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Abstract

Existing 3D human pose estimation algorithms trained
on distortion-free datasets suffer performance drop when
applied to new scenarios with a specific camera distortion.
In this paper, we propose a simple yet effective model for
3D human pose estimation in video that can quickly adapt
to any distortion environment by utilizing MAML, a repre-
sentative optimization-based meta-learning algorithm. We
consider a sequence of 2D keypoints in a particular dis-
tortion as a single task of MAML. However, due to the ab-
sence of a large-scale dataset in a distorted environment,
we propose an efficient method to generate synthetic dis-
torted data from undistorted 2D keypoints. For the evalua-
tion, we assume two practical testing situations depending
on whether a motion capture sensor is available or not. In
particular, we propose Inference Stage Optimization using
bone-length symmetry and consistency. Extensive evalua-
tion shows that our proposed method successfully adapts to
various degrees of distortion in the testing phase and out-
performs the existing state-of-the-art approaches. The pro-
posed method is useful in practice because it does not re-
quire camera calibration and additional computations in a
testing set-up. Code is available at https://github.
com/hanbyel0105/CamDistHumanPose3D.

1. Introduction
3D human pose estimation is a task that localizes 3D

human body joint from an RGB input. As a fundamen-
tal task in computer vision, it is applied to many down-
stream applications, e.g., action recognition [35, 15, 3], hu-
man body reconstruction [33, 9], and human-computer in-
teraction [6]. Particularly, 3D pose estimation for monocu-
lar video, which predicts 3D joint in inputs from a single-
camera, has attracted a lot of academic interest recently [17,
36, 21, 2, 4, 16] because of the simplicity of the hardware
setting in use and its advantage of being able to leverage
temporal information to resolve inherent depth ambiguity.

Recently, many state-of-the-art studies adopted two-

(a) Undistorted (b) Distortion 1 (c) Distortion 2

Figure 1: 3D reconstruction for videos with varying degrees
of distortion using a network trained with a distortion-free
dataset. Top: input video frames with 2D pose overlay.
Bottom: 3D reconstruction. 3D reconstruction of (a) is pre-
dicted from undistorted video, and (b) and (c) are predicted
from video with different degrees of distortion, respectively.

Condition MPJPE(↓) P-MPJPE(↓) PCKh@0.5(↑)

Undistorted 48.5 37.1 87.1
Distortion 1 94.4(+45.9) 65.6(+28.5) 57.7(-29.4)
Distortion 2 133.8(+85.3) 79.2(+42.1) 38.2(-48.9)

Table 1: Performance drop in environments with distortion
of a network trained with a distortion-free dataset. Distortion
1 and Distortion 2 are the cases of barrel distortion and pin-
cushion distortion, with tangential distortion, respectively.

stage architecture to achieve higher performance. In this ar-
chitecture, 2D keypoints are first extracted from the off-the-
shelf 2D keypoint detector [5, 8, 20, 28], and 3D keypoints
are inferred using the predicted 2D keypoints sequence as
input. These approaches simplify the 3D pose estimation
problem to solve depth ambiguity from 2D joint sequences.
This allows the study [32, 4, 36] of algorithms explicitly us-
ing information such as skeleton kinematics and motion of
human, which showed plausible results.
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Despite significant advances in 2D-keypoint-based 3D
pose estimation, there still remain certain limitations. That
is existing 3D human pose estimation algorithms trained on
distortion-free datasets show severe performance drop when
applied to new scenarios with a specific camera distortion,
as shown in Figure 1 and Table 1. Previously, preprocessed
images were used when inferring 3D joints from distorted
inputs. However, it is important to make models that can
adapt themselves to arbitrary distortion in the testing phase,
as algorithms that are needed in preprocessing, such as cam-
era calibration, are sometimes difficult to apply and they
also introduce certain errors of their own. This is substan-
tially important issue in the wild use of the algorithms; how-
ever, cross-scenario research on camera distortion has been
out of scope due to the absence of a dataset with various
degrees of camera distortion.

To overcome this limitation, in this work, we propose a
simple yet effective model for 3D human pose estimation in
video that can quickly adapt to any distortion environment
by utilizing model-agnostic meta-learning (MAML) [7], a
representative optimization-based meta-learning algorithm.
We focus on training a distorted-2D-keypoints-conditioned
3D pose estimator to be able to quickly adapt to camera dis-
tortion, because we found that 2D keypoint detector is good
at finding distorted 2D keypoints consistent with distorted
images. Therefore, we consider a sequence of 2D key-
points in a particular distortion as a single task of MAML.
However, due to the absence of a large-scale dataset with
a distorted environment, we propose an efficient method to
generate synthetic distorted data from undistorted 2D key-
points. Note that, the goal of training phase is not to just
increase the performance at a particular distortion, but to
train a network sensitive to distortion, allowing the network
to adapt quickly to arbitrary distortion in the testing phase.
For the testing phase, the trained network is first adapted to
a specific camera distortion environment by fine-tuning or
Inference Stage Optimization, which as proposed in recent
work [34] in the following two scenarios.

For evaluation, we assume two practical situations in
which the proposed method will be used and confirm that
our algorithm is useful for each case. First, Scenario 1 is a
situation in which a user can collect data using motion cap-
ture sensors in front of a testing environment, as shown in
Figure 3 (b). In this case, data with the same distortion
as the testing environment can be obtained, but it would
be in relatively small amounts compared with a large-scale
dataset (e.g., Human3.6M [10]) collected in the laboratory
environment. Therefore, it is important to transfer knowl-
edge trained with a large-scale dataset as much as possi-
ble. To validate the usefulness of the proposed method, we
construct a small-scale dataset with the same distortion as
the test environment, and evaluate whether the network can
adapt well through naive fine-tuning.

Second, Scenario 2 is when the user is unable to ob-
tain data in a testing environment, as shown in Figure 3 (c).
In this case, the network should be adapted to specific dis-
tortions using only test videos. In a recent study [34], the
authors proposed the concept named Inference Stage Opti-
mization (ISO) to adapt network using only test data before
testing. We also utilize ISO in this case. To this end, we
propose a novel ISO method based on skeleton symmetry
and consistency. This might be a weak constraint, but we
confirm that our network is fully adaptable even with these
constraints because it has been sensitively trained on distor-
tion.

In summary, our overall contribution is four-fold:

• To the best of our knowledge, our method, which uti-
lized optimization-based meta-learning, is the first al-
gorithm that can adapt to arbitrary camera distortion at
the testing phase.

• We propose an efficient method to generate synthetic
distorted data from undistorted 2D keypoints, enabling
cross-scenario research on camera distortion, which
has been out-of-scope due to the absence of datasets
with distortion.

• We validate the effectiveness of the proposed method
for each case, assuming two practical testing environ-
ments. In particular, we propose the ISO method using
bone-length symmetry and consistency.

• Our proposed method is useful in practical applica-
tions because it does not require calibration for the test-
ing camera and additional computational complexity.

2. Related Work
2.1. 3D Human Pose Estimation

Since the success of 2D human pose estimation, 3D hu-
man pose estimation has been widely studied. Martinez et
al. [17] successfully predicted 3D poses from 2D joint loca-
tions using simple and lightweight networks. It showed bet-
ter results than previous studies that involved training with
raw image pixels. To make better use of 2D keypoints, GCN
and attention mechanism were applied to learn the global
relationship between joints [36, 16]. In contrast, Pavllo et
al. [21] predicted 3D poses using video to overcome inher-
ent ambiguity that multiple 3D poses can be mapped to the
same 2D pose. Furthermore, prior knowledge about human
body structure was explicitly utilized to give constraints
[2, 4]. Despite substantial progress in this field, the perfor-
mance severely drops when camera distortion occurs due to
the changes in camera parameters in test environment.

2.2. Cross-scenario Pose Estimation
Deep learning models have substantially improved in re-

cent years. However, due to the limitation of supervised
learning on datasets that lack diversity, even state-of-the-art

11170



algorithms show poor results in-the-wild. To be robust on
a domain gap between training and inference, many stud-
ies have been conducted [25, 27, 34]. A recent study [34]
proposed the domain (e.g., varying poses, camera view-
points, body size, and appearances) robust 3D pose estima-
tion algorithm that adapts to the target domain using self-
supervised learning schemes named Inference Stage Opti-
mization (ISO) using cycle consistency among 2D and 3D
spaces. In this paper, we focus on the domain gap of cam-
era distortion caused by the different camera settings at the
testing phase, which has been out-of-scope.

2.3. Optimization-based Meta-Learning
There are three common categories in meta-learning.

The first category is the metric-based approach [12, 30, 26,
29], which learns a good metric that expresses the relation-
ship between inputs in task space and applies it well to
new samples. The second category is a model-based ap-
proach [24, 19, 18] that controls the structure of a target
model through another model called meta-learner. The last
category is an optimization-based approach [1, 23, 7, 22]
that looks for sensitive initial parameters for tasks and
quickly adapts to new tasks with only a few samples. In
this work, we utilize MAML [7], which belongs to the
optimization-based approach so that the network can adapt
quickly to arbitrary camera distortion in the testing phase.

3. Preliminary
In this section, we introduce background knowledge on

camera distortion and framework of the MAML algorithm.

Camera Distortion. There are two kinds of camera dis-
tortion. The first is radial distortion, which is caused by the
refractive index of the convex lens. Radial distortion is de-
termined by the distance from the center of the image, and it
is usually expressed in parameters k1, k2, and k3. The value
of k1 determines the main form of the distortion. A negative
k1 and a positive k1 result in barrel distortion and pincush-
ion distortion respectively, as shown in Figure 2 (b) and (c).
The second is tangential distortion, which is caused by the
misalignment of the camera lens and the image sensor (e.g.,
CCD and CMOS) during manufacturing of the camera. This
can be approximated by parameters p1 and p2. The p1 and
p2 cause ladder shape distortion mainly in x-axis and y-
axis respectively, as shown in Figure 2 (d) and (e). Both
distortions are common in commercial cameras, and radial
distortion is particularly severe in wide-angle cameras.

Model-Agnostic Meta-Learning. The stage of meta-
learning consists of meta-training and meta-testing. We
consider a model represented by a function gθ with pa-
rameters θ, that outputs y with input as x. The objective
of meta-training is to find initial transferable weights that
can be adapt to new tasks. For meta-training, a batch of

(a) Undistorted (b) Barrel (c) Pincushion

(d) Tangential x (e) Tangential y

Figure 2: Types of camera distortion. (b) and (c) represent
radial distortion, and (d) and (e) represent tangential distor-
tion. Radial distortion and tangential distortion can occur
simultaneously.

tasks Ti is sampled from task distribution p(T ). The model
is first optimized through the task-specific loss LTi

using
training samples within a task (task-level training), and
meta-optimization is performed using test samples (task-
level testing). In meta-testing, the model adapts to a new
task Tnew using only a few samples. In this study, we use
MAML [7], in which input x and output y are distorted 2D
keypoint trajectory and 3D joints respectively. Various dis-
tortion parameters construct task distribution, and each task
corresponds to a 3D pose estimation from the distorted 2D
keypoint trajectory with a particular distortion parameter.

4. Method
The overall framework of our method is shown in Fig-

ure 3. In this section, we first propose a method for generat-
ing synthetic distorted tasks. Then, we describe two phases
that constitute our method: training phase and adaptation
before testing.

4.1. Synthetic Distorted Task Generation

We found that 2D keypoint detector is good at finding
distorted 2D keypoints consistent with distorted images, as
shown in the top row of Figure 1 because it is based on the
texture of images. Thus, in the training phase, our goal is to
train a 3D pose estimator conditioned on distorted 2D de-
tection to be able to quickly adapt to various distortions by
applying meta-learning. Meta-learning in our case requires
tasks under varying degrees of distortion. In this section,
we describe how to efficiently generate distorted tasks from
undistorted videos.

Given a video clip with frame length of T , first 2D key-
points are obtained by a pretrained 2D keypoint detector
(e.g., Mask R-CNN [8]). Let p̃t ∈ RJ×2 denotes predicted
2D coordinates of J keypoints of the human in the frame
and P̃ = {p̃t}Tt=1 denotes the set of joints for a video clip.
Specifically, p̃t = {[ãt,j , b̃t,j ]}Jj=1 where ãt,j and b̃t,j de-
note x and y coordinates of jth joint at frame t, respectively.
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(distorted)
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(b): Adaptation before Testing (Meta-Testing) – Scenario 1
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(c): Adaptation before Testing (Meta-Testing) – Scenario 2

Test video

(distorted)
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off-the-shelf
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detector
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• Fine-tuning using small-scale dataset with same distortion as test environment
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Self-supervised
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• Self-supervised training on the test video (Inference Stage Optimization)

• Bone-length symmetry & bone-length consistency loss

Predicted distorted
2D trajectory

Figure 3: Overall framework of our methods. (a) We train a 2D-keypoint-conditioned 3D pose estimator that can quickly
adapt to any distortions using only an undistorted large-scale dataset. Before the trained network can be used in practice, it
must be adapted to a certain distortion. (b) and (c) represent adaptation method for Scenario 1 and Scenario 2, respectively.

To generate synthetic distorted tasks, we apply the cam-
era distortion model [31] directly to predicted 2D keypoints.
We omit subscript t and j for simplicity. As shown in Fig-
ure 4 (a), the process of generating the task with particu-
lar distortion parameters (i.e., k1, k2, k3, p1, p2) is divided
into three steps. The first is obtaining normalized 2D key-
points (denoted as [ãn, b̃n]) and distance between the point
and image center (denoted as r). As camera distortion mod-
els should be applied on a normalized image plane, we
first normalize 2D keypoints with focal length (denoted as
f = [fx, fy]) and optical center (denoted as c = [cx, cy])
using the following equations:

ãn =
ã− cx
fx

, b̃n =
b̃− cy
fy

, r =

√
ã2
n + b̃2n. (1)

Then, we apply distortion to the normalized 2D keypoints
using the following equations:

ãn,d = ãn(dr + dt) + p1r
2, b̃n,d = b̃n(dr + dt) + p2r

2, (2)

where intermediate variable dr and dt are obtained by dr =

1+ k1r
2 + k2r

4 + k3r
6 and dt = 2p1ãn +2p2b̃n respectively.

Finally, distorted 2D keypoints (denoted as [ãd, b̃d]) are ob-
tained by unnormalization using following equations:

ãd = ãn,dfx + cx, b̃d = b̃n,dfy + cy. (3)

We apply this process to all joints J and frames T to ob-
tain a distorted 2D trajectory (denoted as P̃dist) reflecting
a specific distortion. Then, we consider a pair of the dis-
torted 2D trajectory and ground-truth 3D joints (denoted as
s = [x,y, z] ∈ RJ×3) as a single task T of MAML.

This method is highly efficient because it does not ap-
ply distortion in image domain, and thus, we can generate
numerous distortions in the training phase, as shown in Fig-
ure 3 (a). Furthermore, it can reflect the jittered outputs
of the 2D keypoint detector caused by inherent ambiguity
(e.g., occlusion), because it generates distorted joints from
predicted 2D keypoints. Synthetic tasks can also be gen-
erated from ground-truth 3D joints, as shown in Figure 4
(b). In this case, normalized 2D keypoints are obtained from
the ground-truth 3D joints through projection. However, as
shown in Table 4, this method is less effective because it
could not reflect the noisy output of the 2D keypoint detec-
tor, resulting in a domain gap during training and testing.

4.2. Training Phase

In the training phase, we will perform meta-learning us-
ing synthetic distorted tasks from undistorted videos. Our
goal in the training phase is to find sensitive initial transfer-
able weights to camera distortion by utilizing optimization-
based meta-learning. Our algorithm mostly follows the
framework of MAML, but to achieve better performance,
there are two modifications: stratified sampling and random
distortion pretraining.

As shown in Figure 3 (a), given predicted undistorted 2D
trajectory, we generate a batch of distorted 2D trajectories
(denoted as {P̃dist,i}Ni=1, where N represents the number
of tasks in meta-batch) with sampled distortion parameters.
Then, we construct each task Ti by pairing a distorted 2D
trajectory P̃dist,i and ground-truth 3D joints s.
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(𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2)
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(a) Generating distorted 2D keypoints from predicted ones.

(𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2)
Ground-truth

3D keypoints

Normalized 

image plane

Distorted

2D keypoints

Applying distortion

(𝑋/𝑍, 𝑌/𝑍)
Projection

Unnormalize

(b) Generating distorted 2D keypoints from 3D ground-truth.

Figure 4: Methods to generate distorted 2D keypoints.

Specifically, parameters related to radial distortion are
sampled by k1, k2, k3 ∼ U [−λ1, λ1] and tangential distor-
tion parameters are sampled by p1, p2 ∼ U [−λ2, λ2] where
λ1 and λ2 denote the maximum value of each distribution.
We basically use the sampling method to both task-level
training and task-level testing. However, for the task-level
training, we adopt stratified sampling for sampling param-
eter k1, which determines the main form of distortion. In
this case, a k1 of ith sample in the meta-batch is sampled as
follows:

k1,i ∼ −λ1 + 2 · λ1 · U
[
i− 1

N
,

i

N

]
. (4)

By sampling the distortion parameter k1 from evenly
spaced bins, the meta-batch can consist of tasks with vary-
ing degrees of distortion. This enhances the adaptability of
our network as shown in Table 3. We denote the distribution
of tasks generated using stratified sampling as pstrat(T ),
and using only uniform distribution as prand(T ).

Finally, we consider a 3D pose estimator model repre-
sented by a parameterized function gθ with parameters θ.
We perform only one gradient descent update when the pa-
rameters θ is adapted to a new task Ti. Thus, the newly
adapted parameters θ′i are obtained by

θ′i = θ − α∇θLTi
(gθ), (5)

where α is the learning rate for task-level training.
The parameters θ of model are optimized by maximizing

the performance of gθ′
i

with respect to θ across tasks sam-
pled for task-level testing. Specifically, the meta-objective
is expressed as follows:

argmin
θ

∑

Ti∼p(T )

LTi
(gθ′

i
)

= argmin
θ

∑

Ti∼p(T )

LTi
(gθ−α∇θLTi

(gθ)).
(6)

Finally, we perform meta-optimization by using the
Eq. 6. For the stochastic gradient descent, model param-
eters θ are updated as follows:

θ ← θ − β∇θ

∑

Ti∼p(T )

LTi
(gθ′

i
), (7)

where β is the learning rate for meta-optimization. We use
a loss function, MPJPE, which is the L2 distance between
ground-truth 3D joints and predicted ones as a task-level
objective in the entire process of meta-optimization.

Additionally, we pretrain the network before training
meta-learner through random distortion pretraining that re-
gresses 3D joints from randomly distorted 2D keypoint tra-
jectories. This allows the network to learn feature represen-
tation under various distortions and consequently enables
stable MAML training. However, while random distortion
pretraining helps in the stability of MAML, the pretraining
without meta-learning shows poor results, as shown in Fig-
ure 7, when the network is adapted to the specific distortion,
because it is not a transferable initial weights.

4.3. Adaptation before Testing

When the trained model that can quickly adapt to arbi-
trary distortions is used, it must, first, be adapted to the spe-
cific distortion of the testing environment. This is similar
to meta-testing in the MAML framework. We assume two
practical situations, Scenario 1 and Scenario 2, and propose
an adaptation method for each case.
Scenario 1 is a situation in which a user can collect data
using motion capture sensors in front of a testing environ-
ment. In this case, data with the same distortion as the
testing environment can be obtained. Thus, we adopt naive
fine-tuning using the MPJPE loss function to adapt the net-
work to the specific distortion, as shown in Figure 3 (b). The
collected data would be in relatively small amounts than
the large-scale dataset (e.g., Human3.6M). Therefore, we
will check whether the network can adapt well with small
amounts of collected data. Detailed settings are provided in
Section 5.1.
Scenario 2 is a situation when the user is unable to ob-
tain data in a testing environment. In this case, the network
should be adapted to the specific distortion using only test
videos. As shown in Figure 3 (c), we adopt Inference Stage
Optimization (ISO) [34], which performs self-supervised
training using the test data before testing. Usually, the in-
ferred 3D joints are orthogonally projected to 2D plane and
compared with the predicted 2D keypoints to perform ISO.
However, if there is distortion in the video, this method can-
not be used. Therefore, we propose the novel ISO method
which utilizes bone-length symmetry and bone-length con-
sistency that allows self-supervision within the inferred 3D
joint itself (details in Appendix A.2). The former constrains
the length of a person’s left and right bones to be equal,
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whereas the latter constrains each bone to be equal in length
between consecutive frames within a video. The constraints
based on bone-length have been used for regularization in
fully-supervised training, but have never been used for ISO.
Also, these methods might be a weak constraint, but our net-
work is fully adaptable even with these constraints because
it has been sensitively trained on distortion via MAML.

4.4. Algorithm
Algorithm 1 shows the entire process of Section 4.2. As

shown in lines 2-8, random distortion pretraining is per-
formed before meta-learning. Subsequently, meta-learning
is performed, as shown in lines 9-17. Lines 11-14 and lines
15-16 present task-level training and meta-optimization
with task-level testing, respectively.

5. Experiments
5.1. Datasets and Evaluation

Human3.6M [10] is a large-scale dataset containing 3.6
million video frames and corresponding 2D and 3D human
keypoint labels. We construct a cross-scenario on distor-
tion to validate the effectiveness of the proposed method.
For training, we use five subjects (S1, S5, S6, S7, S8) with
undistorted videos, as in previous works [21, 4], since our
method can generate synthetic distorted tasks from undis-
torted 2D keypoints. For testing, only one subject (S11) is
used. Due to the absence of test videos with distortion, we
generate four different kinds of distorted videos (denoted as
d1, d2, d3, and d4, details in Appendix A.1) from undis-
torted videos of S11 by using Blender1 software, as shown
in Figure 5. We evaluate the proposed method in each kind
of distortion. For Scenario 1 in adaptation before the testing
phase, collected small-scale dataset with the same distortion
as the test data is required. Therefore, we adopt only 1% of
S9 and apply the same distortion as S11 to it.

Evaluation Metrics. We use three evaluation protocols
following previous works [17, 36, 21, 4, 16, 34]. The first
is mean per joint position error (MPJPE) in millimeters, the
L2 distance between the predicted 3D joints and ground-
truth joints. The second is P-MPJPE. This is similar to
MPJPE, but calculates the error between the joints after
alignment using Procrustes Analysis. The last one is per-
centage of correct 3D joints with a threshold as 50% of the
head segment length (PCKh@0.5).

5.2. Implementation Details
For 3D pose estimator, the proposed method is not about

network architecture but training methods. Therefore, we
adopt the state-of-the-art model for 3D human pose esti-
mation in video proposed in the previous work [21] as our
base model. It is fully convolutional and based on dilated

1https://www.blender.org/

Algorithm 1: Training Phase
Input: D: a large-scale 3D human pose dataset
Input: α, β: learning rate hyperparameters
Output: Model parameters θ

1 Randomly initialize θ
2 while not done do
3 Sample batch of tasks Trand,i ∼ prand(T )
4 for all Trand,i do
5 Calculate loss by MPJPE: LTrand,i

(gθ)
6 Compute updated parameters:

θ = θ − β∇θLTrand,i
(gθ)

7 end
8 end
9 while not done do

10 Sample batch of tasks Tstrat,i ∼ pstrat(T )
11 for all Tstrat,i do
12 Calculate loss by MPJPE: LTstrat,i(gθ)
13 Compute updated parameters:

θ′i = θ − α∇θLTstrat,i
(gθ)

14 end
15 Update θ with respect to average test loss:
16 θ ← θ − β∇θ

∑
Trand,i∼prand(T ) LTrand,i

(gθ′
i
)

17 end

(a) B+T (d1) (b) P+T (d2) (c) B+T (d3) (d) P+T (d4)

Figure 5: Videos rendered with different kinds of distortion.
B, P, and T represent barrel, pincushion, and tangential dis-
tortion respectively. For (a) and (b) heavy distortion is ap-
plied, and moderate distortion is applied to (c) and (d).

temporal convolutions with residual blocks. For 2D key-
point detector, we use Mask R-CNN [8] with a ResNet-101-
FPN [13] backbone as off-the-shelf 2D keypoint detector.
We fine-tune the COCO [14] pretrained model on 2D key-
points of Human3.6M. Similar to previous work [21], the
2D keypoint format of COCO differs from Human3.6M,
and hence, we reinitialize the last layer of the keypoint net-
work of the detector and carry out fine-tuning, after which
the 2D keypoint detector is frozen in the entire training pro-
cess for the 3D pose estimator because it is robust to cam-
era distortion. We use Adam [11] optimizer, with batch size
1024. During the training phase, we set the required λ1 and
λ2 to 5 and 0.5 respectively, to sample the distortion param-
eters. The learning rate α for task-level training is set to 0.1
and the β for meta-optimization is set to 0.001. We use 5
for the number of samples in meta-batch. The learning rate
decay is set to 0.95 and network is trained with 60 epochs.
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Scenario 1 Scenario 2

Method MPJPE(↓) P-MPJPE(↓) PCKh@0.5(↑) MPJPE(↓) P-MPJPE(↓) PCKh@0.5(↑)

Martinez et al. [17] ICCV’17 78.3 / 63.1 58.1 / 48.7 66.6 / 76.5 128.0 / 68.3 86.8 / 49.1 47.3 / 74.1
Zhao et al. [36] CVPR’19 86.3 / 64.0 64.2 / 47.4 63.2 / 76.9 119.7 / 71.4 85.5 / 51.9 45.0 / 72.2

Pavllo et al. [21] CVPR’19 79.9 / 65.0 59.4 / 48.3 67.3 / 76.7 114.1 / 64.5 72.4 / 45.7 47.9 / 76.6
Chen et al. [4] TCSVT’21 89.4 / 62.7 61.9 / 46.3 59.2 / 77.8 107.3 / 65.1 71.0 / 46.3 49.0 / 77.3
Liu et al. [16] CVPR’20 81.5 / 68.8 60.9 / 51.0 66.4 / 74.7 110.7 / 64.0 77.5 / 46.5 49.5 / 76.8

Ours 62.0 / 53.6 46.4 / 40.6 78.4 / 83.3 66.1 / 51.6 47.8 / 39.2 76.3 / 85.7

Table 2: Comparison of average performance on (heavy) / (moderate) with other state-of-the-art models. The top two
rows [17, 36] are based on a single-frame and others [21, 4, 16], including our method, are based on a video with a frame
length of 27. Best in bold, second-best underlined. More results can be seen in the supplementary material (Appendix A.3).

GT Pavllo et al. OursUndistorted video Distorted video GT Pavllo et al. OursUndistorted video Distorted video

Figure 6: Qualitative results on heavily distorted videos of Human3.6M. The five columns from the leftmost are the result
under the Scenario 1 setting, while the rest columns are the result under the Scenario2 setting. Top row: 3D reconstruction
results on d1. Bottom row: 3D reconstruction results on d2. More results can be seen in Appendix A.4.

In both Scenario 1 and Scenario 2 of adaptation before test-
ing, learning rate is set to 0.6 and epochs for adaptation is
set to 100. Note that, during the adaptation process, we
train the model for 100 epochs, however since it is done on
a small-scale dataset, the overall training time required for
the adaptation is within a few minutes.

5.3. Experiment Results
In this section, we validate effectiveness of the proposed

method. We evaluate performance on four different kinds of
distortion in all experiments and report the average perfor-
mance of d1 and d2 which applied heavy distortion and the
average performance of d3 and d4 which applied moderate
distortion. All reported values are performance after adap-
tation to the specific distortion. For Scenario 1, the trained
network is adapted by fine-tuning on 1% of S9, which went
through the same distortion as S11. For Scenario 2, the net-
work is adapted by ISO on 0.1% of test videos (S11).
Comparison with State-of-the-Art. Table 2 shows the
performance of existing 3D pose estimation algorithms and
our method. The baseline models do not take cross-scenario
about distortion into account. However, for fair evaluation,
we evaluate the performance in Scenario 1 after fine-tuning
on the small-scale dataset, just like our method. For Sce-
nario 2, we did not apply ISO to baseline models because
they show poor performance when ISO is applied.

The proposed method outperforms other methods re-

gardless of the kinds of distortions and scenarios. Specif-
ically, compared to our base model [21], the proposed
method shows -14.64mm, -10.35mm, and +17.7% average
performance improvement in Scenario 1 for each metric
(i.e., MPJPE, P-MPJPE, and PCKh@0.5) and -30.45mm, -
15.55mm, and +18.75% average performance improvement
in Scenario 2. Especially in Scenario 2, our method rather
shows better performance than Scenario 1 under moderate
distortion. This demonstrates that our bone-length-based
ISO method is effective and also that the trained model has
transferable initial weights.

Figure 6 shows qualitative results of the estimated 3D
pose from distorted videos. Unlike others, our method suc-
cessfully adapts to the distortion that the test video has,
and consequently, we can see that estimated 3D joints from
the distorted video by using the proposed method is almost
the same with ground-truth joints. Results predicted from
videos with more diverse poses and distortion can be seen
in the supplementary material (Appendix A.4).

Ablation Studies. We first look at the contribution of
each of the proposed method. We evaluate the performance
changes, adding each proposed method with Pavllo et al.
[21] as our base model. As shown in Table 3, we can notice
that each method provides a positive contribution under all
metrics. In particular, the significant improvement comes
from utilizing MAML using synthetic distorted tasks and
learning rich feature representation on distortion through
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MPJPE(↓) P-MPJPE(↓) PCKh@0.5(↑)

base model [21] 84.2 / 79.6 62.8 / 59.7 64.8 / 66.9
+ MAML (with synthetic tasks) 73.5 / 67.5 55.6 / 51.7 72.0 / 74.5
+ stratified sampling 71.7 / 66.2 54.3 / 50.4 72.8 / 75.2
+ random distortion pretraining 67.2 / 61.9 51.0 / 47.0 75.7 / 78.2

Table 3: Effectiveness of each proposed method based on
input frame length of 9 under Scenario 1 setting. Each value
denotes performance on (distortion d1) / (distortion d2).

Method MPJPE(↓) P-MPJPE(↓) PCKh@0.5(↑)

Predicted 2D keypoints 62.0 / 53.6 46.4 / 40.6 78.4 / 83.3
Ground-truth 3D joints 64.7 / 56.1 48.2 / 42.0 77.0 / 82.0

Predicted 2D keypoints 66.1 / 51.6 47.8 / 39.2 76.3 / 85.7
Ground-truth 3D joints 71.3 / 55.6 51.9 / 42.6 72.8 / 83.5

Table 4: Comparison of average performance on (heavy)
/ (moderate) between the methods generating synthetic 2D
keypoints. Top rows: Scenario 1. Bottom rows: Scenario 2.

random distortion pretraining.
Table 4 shows the performance when applying each of

the two methods that generate synthetic distorted 2D key-
points based on frame length of 27. Predicted 2D keypoints
denotes the case in which synthetic distorted 2D keypoints
are generated using noisy results inferred from the 2D key-
point detector, as shown in Figure 4 (a) and Ground-truth
3D keypoints denotes the case in which synthetic keypoints
are generated using the ground-truth 3D keypoints as shown
in Figure 4 (b). We can notice that the former method shows
better performance under all metrics and scenarios since
there is less domain gap between training and testing.

Table 5 reports the performance and complexity of the
model (i.e., parameters and FLOPs) with respect to different
input frame lengths. Our method uses the same model struc-
ture as Pavllo et al. [21] because our work is about the learn-
ing method rather than the structure of the model. When the
input frame length is 3, the proposed method shows com-
parable performance to the base model, even though the
capacity is one-fifty of the base model. Furthermore, our
method with an input frame length of 27 outperforms the
base model of the same size significantly. Moreover, our
method has the same floating-point operations (FLOPs) for
inference as the base model [21], thus no additional compu-
tational cost is required compared to the base model when
testing after adaptation to the test environment.

Performance Changes during Adaptation. We also val-
idate the ability of the model, trained in the training phase,
to adapt well to the specific camera distortion. In this exper-
iment, we observe the performance changes of the model
with and without MAML during the adaptation process
based on frame length 27. As shown in Figure 7, in the
case of a model using MAML, we can notice that it adapts
well regardless of the degrees of distortion and scenarios.

Model Parameters ≈ FLOPs MPJPE P-MPJPE PCKh@0.5

Pavllo et al. [21] 27f 8.56M 17.11M 72.4 53.8 72.0

Ours 3f 0.16M 0.32M 75.0 56.1 69.6
Ours 9f 4.36M 8.71M 59.8 45.4 79.5
Ours 27f 8.56M 17.11M 57.6 43.4 80.9

Table 5: Performance and computational complexity of var-
ious models under Scenario 1. The reported performance is
the average value for all kinds of distortions.
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Figure 7: Performance changes during adaptation to the
specific distortion. S1 and S2 denote Scenario 1 and Sce-
nario 2, respectively. A solid line w/ MAML denotes our
final model trained using all the elements proposed in Sec-
tion 4.2, and a dashed line w/o MAML denotes a model
trained only with random distortion pretraining.

Also, the mean and standard deviation of MPJPE are 6.5mm
(10%) and 2.3mm (25%) lower than those of w/o MAML
(at epoch 0), respectively. In contrast, in the case of the
model not using MAML, the model is not stably adapted,
and its performance is rather significantly degraded. Specif-
ically, it performs well at epoch 0 with the effect of the pro-
posed random distortion pretraining, however since it is not
a transferable initial weight, it is highly degraded when the
adaptation process starts. This demonstrates the superior
potential of MAML to adapt to various distortion environ-
ments. Note that, as mentioned in Section 5.2, training time
required for the adaptation process is within a few minutes.

6. Conclusion
We have introduced a model for 3D human pose estima-

tion that can adapt quickly to arbitrary camera distortion.
Our model finds initial transferable weights that are sensi-
tive to distortion through meta-learning. For this, we over-
come the limitations of the absence of publically available
distorted data by generating synthetic distorted tasks from
undistorted data. Furthermore, we propose a novel ISO
method based on bone-length that can adapt the model to
the test environment without 3D joint labels. Our method is
expected to be very useful in practice because once trained,
it can adapt to any distortion without camera calibration.
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E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates,
Inc., 2019. 3

[23] S. Ravi and H. Larochelle. Optimization as a model for few-
shot learning. In ICLR, 2017. 3

11177



[24] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan
Wierstra, and Timothy Lillicrap. Meta-learning with
memory-augmented neural networks. In Maria Florina Bal-
can and Kilian Q. Weinberger, editors, Proceedings of The
33rd International Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Research,
pages 1842–1850, New York, New York, USA, 20–22 Jun
2016. PMLR. 3

[25] Assaf Shocher, Nadav Cohen, and Michal Irani. “zero-shot”
super-resolution using deep internal learning. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3118–3126, 2018. 3

[26] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. 3

[27] Jae Woong Soh, Sunwoo Cho, and Nam Ik Cho. Meta-
transfer learning for zero-shot super-resolution. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3516–3525, 2020. 3

[28] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
high-resolution representation learning for human pose es-
timation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019. 1

[29] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang,
Philip H.S. Torr, and Timothy M. Hospedales. Learning to
compare: Relation network for few-shot learning. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018. 3

[30] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray
kavukcuoglu, and Daan Wierstra. Matching networks for
one shot learning. In D. Lee, M. Sugiyama, U. Luxburg, I.
Guyon, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 29. Curran Associates,
Inc., 2016. 3

[31] Jianhua Wang, Fanhuai Shi, Jing Zhang, and Yuncai Liu.
A new calibration model of camera lens distortion. Pattern
Recognition, 41(2):607–615, 2008. 4

[32] Jingwei Xu, Zhenbo Yu, Bingbing Ni, Jiancheng Yang, Xi-
aokang Yang, and Wenjun Zhang. Deep kinematics analysis
for monocular 3d human pose estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 1

[33] Y. Yan, B. Ni, W. Zhang, J. Xu, and X. Yang. Structure-
constrained motion sequence generation. IEEE Transactions
on Multimedia, 21(7):1799–1812, 2019. 1

[34] Jianfeng Zhang, Xuecheng Nie, and Jiashi Feng. Inference
stage optimization for cross-scenario 3d human pose esti-
mation. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors,
Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. 2,
3, 5, 6

[35] Pengfei Zhang, Cuiling Lan, Wenjun Zeng, Junliang Xing,
Jianru Xue, and Nanning Zheng. Semantics-guided neural

networks for efficient skeleton-based human action recogni-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2020. 1

[36] Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, and Dim-
itris N Metaxas. Semantic graph convolutional networks for
3d human pose regression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 3425–3435, 2019. 1, 2, 6, 7, 12

11178


