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Abstract

Self-supervised monocular depth estimation has become
an appealing solution to the lack of ground truth labels, but
its reconstruction loss often produces over-smoothed results
across object boundaries and is incapable of handling oc-
clusion explicitly. In this paper, we propose a new approach
to leverage pseudo ground truth depth maps of stereo im-
ages generated from self-supervised stereo matching meth-
ods. The confidence map of the pseudo ground truth depth
map is estimated to mitigate performance degeneration by
inaccurate pseudo depth maps. To cope with the predic-
tion error of the confidence map itself, we also leverage
the threshold network that learns the threshold dynami-
cally conditioned on the pseudo depth maps. The pseudo
depth labels filtered out by the thresholded confidence map
are used to supervise the monocular depth network. Fur-
thermore, we propose the probabilistic framework that re-
fines the monocular depth map with the help of its uncer-
tainty map through the pixel-adaptive convolution (PAC)
layer. Experimental results demonstrate superior perfor-
mance to state-of-the-art monocular depth estimation meth-
ods. Lastly, we exhibit that the proposed threshold learn-
ing can also be used to improve the performance of existing
confidence estimation approaches.

1. Introduction
Monocular depth estimation, which predicts a dense

depth map from a single image, plays an important role in
various fields such as scene understanding and autonomous
driving. Early works [8, 31, 4] are based on supervised
learning in which the performance depends on a huge
amount of training data with ground truth depth labels.
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Since establishing such a large-scale training data is very
costly and labour-intensive, recent approaches rely on the
self-supervised learning regime [11, 13, 32, 14, 36]. Instead
of using ground truth labels for training the network, they
attempt to leverage the self-supervision from a pair of stereo
images or monocular video sequences, under the assump-
tion that the geometric structure of a scene can be encoded
with the reconstruction loss based on pixel-wise intensity
similarities [11]. This loss function seems to be an appeal-
ing alternative to the lack of large-scale ground truth labels,
but it often leads to blurry results around depth boundaries
and does not consider occluded pixels [13].

Instead of relying on the self-supervised reconstruction
loss across stereo images, Cho et al. [6] attempted to train
the monocular depth estimation network through pseudo
depth labels of the stereo images generated from pre-trained
stereo matching network [34]. To mitigate performance de-
generation by inaccurate pseudo depth labels, they leverage
stereo confidence maps (∈ [0, 1]) indicating the reliability
of the pseudo depth labels. The confidence map is trun-
cated with a threshold [6, 46] so that depth values with low
confidence are excluded. However, a fixed threshold for
all training dataset still has the risk of inaccurate pseudo
depth values being used in the network training [6]. The
method of [46] attempted to address this issue by learning
the threshold with an additional regularization term, but the
performance gain is rather limited due to its hard threshold-
ing and the implicit constraint by the regularization term.

To overcome this limitation, we propose a novel ar-
chitecture that adaptively learns the threshold dynamically
conditioned on the pseudo depth map. For a given in-
accurate pseudo depth map, the stereo confidence map
and its associated threshold are inferred in an end-to-end
manner. The confidence map is then thresholded through
a differential soft-thresholding operator controlled by the
learned threshold. The proposed threshold learning is ca-
pable of dealing with the prediction errors of the confi-
dence map more effectively. Note that we leverage the soft-
thresholding operator to make the network differentiable.
The thresholded confidence map is then used together with
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the pseudo depth labels for training the monocular depth
estimation network. Additionally, we propose to enhance
the monocular depth map in a probabilistic inference frame-
work. Unreliable parts of the monocular depth map are
identified using the uncertainty map, and these are refined
through the pixel-adaptive convolution (PAC) layer [45].
Experimental results validate that the monocular depth ac-
curacy is significantly improved by leveraging the proposed
threshold learning and probabilistic depth refinement mod-
ules.

Interestingly, the threshold learning can also be benefi-
cial to improve the performance of existing stereo confi-
dence estimation approaches [38, 25]. The confidence map
obtained from the existing approaches [38, 25] is refined
through the soft-thresholding function controlled by the
learned threshold. As shown in Fig. 2, the soft-thresholding
function attenuates low confidence values that are less than
the learned threshold τ to become as close as 0 while am-
plifying high confidence values to converge to 1. We vali-
date through experiments that this process improves the pre-
diction accuracy of the existing confidence estimation ap-
proaches. To sum up, our contributions are as follows.

• We propose a novel framework of monocular depth
estimation using pseudo depth labels generated from
self-supervised stereo matching methods.

• We introduce the threshold network that adaptively
learns the threshold of the confidence map for bet-
ter predicting the reliability of the inaccurate pseudo
depth labels.

• The monocular depth map is further refined through
the probabilistic refinement module based on the PAC
layer.

• It is shown that the threshold network can also be used
to enhance the prediction accuracy of existing confi-
dence estimation approaches.

2. Related Work

Monocular depth estimation. Eigen et al. [8] initiated
the monocular depth estimation through deep network that
regresses a depth map with ground-truth depth informa-
tion, inspiring numerous approaches based on multi-scale
images [31], up-projection technique [29], motion paral-
lax [50], ordinal regression [9], and semantic divide-and-
conquer [51]. Despite remarkable performance over classi-
cal handcrafted approaches, they rely on abundant and high-
quality ground-truth depth maps, which is costly to obtain.

To overcome this limitation, self-supervised learning has
been introduced by leveraging other forms of supervision
from stereo images and video sequences instead of ground

truth depth maps. Garg et al. [11] used the stereo photo-
metric reprojection. Godard et al. [13] further used the left-
right consistency between stereo images. Zhou et al. [57]
proposed to leverage multi-view synthesis procedure, and
this idea was extended using the feature-based warping
loss in [55]. To take advantages of both supervised and
self-supervised learning methods, semi-supervised learning
methods have also been presented. Kuznietsov et al. [28]
directly combined supervised and unsupervised loss terms.
Ji et al. [22] utilizes an image-depth pair discriminator with
a small amount of labeled dataset, alleviating the reliance
on supervision. Recently, Gonzalebello et al. [15] proposed
mirrored exponential disparity (MED) probability volumes
to handle occluded areas.

The most related to our work is the methods of Guo et
al. [18], Cho et al. [6], and Tonioni et al. [46] in which a
stereo matching knowledge is distilled to train a monocu-
lar depth network. Since the disparity map estimated by
stereo matching inherently contain unreliable ones, they
used stereo confidence to build a pseudo-ground-truth dis-
parity map by thresholding the confidence. Guo et al. [18]
used a handcrafted occlusion map sensitive to outliers. Cho
et al. [6] used a fixed threshold empirically, but it is ineffec-
tive to use the same threshold for all images. Unlike this,
Tonioni et al. [46] tried to learn the threshold by using an
additional regularization term that allows it to be between 0
and 1, but it is also difficult to learn the appropriate thresh-
old with the implicit constraint by the regularization term.
In our method, effective threshold learning is the main con-
tribution.
Stereo confidence estimation. In parallel with the devel-
opment of predicting depth from images, stereo confidence
estimation has also been actively studied. Machine learn-
ing approaches [35, 44, 26] relying on shallow classifier,
e.g., random tree [1], enable one to classify correct and in-
correct pixels. Recently, deep convolutional neural network
(CNN)-based approaches have become a mainstream. Var-
ious methods have been proposed that use the single- or
bi-modal input, e.g., disparity [38], left and right dispari-
ties [41], 3D matching cost [42], 3D matching cost and dis-
parity [27], and disparity and color image [49, 10]. Kim
et al. [25] proposed to make full use of the tri-modal input
in conjunction with locally adaptive attention and scale net-
works, achieving state-of-the-art prediction accuracy. All
of these techniques require ground truth depth maps and
have been used to refine a depth (or disparity) map with a
fixed threshold which is set empirically. Poggi et al. [37] in-
troduced a method for learning self-supervised confidence
measure with various criterions.

3. Proposed Method
Unlike recent self-supervised monocular depth estima-

tion approaches [11, 13, 32, 14, 36], we leverage the pseudo
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Figure 1. The proposed architecture consisting of ThresNet,
DepthNet, and RefineNet. Given a pair of stereo images, the
pseudo ground truth depth map dpgt is precomputed using a self-
supervised stereo matching network. The proposed model train-
ing begins with dpgt by computing its confidence map c and the
threshold τ through the ThresNet. The thresholded confidence
map cT is obtained using the soft-thresholding function. The
DepthNet that infers the monocular depth map d and uncertainty
map σ is trained by minimizing an objective defined using dpgt

filtered out by cT. The monocular depth map d is finally refined
through the probabilistic refinement module based on the pixel-
adaptive convolution (PAC) layer in the RefineNet.

depth labels from a pair of stereo images as supervision for
monocular depth estimation. Fig. 1 shows the overall pro-
cedure of the proposed method consisting of three networks,
including DepthNet, RefineNet, and ThresNet.

The proposed model training begins with the pseudo
depth labels dpgt precomputed using the self-supervised
stereo matching method [53]. Note that among various op-
tions provided in [53] for data synthesis, we adopted ‘Mon-
odepth2’ [14] which is self-supervised monocular depth
network. Its confidence map c is estimated by the con-
fidence estimation module MC , aiming at preventing the
abuse of erroneous depth values in training the monocular
depth network. To take into account the prediction errors
of the confidence map itself, we further learn the threshold
τ , truncating the confidence map, adaptively through the
threshold module MT . The thresholded confidence map cT

is obtained via the soft-thresholding by the learned thresh-
old τ . This operation encourages to trust the pixel with a
higher confidence value than a specific τ value. The Depth-
Net is trained by minimizing an objective defined using the
pseudo depth labels dpgt filtered out by the thresholded con-
fidence map cT. Finally, our method refines the monocular
depth map d through the probabilistic refinement module
based on the PAC layer [45] in the RefineNet.

3.1. Network Architecture

3.1.1 ThresNet

The ThresNet predicts the confidence map of the inaccurate
pseudo depth label and its threshold in an adaptive man-

(a) (b) (c)

Figure 2. Comparison of confidence thresholding operator: (a)
hard-thresholding used in [6], (b) hard-thresolding function used
in [46], and (c) our soft-thresholding function in (1). The learned
threshold is used in (b) and (c), while the threshold is fixed in (a)
for all training images.

ner and then generates the thresholded confidence map via
the soft-thresholding function. For the confidence estima-
tion network MC , we adopted the CCNN [38] thanks to its
simplicity, but more sophisticate models [38, 25, 49] can
also be utilized as a backbone. The threshold network MT

consists of four convolutional layers, followed by global av-
erage pooling and 1× 1 convolution.

The estimated confidence map c is modulated by the
threshold τ , such that a depth value with a higher confidence
value than a specific τ value assumes to be trustworthy. A
key issue is how to set accordingly τ which needs to vary
depending on images. This threshold τ should be set low
in the image where depth inference is easy while being set
high in the opposite case (see Fig. 3). We approximate the
thresholding operation with a smooth, differentiable func-
tion. The thresholded confidence map cT is computed using
the differentiable soft-thresholding function as follows:

cTp (τ) =
1

1 + e−ε·(cp−τ)
, (1)

where p represents a pixel. The slope of the thresholded
confidence map cT is adjusted by a hyperparameter ε,
which is a positive constant. Too large ε changes the soft-
thresholding function too rapidly (e.g. ε = 90), often mak-
ing it non-differentiable. We set ε = 10 in experiments.
The pixel-varying confidence map is transformed with the
per-image threshold τ . We also investigated a pixel-varying
threshold map τp, but its performance gain was negligible.

Fig. 2 compares the confidence thresholding functions.
In Fig. 2 (a), the confidence threshold τ is fixed with a
predefined value for all training images without consider-
ing image characteristics, often causing inaccurate pseudo
depth values to be used during training. In Fig. 2 (b), it
is learned using an additional regularization term [46], but
its performance gain on the monocular depth estimation is
rather limited, as reported in the original paper [46]. The
proposed differential soft-thresholding function, controlled
by the threshold τ dynamically conditioned on the pseudo
depth map, leads to superior performance on the monoc-
ular depth estimation, when the threshold loss LT is used
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(a) Images with high τ values

(b) Images with low τ values

Figure 3. Examples of learned threshold τ by our threshold learn-
ing. CS indicates the Cityscapes dataset.

together. The ablation study of the confidence thresholding
operators is provided in experiments.

Fig. 3 presents the estimation results of the ThresNet
for the KITTI and Cityscape datasets [7]. The threshold
τ becomes higher in images where stereo matching do not
work well, and vice versa. This indicates that the ThresNet
is beneficial to improving the monocular depth network by
excluding unreliable pseudo depth values effectively.

3.1.2 DepthNet and RefineNet

The DepthNet and RefineNet infer and refine the monocular
depth map by leveraging the pseudo depth labels, masked
out by the thresholded confidence map, as supervision. The
DepthNet is based on the encoder-decoder architecture [39],
in which an encoder takes an image and two decoders esti-
mate the monocular depth map d and its uncertainty map
σ. The uncertainty map, indicating the variance of the pre-
dicted monocular depth map, becomes higher when the pre-
diction is unreliable, and vice versa. The encoder network
consists of the first 13 convolution layers of the VGG net-
work [43], and the decoder is symmetrical with the encoder.
The uncertainty map σ is used to refine the monocular depth
map in the subsequent RefineNet.

We first upsample L feature maps (here L = 4) from the
encoder of the DepthNet to an original resolution and con-
catenate them. The concatenated features are then fused by
passing through 1 × 1 convolution, generating a guidance
feature g. The estimated monocular depth map d is finally
fed into the PAC layer [45] with the guidance of the fea-
ture map g. Unlike the original PAC module that directly
infers refined results, we leverage the residual connection
that takes into account the uncertainty map σ for predicting
the refined monocular depth map df such that

df = e−σ/k · d+ (1− e−σ/k)d′ (2)

where d′ indicates the output of the PAC layer. k is a hyper-
parameter to control the refinement through the PAC layer,

and it was set to 1.
It should be noted that though some monocular depth es-

timation approaches [36, 2] have attempted to measure the
uncertainty of the monocular depth estimation through deep
network, our method proposes to infer the uncertainty map
and use it for a subsequent refinement module. This frame-
work can also be extended into various pixel-level labeling
tasks based on the uncertainty prediction.

3.2. Loss Functions

3.2.1 Thresholding loss

The ThresNet with confidence and threshold networks can
be trained in a supervised manner [38] or a self-supervised
manner [37]. For the supervised training, we propose to
use the sparse ground truth depth data provided by pub-
lic benchmarks. For instance, we can leverage extremely
sparse LiDAR depth maps of 3% density provided with a
set of stereo image pairs in the KITTI dataset. The ground
truth of the thresholded confidence map is generated us-
ing the sparse ground truth depth data like existing confi-
dence estimation approaches [25] and this is used to train
the ThresNet using a cross-entropy loss LT . More details
on the ground truth confidence map are provided in the sup-
plementary material. Alternatively, the ThresNet can be
trained in the self-supervised manner without using the Li-
DAR depth maps. Following [37], we generate the pseudo
ground truth of the thresholded confidence map accord-
ing to various criterions (e.g., reprojection error, disparity
agreement). The loss LT for the self-supervised training
is defined as a multi-modal binary cross entropy loss of
[37]. In Table 1, we compare the monocular depth accuracy
when using the supervised and self-supervised ThresNets,
and found the accuracy is almost similar.

In [46], the threshold is also learned to exclude depth
values with low confidences when training their network.
It was reported that when using the depth regression loss
only, the threshold τ would converge to 1 for masking out
all pixels [46]. Thus, they propose to include an additional
regularization loss, −log(1 − τ), that prevents the thresh-
old τ from approaching 1. Though this term allows τ to be
between 0 and 1, it does not guarantee to yield accurate pre-
diction results of the threshold τ . Contrastingly, our method
attempts to learn the threshold τ with the soft-thresholding
function and the explicit supervision. We will verify the
effectiveness of our threshold learning approach in the ab-
lation study of Table 4.

3.2.2 Depth regression loss

A monocular depth map from the DepthNet is leveraged
to compute a confidence-guided depth regression loss LD
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assisted by the thresholded confidence map cT as follows:

LD =
1

Z

∑
p∈Ω

cTp (τ) · |dp − dpgt
p |, (3)

where d and dpgt indicate the predicted depth map and
pseudo ground truth depth map, respectively. Ω repre-
sents a set of all pixels. The loss LD is normalized with
Z =

∑
cTp (τ).

Additionally, we leverage the negative log-likelihood
minimization to infer the uncertainty of the network out-
put. The predictive distribution of the network output d can
be modelled as the Laplacian likelihood [24, 21, 23] as fol-
lows:

LU =
1

|Ω|
∑
p∈Ω

( |dp − dpgt
p |

σp
+ log σp

)
, (4)

where the variance σ represents the uncertainty map of the
predicted depth map. The logarithmic term log σ prevents
σ from approaching to infinity [24]. We combine two losses
LD, taking into account the reliability of the pseudo ground
truth depth map dpgt, and LU predicting the uncertainty of
the predicted depth map d, such that

L = LD + λLU , (5)

where λ represents hyperparameter that balances two losses
which is experimentally determined to 10−3. This enables
for modeling the uncertainty of the monocular depth es-
timation network while considering the confidence of the
pseudo depth label. As shown in Fig. 1, the DepthNet that
infers both the monocular depth map and uncertainty map
is trained with L in (5), while the RefineNet leverages LD
in (3) as it predicts the final monocular depth map only.

3.3. Training Details

In our work, the DepthNet and RefineNet are trained si-
multaneously by minimizing L and LD, while the ThresNet
consisting of confidence and threshold networks is trained
solely by minimizing LT , similar to existing confidence es-
timation approaches [38, 35, 44, 25]. Though the whole
networks can be trained end-to-end, we found through ex-
periments that the performance gain over the separate train-
ing is relatively marginal.

It has been reported in literature [38, 49] that the con-
fidence network trained with one dataset exhibits a good
generalization capability for another dataset. In a similar
context, our confidence and threshold networks trained with
the KITTI dataset show satisfactory generalization capabil-
ity for different datasets. Taking these into account, we
transfer the knowledge learned from one dataset to another.
To be specific, when only stereo image pairs are available
for training (e.g. Cityscape dataset), the DepthNet and Re-
fineNet are trained via the minimization of L and LD, with

the ThresNet being frozen with the parameters trained with
the KITTI dataset. As shown in Fig. 3, the ThresNet trained
with the KITTI dataset produces appropriate thresholds for
both the KITTI and Cityscape datasets.

4. Extension to Confidence Estimation

The soft-thresholding attenuates low confidence values
that are less than τ to become as close as 0 while amplify-
ing high confidence values to converge to 1. It reduces the
number of ambiguous pixels to determine the reliability, for
which a confidence value is far from 0 or 1. We discuss how
the soft-thresholding based on the threshold network can
improve the prediction accuracy of existing confidence es-
timation approaches [38, 25]. In the ThresNet of Fig. 1, the
confidence network can be replaced with the existing con-
fidence estimation approaches. One difference is that the
loss LT (cross-entropy loss) is measured on the disparity
domain, considering that the existing confidence estimation
approaches are trained on the disparity domain. This for-
mulation is model-agnostic, and any kind of existing confi-
dence estimation approaches can be used in a plug-and-play
fashion.

5. Experimental results

5.1. Implementation details

The proposed method was implemented in PyTorch
framework and run Titan RTX GPU. We trained the whole
networks on the learning rate of 10−4 and batches of 32
images resized to 192 × 480 for 30 epochs. We trained the
proposed monocular depth estimation network consisting of
DepthNet and RefineNet on the standard 20k stereo images
provided in the KITTI dataset. We evaluate our methods
on following five metrics ‘RMSE’, ‘RMSE log’, ‘Abs Rel’,
‘Sq. Rel’, and ‘Accuracy’, proposed in Eigen et al. [8].

5.2. Evaluation on monocular depth estimation

5.2.1 KITTI

In Table 1, we evaluated the monocular depth estimation
performance quantitatively on the KITTI Eigen Split [8]
dataset with setting maximum depth to 80 meters with
Gargs crop [11]. A comprehensive evaluation was con-
ducted with Monodepth [13], Uncertainty [36], MonoRes-
Match [48], Monodepth2 [14], DepthHint [52], PackNet-
SfM [17], and Insta-DM [30]. For the training data, ‘S’
indicates using stereo images for self-supervised monocu-
lar depth estimation. ‘M’ represents a monocular video se-
quence. The evaluation of the proposed method is twofold;
‘Ours (D)’ trained with only the DepthNet using LD in (3)
without refining the depth map, and ‘Ours (D+R)’ trained
with the DepthNet and RefineNet.
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Table 1. Quantitative evaluation for depth estimation with existing methods on KITTI Eigen Split [8] dataset. Numbers in bold and
underlined represent 1st and 2nd ranking, respectively. ‘Ours†’ is obtained using the self-supervised ThresNet [37], while ‘Ours’ indicates
the results obtained using the supervised ThresNet.

Lower is better Accuracy: higher is better

Method Data #p time Abs Rel Sqr Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth [13] S 56M 9.4ms 0.138 1.186 5.650 0.234 0.813 0.930 0.969
Monodepth2 [14] S 14M 2.9ms 0.108 0.842 4.891 0.207 0.866 0.949 0.976
Uncertainty [36] S 14M 3.6ms 0.107 0.811 4.796 0.200 0.866 0.952 0.978

MonoResMatch [48] S 41M 8.3ms 0.111 0.867 4.714 0.199 0.864 0.954 0.979
DepthHint [52] S 33M 6.6ms 0.102 0.762 4.602 0.189 0.880 0.960 0.981

PackNet-SfM [17] M 122M 9.5ms 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Insta-DM [30] M 14M 3.0ms 0.112 0.777 4.772 0.191 0.872 0.959 0.982

Ours (D) S 28M 6.8ms 0.099 0.652 4.266 0.187 0.883 0.960 0.981
Ours (D+R) S 42M 8.2ms 0.096 0.627 4.201 0.186 0.885 0.961 0.982
Ours† (D) S 28M 6.8ms 0.100 0.644 4.251 0.187 0.882 0.960 0.981

Ours† (D+R) S 42M 8.2ms 0.098 0.621 4.215 0.185 0.885 0.961 0.982

(a) (b) (c) (d) (e) (f)

Figure 4. Qualitative evaluation with existing monocular depth estimation methods on the Eigen Split [8] of KITTI dataset: (a) input image,
(b) Monodepth [13], (c) Monodepth2 [14], (d) DepthHint [52], (e) PackNet-SfM [17] and (f) Ours (D+R).

As reported in Table 1, although ‘Ours (D)’ leverages a
rather simple encoder-decoder architecture, it achieves the
superior performance over existing methods, demonstrat-
ing the effectiveness of the proposed threshold learning ap-
proach. In ‘Ours (D+R)’, the monocular depth accuracy was
further improved by making use of the probabilistic refine-
ment module based on the uncertainty map and the PAC
layer in the RefineNet. We also evaluated the number of
parameters used and an inference time, noted as ‘#p’ and
‘time’, respectively. Our method uses relatively smaller or
similar number of parameters compared to other methods.
‘Ours†’ is obtained using the self-supervised ThresNet [37],
while ‘Ours’ indicates the results obtained using the super-
vised ThresNet. We found that their monocular depth ac-
curacy is almost similar. The following results including
ablation study were conducted with the supervised Thres-
Net. Fig. 4 shows the qualitative comparison with existing
methods on the KITTI Eigen Split [8] dataset. It was shown
that the proposed method recovers complete instances bet-
ter while preserving fine object boundaries.

5.3. Cityscapes

We also evaluated the performance of the proposed
method on the Cityscapes dataset. The Cityscapes dataset
provides only stereo images without the ground truth, and
thus the ThresNet trained with the KITTI dataset was used
to infer the threshold. Table 2 shows the quantitative eval-
uation on Cityscapes dataset [7] with the DepthNet and
RefineNet fine-tuned on the Cityscapes dataset, while the
ThresNet is freezed. We compared our results with Mon-
odepth2 [14], DepthHint [52] and PackNet-SfM [17]. We
set maximum depth to 80 meters with the per-image me-
dian scaling approach [57]. We used the SGM depth [19]
as ground truth for the evaluation. The outstanding perfor-
mance of our method supports the claim that the ThresNet
trained with the KITTI dataset shows a satisfactory gener-
alization capability for different datasets.

5.4. Evaluation on uncertainty estimation

To evaluate the performance of the uncertainty measure,
we use sparsification plots used in [21]. ‘AUSE’ denotes the
Area Under the Sparsification Error which quantifies how
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Table 2. Quantitative evaluation for monocular depth estimation results on Cityscapes validation dataset with fine-tuning on Cityscapes
training dataset. Numbers in bold and underlined represent 1st and 2nd ranking, respectively.

Lower is better Accuracy: higher is better

Method Data Abs Rel Sqr Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 [14] S 0.124 1.287 7.293 0.223 0.785 0.947 0.981
Struct2Depth [5] M 0.145 1.737 7.280 0.205 0.813 0.942 0.978
DepthHint [52] S 0.128 1.268 7.156 0.218 0.812 0.949 0.982

Gordon [16] M 0.127 1.330 6.960 0.195 0.830 0.947 0.981
Ours (D) S 0.123 1.141 6.735 0.204 0.844 0.962 0.985

Ours (D+R) S 0.115 1.125 6.584 0.195 0.857 0.963 0.986

(a) (b) (c) (d) (e) (f)

Figure 5. Qualitative evaluation for depth estimation with existing methods on Cityscapes validation dataset: (a) Input image, (b) Mon-
odepth [13], (c) MonoResMatch [48], (d) DepthHint [52], (e) PackNet-SfM [17] (f) Ours (D+R).

close the estimate is to the oracle uncertainty, which is lower
the better. ‘AURG’ denotes the Area Under the Random
Gain, which indicates how better it is compared to the case
without modelling, which is higher the better. In Table 3,
the uncertainty measure estimated by the proposed method
was compared with ‘Monodepth2-Log’ of Poggi et al. [36],
trained under the same setup as our experiments.

5.5. Ablation study

Threshold learning In Table 4, we conducted the abla-
tion study to validate the performance improvement by the
proposed threshold learning over existing threholding ap-
proaches [6, 46]. For a fair comparison, we obtained the re-
sults using the monocular depth network trained with only
the DepthNet (without the uncertainty decoder), when var-
ing thresholding functions. ‘Baseline’ represents the results
obtained using the confidence map without thresholding.
The results of [6] were obtained using the hard threshold-
ing of Fig. 2 (a) with τ = 0.3, following the setup of [6].
The performance of [6, 46] was almost similar, though the
method in [46] learned the threshold τ with the thresholding
function of Fig. 2 (b). We found that the regularization loss
−log(1− τ) [46], used to prevent the threshold τ from ap-
proaching 1, does not generate a meaningful variant for the
learned threshold due to the lack of explicit supervision for
the threshold learning. ‘Tonioni et al. [46] + LT ’ were ob-
tained using the thresholding function of Fig. 2 (b) and our
loss LT . The performance gain over ‘Tonioni et al. [46]’
demonstrates the effectiveness of LT . ‘Ours (D)’ achieves
a substantial performance gain, demonstrating the effective-
ness of the proposed threshold learning with LT .

Table 3. Quantitative evaluation for uncertainty estimation with the
state-of-the-art method on KITTI Eigen Split [8] dataset. Numbers
in bold indicate the better performance.

Abs Rel RMSE δ ≥ 1.25

Method AUSE AURG AUSE AURG AUSE AURG

Uncertainty [36] 0.022 0.036 0.938 2.402 0.018 0.061
Ours 0.021 0.048 0.765 2.881 0.025 0.080

Adaptability We also validated the effectiveness of our
method when applied to different network architectures,
e.g., PackNet [17]. Table 5 shows quantitative evaluation
results when using our confidence threshold learning and
probabilistic refinement on the PackNet architecture. ‘Pack-
Net (D)’ represents the results obtained using the Depth-
Net only, whereas ‘PackNet (D+R)’ is the results using both
DepthNet and RefineNet. We observed that our framework
also improves the monocular depth accuracy for the Pack-
Net architecture.
Uncertainty To evaluate the importance of using the esti-
mated uncertainty in the RefineNet, we compared the re-
sults obtained using the proposed depth refinement of (2)
and the simple depth refinement (df = d+ d′) without σ in
Table 6, demonstrating the effectiveness of the depth refine-
ment based on the uncertainty map.
Pseudo ground truth depth labels So far, all experiments
were conducted with the self-supervised pseudo depth maps
obtained using [53]. To validate the adaptability of our
framework with respect to the pseudo depth labels, we per-
formed additional experiments with the pseudo ground truth
depth maps generated by [47], which are trained with syn-
thetic data and fine-tuned with an self-supervised recon-
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Table 4. Comparison with other thresholding methods on the
KITTI Eigen Split [8] dataset. We evaluated the performance with
the supervised ThresNet, and LT is a cross-entropy loss.

τ Abs RMSE δ < 1.25

Baseline × 0.108 4.552 0.869
Cho et al. [6] fixed 0.102 4.441 0.874

Tonioni et al. [46] learned 0.101 4.453 0.878
Tonioni et al. [46] + LT learned 0.100 4.390 0.879

Ours (D) learned 0.099 4.266 0.883

Table 5. Quantitative evaluation of the results obtained by applying
our threshold learning and probabilistic refinement to the PackNet-
SfM architecture [17] on the KITTI Eigen Split [8] dataset.

Abs RMSE δ < 1.25

PackNet-SfM [17] 0.111 4.601 0.878
PackNet-SfM (D) 0.105 4.258 0.880

PackNet-SfM (D+R) 0.100 4.225 0.883

Table 6. Ablation study of the uncertainty map.

Abs Sqr RMSE RMSE log δ < 1.25

(2) w/o σ 0.099 0.661 4.298 0.188 0.881
(2) 0.096 0.627 4.201 0.186 0.885

Table 7. Quantitative evaluation when using pseudo depth labels
generated by [47] on the KITTI Eigen Split [8] dataset.

Abs Sqr RMSE RMSE log δ < 1.25

Ours (D) 0.102 0.728 4.281 0.189 0.880
Ours (D+R) 0.100 0.711 4.230 0.187 0.883

struction loss with meta-learning framework. Table 7 shows
that the monocular depth accuracy is still superior to state-
of-the-arts monocular depth estimation approaches.

5.6. Confidence evaluation

We validated the effectiveness of the proposed thresh-
old learning in terms of confidence prediction accuracy
by applying it to two confidence estimation approaches,
CCNN [38] and LAFNet [25]. We trained the two confi-
dence estimation methods with 20 out of 194 images pro-
vided in the KITTI 2012 training dataset [12]. Note that
the confidence estimation approaches [38, 25] are evalu-
ated by training them in a supervised manner. The area un-
der the curve (AUC) [20], which is a common metric for
confidence estimation approaches, was used for an objec-
tive evaluation. Refer to the supplementary material for de-
tails on measuring AUC and optimal AUC and more results.
Following confidence estimation literatures, input dispar-
ity maps used for predicting the confidence maps were ob-
tained using two popular stereo algorithms, ‘Census-SGM’
[19] and ‘MC-CNN’ [54].

Table 8 shows objective evaluation results for 200 im-
ages of KITTI 2015 dataset [33] and 15 images of Middle-
bury v3 dataset [40]. ‘w/τ ’ denotes our results using the

Table 8. Performance evaluation of confidence estimation for
KITTI 2015 and Middlebury v3 datasets with two popular stereo
matching methods C-SGM (Census-SGM) [19] and MC-CNN
[54]. AUC values are reported and the lower is the better.

KITTI 2015 MID 2014

C-SGM / MC-CNN C-SGM / MC-CNN

CCNN 1.868 / 3.190 9.486 / 9.787
CCNN w/τ 1.720 / 3.525 8.314 / 9.497
LAFNet* 1.797 / 3.051 8.895 / 9.660
LAFNet* w/τ 1.687 / 3.037 8.988 / 9.456
LAFNet 1.680 / 2.903 8.884 / 9.305
LAFNet w/τ 1.587 / 2.885 8.680 / 8.622

optimal 0.737 / 2.761 3.887 / 4.985

(a) color image (b) CCNN (c) LAFNet

(d) input disparity (e) CCNN w/ τ (f) LAFNet w/ τ

Figure 6. Qualitative results of confidence map on KITTI 2015
dataset using census-SGM.

soft-thresholding technique. LAFNet* denotes the LAFNet
[25] in which 3D cost volume is not used as an input. Our
approach consistently outperforms the original confidence
estimation methods, demonstrating the effectiveness of the
proposed threshold learning. Fig. 6 compares the confi-
dence maps visually. While the original confidence maps
contain ambiguous values for which it is difficult to de-
termine whether the depth label is correct, our thresholded
confidence map yields more distinct values that are close to
0 or 1. Such a binarization enables the estimated confidence
to have similar distribution to ground truth confidence, thus
improving a discriminative power.

6. Conclusion
In this work, we have proposed a novel framework for

monocular depth estimation based on pseudo depth labels
generated by self-supervised stereo matching methods. The
confidence map is used to exclude erroneous depth values
within the pseudo depth labels. The prediction errors in the
confidence map are further suppressed by making use of the
soft-thresholding based on threshold learning. Furthermore,
the probabilistic refinement module enables improving the
monocular depth accuracy with the help of the uncertainty
map. The proposed framework has shown impressive per-
formances over state-of-the-arts on several popular datasets.
It was also shown that threshold learning can also boost the
prediction accuracy of existing confidence approaches.
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