches with the corresponding
error map aside. Note that we amplified the error maps by 10 times for better visualization.

Modes Embedding Normal Zoomed
× 2 38.248 50.171 43.461
× 4 38.438 49.116 43.662
× 8 38.356 48.854 43.578

Table 4: PSNR on embedding dual-view images.

G
T

O
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s

Embedding Normal-view Zoomed-view

Figure 7: A sample result of embedding dual-view images.

4.4. Composition and Decomposition

Photoshop [2] is a popular image editing software, where
users can use multiple layers to perform tasks such as com-
positing multiple images into one. Usually, the composition
process is not reversible, so we cannot recover the sheltered
part of the background in the composed image. However,
with our method, we can allow the “composed image” to
embed all the layer images. In this way, although we only
store and transmit one “composed image” as before, users

Embed. Comp. Fg. Bg.
Adobe 45.305 52.709 44.586 44.921
Real 47.350 60.234 - 43.718

Table 5: PSNR on composition and decomposition.

G
T

O
ur

s

Embedding Composed Foreground Background

Figure 8: A sample result of composition and decomposi-
tion.

can also get the original layers for further usage.
Since there is no publicly available dataset for com-

position and decomposition, we instead train and test our
method on two matting datasets: the Adobe Deep Matting
dataset [37] and the Real Matting dataset [23]. Note that
the Real Matting dataset does not have ground truth for the
foreground. Detailed settings are available in supplements.

Table 5 shows the quantitative performance of our
method on the two datasets. We also include some visual
results in Figure 8. We can see that our method performs
well and is verified as applicable to the task of composing
and decomposing images.
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Methods Video Embedding Mononizing Binocular Images Hiding Images in an Image
Embed. Restore #Param. Embed. Restore #Param. Embed. Restore #Param.

AE [33] 37.925 37.242 7.43M 35.387 38.239 4.55M 34.248 31.721 7.43M
INNs [34] 34.029 38.452 6.57M 34.465 38.171 4.49M 29.953 33.843 6.57M

Ours w/o rel. 38.752 41.159 6.57M 36.684 39.667 4.49M 35.533 36.698 6.57M
Ours w/o freq. 32.914 42.353 6.81M 31.469 41.161 4.40M 28.780 37.623 6.81M

Ours 38.900 41.729 6.81M 37.540 41.649 4.40M 35.641 37.935 6.81M

Table 6: Ablation studies on three representative tasks.

#Embed. Embedding Restored
PSNR SSIM PSNR SSIM

2 38.586 0.9403 48.599 0.9945
3 37.038 0.9166 42.884 0.9852
4 36.184 0.9041 39.883 0.9745
5 35.641 0.8913 37.935 0.9638

Table 7: PSNR on hiding images in an image.

4.5. Hiding Images in an Image

To show the generality of our proposed model, we try
the hardest task to hide several unrelated images with our
model, which can be viewed as a kind of stenography. We
obtain general images from the Flicker 2W dataset [18]. We
conduct experiments to embed 2, 3, 4, 5 images into one
image, and the numerical results are listed in Table 7. From
the results, we can see that our method achieves relatively
good performance even when embedding 5 images into one,
demonstrating the strong generality of our method. From the
visual results shown in Figure 9, despite the variety of colors
and structures of the images, we can restore them with no
viewable artifacts.

5. Ablation Studies

To ablate our network components and the applied fre-
quency loss, we report some ablation results on three rep-
resentative tasks in Table 6. For AE, we use the network
architecture proposed by Xia et al. [33] to represent gen-
eral encoder-decoder based methods; for INNs, we adopt
the network design and training strategy introduced by Xiao
et al. [34] to represent common INN based methods with
auxiliary maps. We also present the results of our methods
without relation module or frequency loss. For fair compar-
isons, all the models (unless otherwise specified) are trained
with the applied frequency loss as discussed in Section 3,
and we adjust the number of invertible blocks or CNN layers
of different methods to have a similar number of parameters.

The experiments show that our method outperforms gen-
eral encoder-decoder style networks and common INNs
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Figure 9: A sample result of Hiding Images in Image

with auxiliary maps. Intuitively, we know that there ex-
ists a trade-off relation between the embedding quality and
the restoration quality. From the reported statistics, we can
conclude that the frequency loss greatly contributes to the
artifacts-free embedding for a significant quality boost with
comparable restoration quality. Also, the proposed relation
module works well to integrate with INNs to extract cross-
image relationships and boost the performance.

6. Conclusion and Discussion

We present a generic framework IICNet for various re-
versible image conversion (RIC) tasks. IICNet maintains a
task-independent and highly invertible architecture based on
invertible neural networks (INNs), which can help greatly
minimize the information loss during the conversion pro-
cess. Due to strict invertibility, INNs have limitations in
terms of nonlinear representation capacity and dimensional
flexibility. The introduced relation module and the applied
channel squeeze layer can greatly alleviate such limitations
for better cross-image relation extraction and preserve the
information-reserving ability of INNs.

IICNet yields state-of-the-art performance on some stud-
ied RIC tasks, such as spatial-temporal video embedding
and mononizing binocular images. We also introduce and
apply our IICNet on some unexplored tasks, which are em-
bedding dual-view images and composition and decompo-
sition. The success on the stenography task further shows
the generalization of our IICNet. We hope the generaliza-
tion and high performance of the proposed framework could
help in more practical applications.
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