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Abstract

In recent years, unmanned surface vehicles (USVs) have
been experiencing growth in various applications. With the
expansion of USVs’ application scenes from the typical ma-
rine areas to inland waters, new challenges arise for the ob-
ject detection task, which is an essential part of the percep-
tion system of USVs. In our work, we focus on a relatively
unexplored task for USVs in inland waters: small object
detection on water surfaces, which is of vital importance
for safe autonomous navigation and USVs’ certain missions
such as floating waste cleaning. Considering the limitations
of vision-based object detection, we propose a novel radar-
vision fusion based method for robust small object detection
on water surfaces. By using a novel representation format
of millimeter wave radar point clouds and applying a deep-
level multi-scale fusion of RGB images and radar data, the
proposed method can efficiently utilize the characteristics
of radar data and improve the accuracy and robustness for
small object detection on water surfaces. We test the method
on the real-world floating bottle dataset that we collected
and released. The result shows that, our method improves
the average detection accuracy significantly compared to
the vision-based methods and achieves state-of-the-art per-
formance. Besides, the proposed method performs robustly
when single sensor degrades.

1. Introduction

In recent years, unmanned surface vehicles (USVs) have
attracted increasing attention and are gradually used for
various autonomous activities on water surfaces such as
oceanographic research [7], transportation [41], water qual-
ity monitoring [19], floating waste removal [32, 36, 1], etc.

Similar to autonomous vehicles on the road, to enable
safe navigation and efficient autonomous operation, accu-
rate and robust environmental perception is of vital impor-
tance for USVs. Small object detection on water surfaces
is an important task for USVs environmental perception. It

Figure 1. Overview of the proposed method for small object de-
tection for USVs. Our method utilizes the fusion of RGB images
and MMW radar data for small object detection of USVs, which
can be applied for USVs’ certain missions and safe navigation.

can be applied to USVs for avoiding small obstacles like
buoys and reefs, and plays an important role in USVs’ cer-
tain missions such as autonomous floating waste detection
and cleaning. Vision can provide rich semantic information
and is widely used for object detection of USVs. However,
unlike autonomous vehicles on the road, there are three
main challenges for vision-based small objects detection on
water surfaces:

- Light reflection on the water surface. As shown in Fig-
ure 2(a), the strong light reflection on the water surface can
cause high illumination and overexposed image. The small
objects like the floating bottles can be shaded by water halos
or fused with the background due to overexposure.

- Surrounding scene reflection interference. As shown in
Figure 2(b), in some cases such like the small object detec-
tion in inland waters, the reflection of the constructions and
vegetation on banks increase the complexity of separating
the target from the background.

- A short detection range. A long detection range can
significantly improve the safety of navigation and the work-
ing efficiency of USVs. However, as the size of the target is
small, when the target is far from the camera, the number of
occupied pixels of the target in RGB images becomes much
less as shown in Figure 2(c).

With the increasing demands towards environmental per-
ception for autonomous vehicles, in addition to the vision-
based system, object detection based on other sensors like
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Figure 2. Challenges in detecting small objects: Strong light re-
flection interference. Surrounding scene reflection interference.
Small size and a short detection range.

Figure 3. The figures show 3 successive frames of radar point
clouds projected onto images. The point clouds of the targets and
the clutter points are framed by green boxes and yellow boxes re-
spectively. As can be seen, the point clouds of the small size float-
ing bottles are unstable and hard for humans to identify. Besides,
the water clutter can disturb the detection system.

millimeter wave (MMW) radar has shown great value in au-
tonomous driving [49]. Compared to the vision-based sys-
tem, MMW radar is more robust to lighting conditions and
provides the possibility of seeing a long distance [24]. De-
spite this, for the real-world applications of small object de-
tection on water surfaces based on MMW radar, as shown
in Figure 3, difficulties remain to be overcome:

- Weak echoes from non-metallic targets. The radar
cross-section (RCS) indicates how detectable a target is by
radar. Usually, a target of large size and made of metal ma-
terial has a larger RCS and are more detectable. The non-
metallic small object has a lower RCS and its radar reflec-
tion is weak, which significantly increases the difficulties in
detection.

- Interference caused by the water surface clutter. To de-
tect the floating bottles on the water surface, the radar is
usually equipped at a relatively low height. A lower equip-
ment height makes the radar more easily affected by the
water wave and causes falsely detected targets.

- Lack of semantic information. Compared to RGB
images, radar provides very little semantic information.
Therefore, it is challenging to classify the targets using
radar data.

It can be seen that, for small object detection on water
surfaces, the performance achieved through a single sensor
has bottlenecks. Recently, the nuScenes dataset [4] for ob-
ject detection and tracking in autonomous driving has been
published. The dataset contains images and MMW radar

point clouds data, and significantly promotes the researches
on deep-level radar-vision fusion based object detection in
autonomous driving. However, for small object detection on
water surfaces, the characteristics of vision and radar data
have changed, which poses new problems. To our knowl-
edge, object detection based on deep-level fusion of images
and radar in scenes of water surfaces is a relatively unex-
plored area. To increase the robustness of object detection
on water surfaces and fully utilize the MMW radar point
clouds data, in our work, we explore using radar data effec-
tively and propose a novel method, which is based on the
deep fusion of radar point clouds and RGB images for ro-
bust small object detection on water surfaces. Evaluating
on the dataset collected in the real-world scene, our model
achieves 90.05% average detection accuracy and outper-
forms the YOLOv4 [2] baseline (78.46% average accuracy)
significantly. In addition, the result of robustness evaluation
shows that our model still keeps a good performance when
a single sensor degrades.

To summarize, this paper mainly contributes to the fol-
lowing aspects:

1. A first-of-its-kind radar-vision fusion based method
that can be applied to small object detection for USVs.
Compared to conventional methods, our method can
significantly improve the detection performance.

2. A novel approach for the deep-level fusion of MMW
radar point clouds and RGB images. By putting
forward a novel representation format of radar point
clouds and a model that combines different attention
mechanisms, the proposed method achieves state-of-
the-art accuracy and shows good robustness on detect-
ing small object on water surfaces.

3. A real-time object detection system for USVs with ex-
tensive evaluations on the real-world dataset of float-
ing bottles. Besides, we release our code as well as a
radar-vision dataset for small object detection on wa-
ter surfaces to benefit the multi-modal fusion object
detection research community.

2. Related Work
2.1. Object Detection for USVs

Vision-based methods are commonly used for object de-
tection on sea surfaces for marine USVs [50]. The public
Singapore Marine Dataset [25] and the benchmark [21] built
on it have especially supported researches for vision-based
maritime object detection [34, 15, 29]. Besides, methods
based on the fusion of images and Lidar data are proposed
to increase the accuracy and robustness for object detection
of marine USVs [35, 44]. For marine USVs, large objects
like ferries and ships are the most common targets for de-
tection.
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Recently, USVs in inland waters have gained more atten-
tion due to its potential application value, for example, the
Roboat project [41, 42] which aims at autonomous trans-
portation in urban waterways using USVs. The narrow in-
land water environments raise higher requirements and pose
new challenges for object detection of USVs. The surface
reflection, high illumination, and wave interference make it
more difficult to detect small objects like small stones, foun-
tain devices and floating bottles that usually may appear in
inland waters. For USVs’ safe navigation in inland waters,
Hammedi et al. [11] evaluated common vision-based algo-
rithms on their inland object detection dataset which con-
tains categories of the riverside, vessel, etc. However, no
specific small objects are concluded in their dataset. To our
knowledge, small object detection for USVs is still a rela-
tively unexplored area.

2.2. Radar-Vision Fusion based Object Detection

In high-level autonomous driving, to improve detection
accuracy, robustness and real-time performance, methods
based on the fusion of sensors have been widely used for ob-
ject detection. While the vision system provides abundant
semantic information but can be easily affected by adverse
conditions, MMW radar can provide location and velocity
information of the target robustly under harsh weather con-
ditions. Therefore, the fusion of vision and radar is widely
used for object detection in autonomous driving. Early
radar-vision fusion is mainly based on object-level fusion.
The object-level outputs from the independent radar and im-
age detection pipeline are fused by data association methods
such as nearest-neighbor algorithm (NN) and joint proba-
bilistic data association (JPDA). Wang et al. [43] achieved
on-road vehicle detection and tracking by identifying the
vehicle inside the region of interest (ROI) of the monocu-
lar image provided by radar detection. Object-level fusion
loosely couples vision and radar information. In this case,
the robustness of the detection system can be ensured as
when one sensor fails, the other one can still work. How-
ever, the object-level fusion can bring information loss and
cannot make full use of the information from two sensors.

With the development of deep learning, increasing at-
tention has been paid to the deep level radar-vision fu-
sion (data-level and feature-level). Radar point clouds are
the final output of the typical MMW radar signal process-
ing pipeline as well as a kind of data that is easy to ob-
tain. Therefore, for deep level radar-vision fusion, most
works are based on radar point clouds. Recently, some
works [23, 16, 13, 45, 5, 22, 20, 6] explore using feature-
level fusion of images and radar for object detection in
autonomous vehicle. For feature-level fusion, it is es-
sential to extract features from the irregular and sparse
MMW radar point clouds. [20] transformed radar point
clouds into BEV images and used CNN for feature extrac-

Figure 4. The FMCW radar signal processing chain.

tion. [23, 16, 13, 45, 5, 6] projected radar point clouds to
RGB images plane as radar sparse images and then extract
features. For the fusion of RGB images and radar data,
[23, 13, 5, 20] directly fused the features extracted from the
two modalities. [16, 45, 6, 22] improved the performance of
fusion by introducing the attention mechanism. Due to the
lack of semantic information in radar data, for object detec-
tion based on deep level radar-vision fusion, radar data are
usually used as the supplementary information to images.
However, for small object detection on water surfaces, the
robustness of vision information decreases a lot. Therefore,
it is worth digging into making full use of the robustness of
MMW radar data and better utilize information provided by
radar data to improve the performance of object detection
based on sensor fusion.

3. Our Approach
3.1. MMW Radar Pipeline

Radar Point Clouds Generation. The MMW radar
system transmits frequency-modulated continuous wave
(FMCW) and captures the reflected wave. As shown in
Figure 4, the sampled beat signals are first transferred to
range-Doppler matrix (RDM) via range FFT and Doppler
FFT. Then, in the detector processing block, the cells with
stronger energy in the RDM are detected. The most com-
mon detector in the conventional FMCW signal processing
chain is constant false alarm rate (CFAR) detector, which
determines the detection threshold according to the sur-
rounding noise level and a scaling factor called a threshold
factor. Finally, for each detected cell, direction of arrival
(DOA) estimation is performed by utilizing the echo sig-
nals of multiple Rx antennas. Thus, we obtain the so-called
point clouds that are composed of a number of detected ob-
jects with different positions. The radar point cloud can be
represented as a set of points and each point can be rep-
resented as (x, y, z, v, p) where x,y,z denote the XYZ co-
ordinate data of radar point clouds, v denotes the Doppler
velocity, and p denotes the energy of the point.

Radar Point Cloud Projection. The RGB image is
a 2-dimension (2D) vertical plane while the radar data is
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Figure 5. The position compensation projection method of calcu-
lating radar distance in zr Z-axis with the camera height h, camera
pitch angle θ, and radar Y-axis distance y.

(a) (b) (c)

Figure 6. Results of different projection methods. The radar point
clouds (the green points) are projected onto the images. (a) shows
the results of direct perspective projection method. (b) shows the
results of fixing height projection method. (c) shows the results of
our position compensation projection method. It can be seen that,
our method performs better in projection accuracy than the other
two methods.

situated in a 3-dimension (3D) coordinate system. In or-
der to eliminate the differences of data formats between
two modalities and simplify the fusion learning process
[5], we transform the radar point clouds in 3D coordinate
into image-plane data in 2D coordinate through projection.
However, there are two main challenges for radar point
cloud projection of USVs on water surfaces. Firstly, unlike
Lidar point clouds, the MMW radar point cloud is inaccu-
rate in Z coordinate [16]. Besides, unlike on the road, the
camera’s view angle always changes when the USV sails
on the water. Therefore, inspired by the fixed height per-
spective projection method [5], we propose a new position
compensation projection method to tackle the problems. As
the changes of the height of camera causes relatively lit-
tle influence on the Z coordinate of point clouds compared
to the changes of camera’s view angle, we assume that the
height of camera is approximately unchanged. As shown in
5, given a fixed height of camera and the pitch angle from
IMU, we can compute a new value zr of the point in Z co-
ordinate using

zr = z1 + z2 =
h

cos θ
+ y ∗ tan θ, (1)

where h is the height of camera, θ is the pitch angle. The
projection result is shown in Figure 6. Compared to the per-
spective projection method and the fixed height projection
method, our position compensation projection method per-
forms better on water surfaces.

Radar Point Density Map. Radar point projections are

usually transformed into binary radar point map [5]. In or-
der to make better use of radar data, we propose a new radar
input format: radar point density map (RPDM) inspired by
the ground truth generation method used in crowd density
counting task [46]. Each radar point is projected onto the
image plane to generate the RPDM. RPDM ∈ R3×H0×W0 .
If there is a radar point projected at pixel ui in RPDM, we
represent it as a delta function δ(u−ui). Hence an RPDM
with N radar points can be represented as a function

F (u) =

N∑
i=1

δ(u− ui) ∗Gσ0 (u) · (ri, vi, pi)
T
, (2)

where Gσ0 is the Gaussian kernel with variance σ0, ri =√
xi

2 + yi2 + zi2) denotes the range and vi, pi denote the
Doppler velocity and energy of the ith radar point respec-
tively.

An illustration of the RPDM is given in Figure 7. Trans-
forming raw radar point clouds onto RPDM, our radar input
contains not only spatial distribution information of radar
point clouds but also Doppler velocity and energy of radar
point clouds. On the other hand, with density distribution
characterization, RPDM has more abundant gradient char-
acterization than binary radar point map [16] and can be
learned by convolutional neural network (CNN) more ef-
fectively.

3.2. Fusion Model Architecture

A strong robust small object detection model is based on
the complementary interactions of camera and MMW radar,
whose roles are adaptively adjusted or re-weighted accord-
ing to self/environmental dynamics. Based on the require-
ment of robust small object detection on the water surface
and the characteristics of MMW radar data, we propose a
Radar-Image spatiotemporal fusion network (RISFNet) to
fuse adjacent frames radar data with single frame RGB im-
age under different scales. Considering the instability of
radar towards weak reflection objects, we make use of adja-
cent frames of radar points as inputs of radar backbone. Be-
sides, inspired by most one-stage detection networks [30],
we generate image and radar feature maps of different sizes
to fuse them in order that the detection model can detect
objects of different sizes.

As seen in Figure 7, the RISFNet model mainly con-
sists of three blocks: backbone, feature fusion block, and
feature pyramid networks (FPN) [17]. For the backbone
block shown in Figure 7(a), we select two backbones to
extract features from images and RPDMs separately. The
fusion block (as shown in Figure 7(b)) utilizes temporal po-
sition encoding as well as self-attention block to fuse multi-
frame radar data and adopts global attention module to fuse
multi-scale radar and image features. Finally, the fusion
features are fed into FPN prediction block shown in Figure
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7(c) to predict detection results under three scales. Next, we
will introduce more details about the important modules in
RISFNet model.

Backbone. RGB images and RPDMs have different
characteristics, and RGB images contain richer information.
Therefore, using different backbone networks for radar and
image feature extraction can improve the efficiency of the
model. Compared with the complex weighty image back-
bone network, the radar backbone network we select is light
and is suitable for extracting features from RPDMs. As
shown in Figure 7(a), for the image backbone network, we
adopt the same backbone architecture named CSPdarknet53
as used in YOLOv4 [2]. The CSPdarknet53 network ex-
tracts image features of three different sizes. For radar fea-
ture extraction, we use the light VGG-13 backbone network
[33] and the network transforms different frames of radar
backbone inputs into radar features with the same size of
image features. The input sizes of image and RPDM are
both 416× 416× 3. The final sizes of extracted image and
radar features are 512×13×13, 512×26×26, 256×52×52.

Temporal Position Encoding. As the radar point clouds
of small targets in current frame have the characteristics of
instability and glitter, and the water clutter has random dis-
tribution in different frames, we adopt the temporal posi-
tion encoding and fuse the past frames of RPDM to enhance
RPDM in current frame. However, there are spatial position
errors between the past frames of RPDM and the RGB im-
age in current moment. An earlier radar frame has greater
errors. Thus, referring to position encoding used in natural
language processing tasks [40], we adopt a similar position
encoding method to add temporal information of radar data.
Then, the feature map of the tkth frame radar data Ftk with
temporal encoding is computed as:

Ftk = Ftk · sin
(
(n+ k)/n

)
, (3)

where n is the total number of radar frames, tk is the tem-
poral order position of radar frames, k ∈ [0,−n+ 1].

Self-Attention Block. The concept of self-attention was
originally designed for natural language processing and im-
age transformation task [9]. Similar to a self-filtering pro-
cess that autonomously sieves informative features, self-
attention block lets individual sensor branches adapt them-
selves first and is usually used as a promising way to con-
trol the information flow and enable model adaptation [6].
As we all know, radar data contains points of real target
and clutter points. The clutter points lead to false object
information and can cause errors in detection results. In
this case, we need to enhance real target points and weaken
clutter points before fuse radar data with RGB images. Be-
sides, self-attention block is also used to learn the radar
points’ relationship of surroundings With several inde-
pendent multi-layer perceptron (MLP) blocks, radar fea-
ture maps of different frames are separately processed into

F
′

tk
∈ R1×H×W , and then all radar feature maps in differ-

ent frames are merged into a fusion radar feature Fradar by
concatenation operation:

F
′

tk
= c

(
Ftk +MLP k (Ftk)

)
(4)

Fradar = cat
(
F

′

t−n+1
, F

′

t−n+2
, · · · , F

′

t0

)
, (5)

where Ftk ∈ RC×H×W denotes the feature map of the tkth
frame radar data, C, H , W denote the channel, height,
and width of the feature map respectively (the values of
C, H , W are different under different feature scales), and
MLP k is the independent multi-layer perceptron for Ftk ,
c ∈ RC/n×1×1 denotes convolution module to reduce chan-
nel before merge, cat is concatenation operation.

Global Attention Block. The end goal of attention
block is to realize adaption through complementary sen-
sor interactions. Although classical fusion algorithm (e.g.,
Bayesian filtering or fixed-lag smoothers) can realize such
an adaptation by incorporating physical models into the al-
gorithm design, they perform hard in complex nonlinear
feature space and require better design. Multilayer global
attention network observes all sensor channels and better
exploit complementary sensor behaviors, which can im-
prove the robustness of fusion model [47]. Therefore, in
contrast to concatenate image feature Fimage ∈ RC×H×W

and radar feature Fradar ∈ RC×H×W into a “big” vector
directly, we adopt global channel attention block [12] to en-
dow a multimodal fusion object detection model with the
ability to adapt to uncertain environment. When the camera
or radar fails and the model gets poor sensor data, the global
attention block will adjust camera or radar fusion to reduce
the decline of the model performance. As shown in Figure
7(e), we use a shared MLP block to generate fusion features
Ffusion from image features Fimage and radar features Fradar.
In short, the global channel attention fusion is computed as:

Ffusion = σ

(
W1τ

(
W0

(
MaxPool (Fimage)

))
+ W1τ

(
W0

(
MaxPool (Fradar )

)))
,

where σ denotes the sigmoid function and τ denotes the
ReLU function. MLP weights W0 ∈ RC/16×1×1 and W1 ∈
RC×1×1 are shared for both image and radar inputs.

4. Experiments
4.1. Dataset

Floating waste cleaning is one of the most popular appli-
cations for USVs and plastic wastes like floating bottles are
the common targets for cleaning USVs’ detection system.
The plastic bottles have small size and low RCS, which can
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Figure 7. The RISFNet model architecture.

better present the challenges in small object detection on
water surfaces. Therefore, we choose the floating bottle as
the detection target to test our model.

The dataset we use for training and evaluation are col-
lected in the real-world inland waters including rivers and
lakes. One camera collects 1280 × 720 RGB images at 15
Hz. The IMU collects pose information at 10 Hz. For the
MMW radar, we use a Texas Instrument 77 Ghz FMCW
radar AWR1843. The maximum range of radar is set as 30
m and the range resolution is 0.04 m. The maximum veloc-
ity of radar is set as 4.10 m/s and the velocity resolution is
0.03 m/s. The radar frame rate is also 10 Hz. Data from dif-
ferent sensors are well synchronized by using the recorded
timestamps.

We gathered 12000 frames of synchronized images and
radar data in total. To avoid diminishing return and over-
fitting of the model caused by the high-similarity succes-
sive frames, we firstly down-sampled the data and finally
selected 1895 frames of radar data and RGB images. The
data are annotated manually by using the LabelImg tool [39]
and are verified repeatedly to ensure the annotation quality.
There are 3164 labeled objects in total. According to com-
monly used definition in Coco dataset [18], the objects that
occupy area smaller than < 32 × 32 pixels are regarded as
small objects. In our dataset, there are 1946 small objects
in total.

4.2. Implementation and Details

The dataset is divided into the training set and the test
set according to the ratio of 4:1. During training, multi-
scale data augmentation methods such as image resizing,

image placing, and image left-right flipping are used for our
training images and RPDMs, and we also randomly adjust
the hue saturation value of images.

In our experiment, we adopt past three radar frames data
to generate radar backbone input RPDM. For RPDM gener-
ation, we set the Gaussian kernel size as 101× 101 square,
the variance σ0 is 30. In order to keep feature scales consis-
tent between modalities, we scale each modality by its mean
and standard deviation calculated over the training set. We
use the same loss function as that in YOLOv4 [2], which
contains location CIoU loss [48], confidence loss and clas-
sification loss.

In the training, we use the model CSPDarknet53 pre-
trained from VOC datasets [10] for image backbone. Our
implement is based on PyTorch and trained on 4 Nvidia
GTX 1070 GPUs with initial learning rate set to be 1e−3

and batch size set to be 4. The network is trained for 100
epochs using the ADAM optimizer [14] with weight decay
of 5 × 10−4 and the mini-batch StepLR descent algorithm
with step-size = 1, gamma = 0.9. During testing, the aver-
age running speed of our RISFNet model in embedded de-
vice Nvidia Jeston TX2 is about 6 frames per second (FPS).
As the speed of USVs is much lower than autonomous vehi-
cles, our model can meet the real-time requirement of object
detection on water surfaces.

5. Quantitative Evaluation

5.1. Comparison with Single Modality

To verify the improvement in detection accuracy using
the fusion of two modalities, we compared our method with
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Table 1. Results on the real-world dataset using our method and
methods based on single modality.

Modality Method AP 35 AP 50

Image Faster-RCNN [31] 77.35% 57.58%
YOLOv4 [2] 78.46% 57.04%

EfficientDet [37] 78.62% 58.52%
FCOS [38] 68.71% 58.56%

Radar Danzer et al.[8] 25.44% 18.81%
VoteNet [26] 36.98% 20.06%

Image & Radar RISFNet (ours) 90.05% 75.09%

* AP 35 and AP 50 denote the average precision with the
IoU threshold at 35% and 50% respectively.

Table 2. Results on the real-world dataset using our method and
other radar-vision fusion models.

Method AP 35 AP 50

CRF-Net [23] 79.63% 57.74%
Li et al. [16] 85.28% 64.64%

RISFNet (ours) 90.05% 75.09%

methods using single modality on the real-world dataset. As
shown in Table 1, we compare our RISFNet with 4 methods
based on RGB images and 2 methods based on radar point
clouds. The training and test set used in all of the baseline
methods and our method are the same. As for the training
settings for the baseline methods, we use the recommended
training settings with little optimization. The result shows
that, compared to the methods that are based on a single sen-
sor, there is a significant improvement in the performance of
small object detection using fusion of vision and radar data.

5.2. Comparison with other fusion models.

To verify the improvement in detecting small objects us-
ing our method compared to other radar-vision fusion based
methods used in autonomous driving, we test the perfor-
mance of the methods presented in [23] and [16] on our
dataset using the public codes. The result in our dataset
is shown in Table 2. Besides, with reference to the recent
work, we also test our method on the nuScenes dataset [3].
We compare our method with [16] using the same mini-
dataset implement as used in their work. The mean average
precision (mAP) of [16] 24.3%, and the mAP of our method
is 28.25%. The result indicated that our approach also per-
forms well under the real-world scenes other than in inland
waters, such as autonomous driving on road.

(a) threshold=6 (b) threshold=11 (c) threshold=20

Figure 8. The figures show the radar point clouds of a same frame
under different CFAR thresholds projected onto the images.

(a) (b)

Figure 9. (a) The figure shows the average precision (AP) under
different radar CFAR detector thresholds. The AP of our fusion
model is higher than AP of the model that only relies on visual
information despite the radar degradation. (b) The figure shows
the AP of our model and the vision baseline under different im-
age brightness. Our model achieves a higher accuracy and shows
better robustness when image degrades.

5.3. Robustness Analysis

The robustness of the method is essential to the deep fu-
sion of multiple sensors. It is expected that when one sensor
degrades or even becomes completely unusable, the perfor-
mance of the fusion model should be better than using a
single sensor. Therefore, we test how the model performs
under the conditions that radar or image degrades respec-
tively. In our experiment, we still use the model trained on
normal dataset.

Radar Degradation. For radar point clouds, parame-
ters of the detector used in radar signal processing pipeline
are vital. Usually, the threshold of the detector is adjusted
to meet the requirements of different tasks and application
scenes. A higher threshold usually leads to sparser point
clouds of valid targets. If the threshold is too high, the tar-
get will not be detected, which means that the radar data
contribute little in sensor fusion. On the contrary, if the
threshold is too low, there will be more water clutter points,
which lead to interference for the detection system. There-
fore, the robustness analysis is carried out by changing the
threshold of radar CFAR detector (as shown in Figure 8).
The result is shown in Figure 9(a). It can be seen that, when
radar data degrades (less valid target points or more clut-
ter points), our model still out-performs the model that only
relies on visual information.

Image Degradation. For RGB images, we mainly con-
sider the influence caused by the changes of lighting condi-
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Table 3. The detection accuracy of the model using different input
formats of radar data.

Radar point cloud representations AP 35 AP 50

RPDM (ours) 90.05% 75.09%
RPDM(only density map) 82.48% 63.93%

RPDM(only range density map) 88.80% 72.20%
RPDM(only velocity density map) 83.67% 64.01%
RPDM(only energy density map) 84.59% 66.85%

Point Clouds (PointNet [27]) 87.12% 60.06%
Point Clouds (PointNet++ [28]) 87.64% 69.55%

Radar sparse image [5] 87.12% 69.58%
Line shape radar image [16] 85.15% 66.48%

tions under real-world outdoor environments. The result is
shown in Figure 9(b). When changing the brightness of in-
put RGB images, the accuracy of the model decreases, but
is still higher than the accuracy of the model using a only
the camera.

Platform and Environment. For the real-world appli-
cations, we evaluate the robustness of the proposed method
under two conditions, the increase of USV’s speed and the
water wave interference. For the increase of USV’s speed,
during our data acquirement, the max speed of our USV
is 2 m/s. We simulate higher speed (4m/s) through down-
sampling radar data frame rate. The result of our method is
89.98% (AP 35). For the water wave interference, we test
our model on wave scene data in our dataset separately and
the result is 89.22% (AP 35).

5.4. Ablation Study

Input Radar Data Format. We evaluate how differ-
ent input formats of radar point clouds influence the perfor-
mance of the model. For the feature extraction method for
directly using 3D point clouds, we use the PointNet [27] and
PointNet++ [28]. It can be seen from Table 3 that the pro-
posed RPDM can better represent the information of radar
point clouds.

Model Architecture. First, for the backbone block, we
test extracting features from radar data and images sepa-
rately as well as using one backbone to extract features from
concatenated data of two sensors. The result is shown in Ta-
ble 4. It can be seen that extracting features from radar data
and images separately is more effective. Besides, we evalu-
ate the performance of the model using only a single frame
of radar data. As shown in Table 4, the temporal position
encoding and the self-attention block are effective for en-
hancing radar data. Finally, we evaluate the performance
of the model without introducing the global attention mod-
ule to test its influence. The result shows that, the global
attention module contributes a little to the detection accu-

Table 4. Results of ablation study on model architecture.
Ablation ways AP 35 AP 50

RISFNet (ours) 90.05% 75.09%
Use only one backbone 82.81% 63.68%

Use a single frame radar data 88.34% 68.83%
Not use Position encoding 89.72% 72.24%

Not use Self attention 88.72% 71.38%
Not use Global attention 88.95% 70.40%

Figure 10. Detection results of our approach on test dataset: The
blue boxes are groundtruth, the green boxes are the detection result
with IOU threshold 0.5. Our approach shows good performance on
small object detection in inland waters.

racy. However, when we evaluate the model on degraded
sensor data, the AP 35 of the model without global attention
module is 87.34% while the AP 35 of the model with the
module is 90.05%, which shows that the global attention
module can improve the robustness of the model.

Visualization. The visualization of the detection result
is shown in Figure 10. As can be seen, our approach shows
strong robustness in challenging situations such as: rivers
with waves (radar degradation situation) which make radar
data contain cluster points from water as well as the bright
or dark scenes (image degradation situation) under different
weather and lighting conditions.

6. Conclusion
In this paper, we have studied a relatively unexplored

task for USVs in inland waters: small object detection. We
proposed a novel method for representing the radar point
clouds efficiently as well as a new model for object de-
tection based on radar-vision fusion. Our model utilizes a
deep-level fusion of RGB images and multi-frame MMW
radar data at multi-scale. In the experiment based on the
real-world floating bottle detection dataset, our method not
only achieves significant improvements in detection accu-
racy compared to the vision-based object detection methods
but also shows good robustness when a single sensor de-
grades. The proposed method can be applied to autonomous
driving and mobile robots for robust radar-vision fusion
based object detection. In the future, we plan to further
extend the water surface small object dataset we released.
Sensors like Lidar will be added to support researches on
object detection using fusions of various modalities and to
further improve the accuracy and robustness of the small
object detection system.
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