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Abstract

In this paper, we present InSeGAN, an unsupervised
3D generative adversarial network (GAN) for segmenting
(nearly) identical instances of rigid objects in depth im-
ages. Using an analysis-by-synthesis approach, we design
a novel GAN architecture to synthesize a multiple-instance
depth image with independent control over each instance.
InSeGAN takes in a set of code vectors (e.g., random noise
vectors), each encoding the 3D pose of an object that is rep-
resented by a learned implicit object template. The genera-
tor has two distinct modules. The first module, the instance
feature generator, uses each encoded pose to transform the
implicit template into a feature map representation of each
object instance. The second module, the depth image ren-
derer, aggregates all of the single-instance feature maps
output by the first module and generates a multiple-instance
depth image. A discriminator distinguishes the generated
multiple-instance depth images from the distribution of true
depth images. To use our model for instance segmentation,
we propose an instance pose encoder that learns to take
in a generated depth image and reproduce the pose code
vectors for all of the object instances. To evaluate our ap-
proach, we introduce a new synthetic dataset, “Insta-10,”
consisting of 100,000 depth images, each with 5 instances
of an object from one of 10 classes. Our experiments on
Insta-10, as well as on real-world noisy depth images, show
that InSeGAN achieves state-of-the-art performance, often
outperforming prior methods by large margins.

1. Introduction
Identifying (nearly) identical instances of objects is a

problem that is ubiquitous in daily life. For example, when
taking a paperclip from a container, choosing an apple from
a box, or removing a book from a library shelf, humans
subconsciously solve this problem because we have an un-
derstanding of what the individual instances are. How-
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Figure 1. Segmentations and single instances disentangled by In-
SeGAN on two multiple-instance depth images (Left: Nut with
5 instances; Right: Cone with 10 instances—challenging). In-
SeGAN needs only unlabelled multiple-instance depth images for
training. For each input image, the hallucinated depth image (“ren-
dered image”) and the single instances disentangled from the depth
image (“rendered single instances”) are shown. We use depth
pooling (Z-buffering) and thresholding to produce instance seg-
mentation (“segmentation”) from the generated single instances.
Note that our method learns the shape of the object automatically.

ever, when robots are deployed for such a picking task, they
need to be able to identify the instances for planning their
grasp and approach [30, 2]. Such a problem is common-
place in large manufacturing, industrial, and agricultural
contexts [43, 42, 40, 16, 20]. Examples include an indus-
trial robot picking parts from a bin, a warehouse robot pick-
ing and placing packages into a delivery truck, or even a
fruit-picking robot picking identical fruits in a supermarket.
In these scenarios, the robot’s owners often have no access
to a 3D model of the object to be picked, and annotating in-
dividual instances for training can be costly, inconvenient,
and unscalable. However, they may have access to a large
number of unlabeled images each containing multiple in-
stances of the object, such as depth images of boxes as they
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travel on a conveyor belt from production to a packaging
section. Our goal in this paper is to build an unsupervised
instance segmentation algorithm using unlabeled depth im-
ages, each containing multiple identical instances of a 3D
object.

Our problem setting is very different from the instance
segmentation setups that are typically considered, such
as that of Mask-RCNN [12], 3D point cloud segmenta-
tion [28], scene understanding [9], and others [10, 21, 25].
While these methods usually consider segmenting instances
from cluttered backgrounds, our backgrounds are usually
simple; however, the foreground instances can be heav-
ily (self-)occluded or may vary drastically in appearance
across their poses (see Fig. 1 for example). Prior methods to
solve our instance segmentation problem use 3D CAD mod-
els [18], fit the 3D instances using primitive shapes [11],
or use classical image-matching techniques to identify the
instances [4, 33]. More recently, some have attempted to
solve this task using deep learning approaches. For ex-
ample, in Wu et al. [41], a 3D rendering framework is
presented that is trained to infer the segmentation masks;
however, their losses are prone to local minima. In the
recent IODINE [9], MONET [5], and Slot Attention [29]
deep models, the focus is on RGB scene decomposition,
and may not generalize to segmenting foreground instances
from each other.

In this paper, we present a general unsupervised frame-
work for instance segmentation in depth images, which we
call InSeGAN. Our model is inspired by a key observation
made in several recent works (e.g., [23, 32]) that random
noise that is systematically injected into a generative adver-
sarial network (GAN) can control various attributes of the
generated images. A natural question then is whether we
can generate an image with a specific number of instances
feeding in the respective number of random noise vectors.
If so, then instance segmentation could be reduced to sim-
ply decoding a test image into several noise vectors, each of
which generates its respective instance. InSeGAN imple-
ments this idea using a combination of a 3D GAN and an
image encoder within an analysis-by-synthesis framework,
illustrated in Fig. 2. The training data consist of an unla-
beled collection of depth images, each image consisting of
n instances of a rigid object. InSeGAN learns an implicit
3D representation of the object shape and a pose decoder
that maps random noise vectors to 3D rigid transformations.
The generator has two stages. In the first stage, the decoded
3D transformation is applied to the implicit object template,
which an instance feature generator converts into a feature-
map representation of a single object instance. After the
first stage generates n such instance representations from
n random noise vectors, the second stage aggregates these
instance representations and feeds them into a depth image
renderer to produce synthetic depth images that are simi-

lar in distribution to the training images, as enforced via a
discriminator. To achieve instance segmentation, we train
an encoder that takes as input a generated multiple-instance
depth image and encodes it into a latent space in which it
must match the random noise vectors that originally gener-
ated the images in the GAN stream, thus closing the genera-
tion cycle. At inference time, a given depth image first goes
through the encoder to get its set of single-instance latent
vectors; these are then fed into the GAN to synthesize each
instance (each image segment) individually. Results on two
example test images are shown in Fig. 1.

While the task of instance segmentation has been ap-
proached in various contexts, there is no existing dataset
that encompasses this task in the context we are after in
this paper. For example, images in standard datasets such
as MSCOCO [27] and CityScapes [6] contain objects of
several different classes and background, which may not
belong to a common latent space. We introduce a new
dataset, dubbed “Insta-10,” consisting of 10 object classes
and 10,000 depth images per class. Each image was ren-
dered using a physics engine that simulated a bin into which
5 instances of an object are randomly dropped, resulting in
arbitrary poses of the objects in the rendered depth images.
The instances can have significant occlusions and size vari-
ations (due to varying distances from the camera), making
the task very challenging. We use this dataset to compare
our scheme with closely related methods. We also apply
our instance segmentation approach to a real-world dataset
of blocks in noisy depth images. Our results show that In-
SeGAN outperforms all of the prior methods by a signifi-
cant margin on most of the object classes.

We now summarize this paper’s primary contributions:
• We propose InSeGAN, a 3D GAN that learns to gener-

ate multiple-instance depth images from sets of random
noise vectors in an unsupervised manner.
• We propose a two-stage generator structure for In-

SeGAN, in which the first stage generates a feature map
representation of each instance, and the second aggre-
gates these single-instance feature maps and renders a
multiple-instance depth image.
• To enable segmentation, we propose an instance pose en-

coder that encodes a multiple-instance depth image into
a set of latent vectors that would generate it. To train this
encoder, we introduce novel cycle-consistency losses.
• We have created a new large-scale and challenging

dataset, Insta-10, which we are making public to ad-
vance research on this topic.
• Our experiments on synthetic and real datasets demon-

strate that InSeGAN achieves state-of-the-art perfor-
mance. On the Insta-10 dataset, InSeGAN shows a
relative improvement of nearly 35% against the recent
method of Wu et al. [41] and nearly 9.3% against Lo-
catello et al. [29].

10024



2. Related Work
In this section, we review some of the closely related

approaches to our method.
Multiple Objects and Instance Segmentation: In
IODINE [9], a variational generative model is proposed
for instance segmentation of RGB images using an itera-
tive refinement of latent vectors to characterize the object
instances, similar to an expectation maximization (EM) al-
gorithm. Their key idea is to use a fixed number of latent
vectors to describe the scene and iteratively infer the asso-
ciation of these vectors to the instances, an approach that
can be unstable for complicated scenes (such as the depth
images we consider in our dataset). In Slot Attention [29],
abstract scene components, called slots, are learned for each
instance in an unsupervised manner, but they do not account
for the 3D structure of the scene or the instances. In Liao
et al. [26] and O3V-voxel [13], multiple object instances
are created in an adversarial setting through image compo-
sition. Both of these methods produce a 3D feature latent
space—the former a 2D primitive of the 3D object and the
latter a 3D voxel representation—for each object instance.
Using a fixed number of instances, [26] composes the scene
by projecting the primitive to create depth and alpha maps.
In [13], the authors propose a scheme to generate a video se-
quence to extract the multiple instance images. They follow
a framework similar to [5, 9], where the initial image is gen-
erated from a sequence of real images, through an encoder.
However, they generate a feature voxel representation for
each object. At each time instance, each object is rendered
and they are composed together.

There are prior approaches that tackle the multiple in-
stance segmentation problem for 2D and 3D images in a
supervised manner. Most of these methods, e.g., [12, 34],
first extract Regions of Interest (RoI) from the input, subse-
quently classifying the object in each selected region. Mask
RCNN [12] expands Faster RCNN [35] by creating a new
segmentation branch to classify per-pixel object segments.
DeepMask [34] learns those RoIs and their underlying
masks, which are then passed through the Fast RCNN [8]
for classification. Along similar lines, point cloud segmen-
tation has been explored in several recent works. For exam-
ple, [45, 38] propose a 2D architecture. GsPN [45] proposes
a network to generate shapes with their specific segmenta-
tions and bounding boxes. SGPN [38] generates a similarity
matrix and group proposals to create independent clusters
for classification. In contrast to these popular methods for
instance segmentation, we differ in that we approach the
problem from an unsupervised perspective.
3D Disentanglement: Several recent works have proposed
approaches for disentangling 3D attributes using deep learn-
ing via implicit or explicit representations. Deep Vox-
els [37] proposes a synthesis approach to learning an im-
plicit 3D representation of the object. The method learns

to synthesize novel perspectives of an object from a learned
voxel feature volume. From these voxels, one may create an
explicit 3D model of the object. However, their model is not
generative and requires camera parameters. HoloGAN [32]
proposes a generative method that creates an implicit 3D
volume of single instances. It first learns a 3D representa-
tion, which it transforms using a target pose, then projects
to 2D features and renders to a final image. Our method
is inspired by HoloGAN, but we go beyond it by deriving
a scheme for disentangling the object instances. Another
related work is PlatonicGAN [14], which creates a 3D rep-
resentation of an object while generating different unseen
views via adversarial learning. However, as in HoloGAN,
this method is limited to a single rotated object.

The prior work that is most similar to ours is Wu et
al. [41], which proposes to disentangle object instances and
their 6D poses in an unsupervised manner, concurrently
learning an explicit 3D point cloud template of the object.
While our objective is similar, our proposed framework
is completely different. The framework of [41] requires
explicit modeling of point occlusions and computes point
cloud alignments using Chamfer distance, which make the
scheme computationally expensive. We avoid these chal-
lenges by using depth images, and we introduce a discrimi-
nator that implicitly learns these steps efficiently.

3. Proposed Method
Let X be a given dataset, where each x ∈ X is a depth

image consisting of n instances of a rigid object. Note that
the same rigid object is depicted in all of the images in X .
To simplify the notation, we will use X to also character-
ize the distribution of x. Further, for clarity of presentation,
we assume that n is known and fixed for X , however note
that it is straightforward to extend InSeGAN for an arbitrary
number of instances by using training images with varying
numbers of instances (see Supplementary materials for de-
tails). Our goal in InSeGAN is to learn a model only from
X (without any labels) such that at test time, when given
a depth image x, the learned model outputs the segmenta-
tion masks associated with each instance in the depth image.
In the next section, we provide a brief overview of the In-
SeGAN architecture, followed by a detailed look into each
of its components.

3.1. InSeGAN Overview
The basic architecture of InSeGAN follows a standard

generative adversarial framework, however with several
non-trivial twists. It consists of a generator moduleG that—
instead of taking a single noise vector as input (as in a typ-
ical GAN)—takes n noise vectors, {z1, z2, · · · , zn}, each
z ∈ Rd ∼ N(0, Id), and generates a multiple-instance
depth image as output. Thus, G : Rd×n → X̂ , where X̂
is used to signify the distribution of the generated depth im-
ages, with the limit X̂ → X when G is well-trained. We
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Figure 2. A schematic illustration of the training scheme in InSeGAN. There are three distinct control flows in the framework, as denoted
by the black, solid red, and dashed red arrows. The black arrows capture the generative process producing a multiple instance depth image,
while the solid red arrows depict the scheme to encode a generated depth image to its instances. The dashed red arrows depict the control
flow to train the Instance Encoder via using the encoded latent vectors to re-create the already-generated image.

denote the set of noise vectors by the matrix Z ∈ Rd×n and
the distribution of Z as Z = {N(0, Id)}n. Next, a discrimi-
nator module D is trained to distinguish whether its input is
an image generated by G or a sample from the data distri-
bution X . The modules G and D are trained in a min-max
adversarial game so that G learns to generate images that
can fool D, while D in turn learns to distinguish whether
its inputs are real or fake; the optimum occurs when D can-
not recognize whether its input is from G or X . Apart from
the generator and discriminator modules, we also have an
instance pose encoder module, E, that is key to achieving
instance segmentation. Specifically, E : X̂ → Rd×n takes
as input a generated depth image, and learns to output vec-
tors that match the latent noise vectors that generated the
input depth image. The essence of InSeGAN is to have the
generator G produce depth images for which the instance
segments are implicitly known (through Z), so that E can
be trained on them to learn to disentangle the instances. In
the limit as X̂ → X , as guided by the discriminator D, the
encoderE will eventually learn to do instance segmentation
on real images fromX . An overview of the InSeGAN train-
ing pipeline is shown in Fig. 2. Next, we will describe each
of the modules in detail.

3.2. InSeGAN Generator
The key to InSeGAN is to have the generator G accom-

plish two tasks jointly: (i) to produce depth images x̂ that
match the input image distribution X , and (ii) to identify
each object instance in the generated image x̂. To this end,
we note that sans the other instances, each instance is an
independent depth rendering of an object in an arbitrary 3D
pose. A multiple-instance depth image may be generated by

merging the individual instances, followed by depth-based
inter-object occlusion reasoning.

Motivated by the above insight, we propose to separate
the generator G into two distinct modules: (i) an instance
feature generator that generates feature maps for single
object instances, and (ii) a depth image renderer module
that aggregates the single-instance feature maps and ren-
ders the multiple-instance depth image. As the instances
are assumed to be of the same object, we propose to sample
each noise vector z ∈ Z from the same latent distribution,
z ∼ N(0, Id). Further, our system learns an implicit 3D ob-
ject model (template) that, when geometrically transformed,
produces the varied appearances of the instances.

Our first step in the generator pipeline is to produce 6-
DOF (6 degrees of freedom) 3D rigid geometric transforms
that can be applied to the implicit object template to pro-
duce a transformed implicit model representing each in-
stance. To this end, each noise vector z ∈ Z is converted
to an element of the special Euclidean group

(
SE(3)

)
us-

ing a pose decoder module (see Fig. 2), which is a fully
connected neural network that is denoted Gp : Rd → R6.
Given a noise vector z, Gp produces a corresponding axis-
angle representation; this is next converted to an element
in the Special Euclidean group, SE(3). We denote this op-
erator by Λ : R6 → SO(3)×R3, i.e., Λ produces a ro-
tation matrix R ∈ SO(3) (the special orthogonal group)
and a translation vector t ∈ R3. A natural question in this
context is why we do not sample the transformation matrix
directly (as in, e.g., HoloGAN [32]). This is because, as
will be clear shortly, we need to match the output of the
instance pose encoder module E with the pose representa-
tions of the instances, and having a Euclidean embedding

10026



for these representations offers computationally more effi-
cient similarity measures than directly using a rotation ma-
trix (or axis-angle) parameterization of the underlying non-
linear geometric manifold [17, 46].

Next, we use the transformation matrix thus created, i.e.,
Λ(Gp(z)), to geometrically transform an implicit shape ten-
sor T ∈ Rh×h×h×k (we use h=4, k=128); this param-
eter tensor is shared by all the instances and will, when
trained (with the other modules in the pipeline), implicitly
capture the shape and appearance of the object. Similar
to HoloGAN [32], we use a Spatial Transformer Network
(STN) [19] to apply the geometric transform to this implicit
template. The transformed T is reshaped to Rkh×h×h and
projected from 3D to 2D using a single-instance projection
module, Gs, to output x̂f ∈ Rc×h×h, which captures the
feature map representation of an instance. The above steps
can be formally written as:

F(z) := Gs

(
STN

(
Λ
(
Gp (z)

)
, T
))
. (1)

Next, we propose to combine these feature maps by
average-pooling them, then render a multiple-instance
depth image using a rendering module Gr, as follows:

x̂ = G(Z) := Gr(F̄) where F̄ =
1

|Z|
∑
z∈Z

F(z), (2)

where x̂ denotes a depth image generated by G. This gen-
erative control flow is depicted using black arrows in Fig. 2.

3.3. InSeGAN Discriminator
As in standard GANs, the task of the discriminator D

is to decide whether its input comes from the natural dis-
tribution of multiple-instance depth images that produced
the training set (i.e., X ) or is synthesized by our genera-
tor G (i.e., X̂ ). Following standard architectures, D con-
sists of several 2D convolution, instance normalization, and
LeakyRELU layers, and outputs a classification score in
[0, 1]. The objectives for training the discriminator and gen-
erator, respectively, are to minimize the following losses:

LD := −Ex∼X log(D(x))− EZ∼Z log (1−D(G(Z)) ,

LG := −EZ∼Z logD(G(Z)). (3)

The task for our discriminator is significantly different from
that in prior works, as it must learn to: (i) count whether the
number of rendered instances matches the number of in-
stances in the data distribution, (ii) verify whether the ren-
dered 3D posed objects obtained via transforming the still-
being-learned object template T capture the individual ap-
pearances (which are also being learned) of the instances,
and (iii) whether the layout of the rendered image is simi-
lar to the compositions of the instances in the training depth
images. Fortunately, with access to a suitable dataset, D
can automatically achieve these desired behaviors when ad-
versarially trained with the generator.

3.4. InSeGAN Instance Pose Encoder
We now introduce our instance pose encoder module,

E, which is the key to instance segmentation. The task of
this module is to take as input a multiple-instance depth im-
age x̂, produced by G, and reconstruct each of the noise
vectors in Z (encoding the instance poses) that were used
to generate x̂. The encoder outputs Ẑ, a set of latent vec-
tors. Indeed, as x̂ is produced by aggregating n indepen-
dently sampled instance appearances of the object, invert-
ing the process amounts to disentangling x̂ into its respec-
tive instances. Thus, when the generator is trained well,
i.e., x̂ ≈ x, we will eventually learn to disentangle each
instance in a ground truth image. While this idea is concep-
tually simple, implementing it practically is not straightfor-
ward. There are four main difficulties: (a) the input Z to
the generator and the output Ẑ of E are unordered sets,
which need to be aligned before comparing them; (b) the
average pooling operator in (2) aggregates several feature
maps into one—an operation that loses the distinctiveness
of each of the instance feature maps; (c) the depth renderer
Gr may remove occluded parts of the instances, thus posing
ambiguities when mapping them back to the noise vectors;
and (d) the pose encoder Gp projects its noise input to the
space of rigid body transforms, an operation that is inher-
ently low-rank and nonlinear. We tackle these challenges
via imposing losses on the encoder so that it learns to invert
each module in the generator. We decompose the encoder
as E = Gs

−1 ◦ Gr−1, consisting of: (i) an image derenderer
Gr

−1 that takes a depth image and produces feature maps,
and (ii) an instance decoder Gs

−1 that takes the feature maps
from Gr

−1 and produces Ẑ.
Alignment and Reconstruction: To tackle our first diffi-
culty, (a), we propose to align the sets Z and Ẑ before com-
puting a reconstruction loss on them. Specifically, we seek
to find an alignment matrix π ∈ Π(Z, Ẑ), where Π denotes
the set of all such alignments (i.e., permutations) on its in-
puts, such that the reconstruction loss is minimized:

LaE=
∥∥Z−π∗(Ẑ)

∥∥2
, where π∗= arg min

π∈Π(Z,Ẑ)

OT(π,D(Z, Ẑ)),

(4)
where D denotes the pairwise distances between the
columns in Z and Ẑ, and OT is some suitable match-
ing scheme. We use a general purpose optimal transport
(IPOT [44]) scheme to implement the alignment, which re-
turns a permutation matrix π∗ that is used to align the matri-
ces before comparing them using the `2 distance.1 We show
this encoder control flow using solid red arrows in Fig. 2.
Intermediate Reconstruction: To tackle difficulties (b)
and (c) in the encoder design, which involve E learning to

1We may also use a Hungarian matching scheme [22] to implement
OT if the number of data instances is small, which is usually significantly
faster than optimal transport methods. Note: our experiments suggest that
a greedy way to align is not useful—see Section 4.1.
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Figure 3. InSeGAN inference pipeline (see Sec. 3.5 for details).

invert the depth renderer, we use the output from the deren-
derer sub-module Gr

−1 in E. Specifically, Gr
−1 is forced to

reconstruct the average-pooled feature map F̄ in (2). Let us
denote this loss by LiE =

∥∥F̄ −Gr−1
(x̂)
∥∥2

.
Pose Decoding: Although one could apply the above inter-
mediate feature decoding strategy even to the pose decoder
Gp, it would not be very efficient to compare its output
Λ(Gp(Ẑ)) to the rigid transforms produced during the gen-
erative process. This is because the geometric matrix that
Λ produces involves a rotation matrix, and thus optimiz-
ing would ideally require Riemannian optimization meth-
ods in the space of SO(3) [1], which is not well suited for
standard optimization schemes such as Adam [24]. Further-
more, there may be several different geometric transforma-
tions that could achieve the same output [46]. To avoid this
technicality, we propose to learn the rigid transform indi-
rectly, by avoiding exact reconstruction of the transform and
instead asking it to have the desired outcome in the genera-
tive process. Specifically, we propose to use the Ẑ produced
by the encoder, and use it as a noise matrix to produce a
depth image G(Ẑ); this depth image is then compared with
the depth image generated in the previous pass using Z. The
following loss, LpE , captures this idea:

LpE = ‖G(Z)−G(E(x̂))‖1 . (5)

The above control flow is illustrated in Fig. 2 by the dashed
red arrows that go from noise vectors ẑ through the pose
decoder and over to the depth renderer, i.e., the output ofG.
Encoder Loss: We combine the above three losses when
training the parameters of the encoder module (see the Sup-
plementary Material for details on its architecture):

LE = LaE + λ1LiE + λ2LpE , (6)

where the λ’s provide weights to each type of loss.2 When
backpropagating the gradients on the encoder losses, we fix
the generator parameters, as otherwise they will co-adapt
with the encoder parameters, making training unstable.

2We use λ1 = λ2 = 1 in all our experiments.

Learning the Implicit Object Template: The template is
implemented as a weight tensor, learned via backpropaga-
tion gradients from the above loss. During training, back-
propagation reverses all of the arrows in Fig. 2.

3.5. InSeGAN Inference
At inference time, we assume to be given only a depth

image consisting of multiple instances of the rigid object;
our goal is to segment the instances and render each instance
separately, while producing an instance segmentation on the
input. To this end, our inference pipeline resembles the gen-
erative process, but with some important differences as il-
lustrated in Fig. 3. Specifically, for inference we input the
multiple-instance depth image to the instance pose encoder
module E, which produces a set of latent vectors Ẑ. Each
ẑ ∈ Ẑ is input individually into the trained single-instance
generator Gs, the output of which is rendered using Gr to
form a single-instance depth image that corresponds to ẑ.
We emphasize that in the inference phase, the depth image
renderer sits within the single-instance generation phase—
this contrasts with the training setting, in which the renderer
takes as input the aggregated feature tensor F̄ . Once the
single instances are rendered, as shown in Fig. 3, we use
a depth-wise max pooling on these instance depth images
for inter-instance occlusion reasoning, followed by thresh-
olding (and applying basic image filters to) the single in-
stances. Thresholding removes any bias introduced during
depth rendering. To produce the pixel-wise segmentation,
we use the index of the generated instance that is selected
for a given pixel.

3.6. Training Pipeline
We train our full framework, including the InSeGAN

generator G, discriminator D, and Encoder E, by minimiz-
ing the sum of all the losses given by:

L = LD + LE + LG. (7)

The gradients for the various modules are computed using
PyTorch autograd. We use Adam for training all our mod-
els, with a learning rate of 0.0002, β1 = 0.5, and β2 = 0.99.
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Figure 4. mIoU versus (a) training dataset size, (b) number of in-
stances n in model (ground truth has 5 instances).

4. Experiments and Results
In this section, we present experiments demonstrating

the empirical benefits of InSeGAN on the task of instance
segmentation. We will first introduce our new synthetic
dataset, Insta-10, on which most of our experiments are
based. We then introduce a real-world dataset that we col-
lected to evaluate the application of our method on (natu-
rally noisy) depth images of real objects.
Insta-10 Dataset: While there are several real-world
datasets used for instance segmentation, such as
MSCOCO [27], and CityScapes [6], they typically in-
volve background objects, and other stuff that are unrelated
to the objects to be segmented. In addition, datasets such
as CLEVR [21] are proposed for visual reasoning tasks,
and thus may not fully analyze the segmentation quality.
To fill this gap, we introduce Insta-10, a large-scale dataset
consisting of depth images of multiple instances of a CAD
object model. We remove color and texture from the
instances, to analyze the segmentation performance under
the difficult condition in which there are minimal attributes
other than shape. This is inspired by the observation that
most industrial objects do not usually have textures [15], in
addition to the intuition that sometimes RGB could distract
a shape-based segmenter. To create the dataset, we used
10 CAD object models (3 from the T-less dataset [15]
and 7 from our own library). We use the PhysX physics
simulator3 to simulate sequentially dropping objects into a
bin, producing synthetic multiple-instance depth images.
We used 5 instances of the same object in each depth
image, yielding substantial inter-instance occlusion, and we
selected the bin width so that instance segmentation was
challenging but not too hard (even for humans). In addition
to the depth images, we provide the point clouds associated
with each image and ground truth instance segmentation
masks; these masks are used for only evaluation, not
training. We collected 10K images per object, for a total
of 100K depth images in the entire dataset, each with
dimension 224× 224. Sample images are in Figs. 5 and 7.
Real-World Depth Images Using a Robot: Apart from
the synthetic Insta-10 dataset, we also analyze the adapt-

3https://developer.nvidia.com/physx-sdk

Nut Stopper Cylinder Obj01 Obj05Obj14Bolt Cone 5 pin Connector

Figure 5. Qualitative results on Insta-10 objects. First row: CAD
models used to produce Insta-10. Second row: the input depth
images. Third row: rendered depth image by InSeGAN. Fourth
row: the predicted segmentations by InSeGAN.

RGB Image Depth Image (input) InSeGAN KMeans Felzenszwalb et al.

Figure 6. Qualitative results on real data. We show the RGB image,
the noisy depth input, and the segmentations produced.

SCWu et al. OursKMeansInput

IODINE [1]

Figure 7. Qualitative comparisons against other methods.

ability of our scheme to practical settings. For this experi-
ment, we used a box containing 4 identical wooden blocks
(see Fig. 6), of which depth images were captured using an
Intel RealSense Depth Camera (D435). To produce mul-
tiple diverse images consisting of varied configurations of
the blocks, we programmed a Fetch robot [39] to shake the
box between images. We collected 3,000 depth images us-
ing this setup, of which we hand-annotated 62 images that
we reserved for evaluation. The depth images from this set-
ting are very noisy, and as a result, often the shapes of the
objects do not appear to be identical.
Evaluation Metric and Experimental Setting: To eval-
uate our scheme, we use mean intersection-over-union
(mIoU), a standard metric for semantic segmentation. For
training and evaluation, we split the data subsets associated
with each class into a training, validation, and test set. In
the Insta-10 dataset, we use 100 randomly selected images
for validation in each class. For the test set, we selected 100
images on which KMeans fails, thereby avoiding segmen-
tations that are trivial for standard methods.
Performance Analysis: On the Insta-10 dataset, we com-
pare our method on both non-deep and deep learning meth-
ods. The non-deep methods include classic segmentation
algorithms [31, 3, 36]. The deep learning comparisons in-
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Method Nut Stop. Cyl. Bolt Cone Conn. 5-pin Obj01 Obj14 Obj05 Avg mIoU
Non-Deep Learning Methods

K-Means 0.64 0.297 0.7 0.18 0.35 0.554 0.628 0.208 0.496 0.59 0.464
Spectral Clustering [31] 0.56 0.36 0.54 0.22 0.41 0.56 0.58 0.25 0.47 0.57 0.452
GrabCut [36]+KMeans 0.572 0.232 0.572 0.472 0.231 0.519 0.497 0.597 0.557 0.605 0.486

GraphCut [3] 0.569 0.1 0.589 0.447 0.12 0.476 0.12 0.597 0.540 0.511 0.373
Deep Learning Methods

Wu et al. [41] 0.45 0.28 0.57 0.27 0.33 0.38 0.43 0.23 0.44 0.57 0.385
IODINE [9] 0.026 0.059 0.019 0.040 0.089 0.032 0.034 0.058 0.053 0.118 0.053

Slot Attn. [29] 0.375 0.276 0.535 0.43 0.68 0.662 0.628 0.655 0.622 0.481 0.535
InSeGAN (2D) (ours) 0.215 0.365 0.258 0.524 0.435 0.585 0.628 0.365 0.286 0.532 0.419
InSeGAN (3D) (ours) 0.773 0.301 0.760 0.539 0.47 0.655 0.642 0.686 0.591 0.483 0.590

Table 1. Mean IoU (mIoU) between the segmentation masks predicted by each method and the ground-truth masks.

Generator Loss Bolt Obj01
LaE (OT) + LiE + LpE 0.424 0.686

LaE (greedy) + +LiE + LpE 0.383 0.664
LaE (OT) + LiE 0.312 0.360
LaE (OT) 0.303 0.402

Table 2. Ablation study on the various losses used in InSeGAN
generator and the mIoU achieved on two classes.

Method mIoU
KMeans 0.797

Spectral Clustering 0.668
Graph Segmentation [7] 0.436

InSeGAN 0.857
Table 3. Results on real-world data collected using a robot.

clude: (i) Wu et al. [41], which is most similar to ours;
(ii) IODINE [9], which was proposed for scene decompo-
sition rather than instance segmentation; and (iii) Slot At-
tention [29]. We use the public code for (ii) and (iii), us-
ing their default hyper-parameters. In Table 1, we show
these results. We find that for most object classes (6/10),
InSeGAN outperforms all other methods. On the Stopper
class, which is the most difficult, InSeGAN outperforms all
other methods except for spectral clustering. Overall, In-
SeGAN demonstrates a relative improvement of 9.3% over
the best-performing previous method (averaged across all
10 classes). We found that the recent method of IODINE [9]
fails on our images, perhaps because it is designed for scene
decomposition tasks. From Table 3, we see that our method
generalizes to real data as well. In Fig. 5, we show several
qualitative results produced by InSeGAN. More results are
provided in the Supplementary Material.

4.1. Ablation Studies
In this section, we analyze each component in our de-

sign, empirically justifying its importance.
Is the 3D Generator Important? To answer this ques-
tion, we replace the 3D modules in InSeGAN (3D implicit
template, pose encoder, and STN) by 2D convolutions and
upsampling layers, similar to those used in the encoder and
discriminator. In Table 1, we provide comparisons of the 3D

and 2D GANs on the Insta-10 dataset. Results show that our
3D generator is significantly better than a 2D generator.
Are all the losses important? There are three losses in
the InSeGAN generator: (i) LaE , the alignment loss, (ii) LiE
on the intermediate feature maps, and (iii) LpE between the
generated depth image and the re-generated depth image.
For (i), we compare a greedy choice for alignment vs. using
optimal transport. We provide ablative studies on two object
classes, Bolt and Obj01. As is clear from Table 2, using a
greedy alignment leads to lower performance. Further, we
find that using LpE is empirically very important, yielding
10–20% performance improvement. Our analysis confirms
the importance of all of the losses used in our architecture.
Do we need all training samples? In Fig. 4(a), we plot the
performance versus increasing the number of data samples;
i.e., we train on a random subset of the 10K depth images
in the training set. Clearly more training data is useful, but
this increment appears to be dependent on the object class.
Wrong number of instances? In Fig. 4(b), we plot the per-
formance versus increasing the number of instances used in
InSeGAN; i.e., we increase n from 1 to 7. This is a mis-
match from the true number of instances (5 in every depth
image). The plot shows that InSeGAN performs reasonably
well when the number of instances is close to the ground
truth. In the Supplementary Material, we show how to han-
dle an unknown number of instances n in each image.

5. Conclusion
In this paper, we presented InSeGAN, a novel 3D GAN

to solve unsupervised instance segmentation. We find that
by pairing the discriminator with a carefully designed gen-
erator, the model can reconstruct individual object instances
even under clutter and severe occlusions. We introduce
a new large-scale dataset, which we are making publicly
available, to empirically analyze our approach. Our method
demonstrates state-of-the-art results, generalizing well to
real-world images. Going forward, one direction would be
to extend the framework to use multiple implicit templates
to segment a mix of different objects in the images.
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