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resolution of all inputs can lose the detailed textural infor-

mation and considerably decrease the interpolation perfor-

mance, and using a shallower model likewise reduces the

average quality. To circumvent this problem, we propose

a novel dynamic framework that can adaptively decide the

specific local regions that are safe for performing such oper-

ations. Fig. 1 demonstrates the output of our model, where

the “safe” regions are either downscaled, passes through a

smaller number of layers, or both to reduce the computa-

tional complexity with minimal performance degradation.

For the proposed framework to dynamically allocate the

appropriate amount of computation for each local region,

we use the motion magnitude between two input frames

as the level of complexity. Specifically, we introduce SD

(Scale and Depth)-finder, which consists of two small meta-

networks that estimate whether to downscale the inputs or

exit the interpolation model early without passing through

the full model. The input of the SD-finder is the approxi-

mate motion between the two input frames, which is calcu-

lated by a simple difference image or an optical flow estima-

tion model. We then separate the input frames into multiple

local regions, so that different amount of computation can

be allocated for each region w.r.t. the corresponding scale

and depth predicted by the SD-finder. The final interpola-

tion is obtained by aggregating the outputs for all regions.

In summary, the proposed novel dynamic model enables

locally adaptive inference for efficient frame interpolation,

which effectively allocates proper computation by predict-

ing the input scale and model depth using the amount of mo-

tion as the complexity criterion. Compared to the baseline

frame interpolation model, the experimental results show

that our framework is possible to save almost 50% of com-

putation with little or no loss in performance when interpo-

lating 2K resolution frames. Also, we analyze the accuracy-

resource trade-off to investigate the missing pieces in mak-

ing video frame interpolation models more practical.

2. Related Works

2.1. Video frame interpolation

Research in deep-learning-based video frame interpola-

tion can be categorized into three directions: flow-based,

kernel-based, and the others.

The standard technique for video frame interpolation

aims to explicitly estimate the motion in the form of opti-

cal flow, warp the two input frames to the intermediate time

step, and synthesize the occluded regions [12, 47]. These

approaches introduced many novel ideas on how to better

compensate for the occluded regions at motion boundaries,

which include estimating flow in the voxel space [26], learn-

ing unsupervised or fine-tuned optical flow suited for frame

interpolation [17, 53], using additional context for better

synthesis [2, 3, 35, 40], recursively refining the estimated

flow and the warped output [22], and softmax splatting for

effective forward warping [36]. While being able to gen-

erate sharp and clean interpolations, the sequential process

of explicit motion estimation and frame synthesis may in-

crease the computational complexity of the model.

Kernel-based approach, also called adaptive convolu-

tion, is first proposed in frame interpolation by Niklaus et

al. [37], where they unify motion estimation and compen-

sation into a single convolution step with spatially-varying

kernel predictions. Since then, much progress has been

shown with novel ideas such as using separable convolu-

tions [38, 39], extending the adaptive kernel predictions to

be deformable [7, 21], combining with optical flow estima-

tion [2, 3, 44], or formulating it as a loss function [43].

Frame interpolation approaches that do not use either

adaptive kernels or optical flow include phase-based meth-

ods [32, 33], or direct pixel-level synthesis using deep net-

works [10, 27]. There are also a number of interesting

research directions that exploit cycle consistency [25, 45],

study non-linear motion models [24, 41, 52], or jointly con-

sider frame interpolation with other video processing tasks

such as deblurring [18, 46], super-resolution [20, 57], or

stabilization [8]. While these methods excel in terms of

performance, how to make the models computationally effi-

cient has been less studied. Recently, a compression-driven

interpolation network [11] is proposed and showed impres-

sive performance and efficiency. We take an alternative ap-

proach and present a novel dynamic framework to reduce

the computation for existing models, making them much

more practical to real-world usage. Note that [11] and our

method is orthogonal and can be jointly applied together.

2.2. Adaptive inference

Existing methods that make the model adaptive to its cur-

rent input typically aim to enhance the computational effi-

ciency of the network inference. Notable research direc-

tions include dynamically changing the inference path with

early exits [4, 15], allocating adaptive computation time to

different spatial regions [13, 48], adaptive skipping of some

layers or residual blocks [49, 51], or adaptively changing

the spatial resolution of the input images [30, 54]. Many

of these efforts focus on strategically saving computation

for “easy” samples while maintaining the overall accuracy,

however, their effectiveness was only demonstrated for the

standard image/video classification or detection tasks.

Recently, some techniques are employed for low-level

computer vision application, including dynamic inference

path selection for image denoising [55, 56] or using spa-

tially sparse convolutions for image super-resolution [23].

However, many advancements in the classification prob-

lems are not directly applicable to low-level tasks. For in-

stance, although changing the input resolution [30, 54] is

proven to be useful for problems that consider high-level

semantics of the visual data, downscaling can significantly

deteriorate the performance of low-level problems due to
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dp. Also, denote (Ip
0
)↓
sp

and (Ip
1
)↓
sp

as the Ip
0

and Ip
1

down-

scaled with a scaling factor sp, respectively. With fsp as the

super-resolution model, h as our interpolation model, and

H as the full combined model, the interpolated sub-region

Îpt is calculated as:

Îpt = H (Ip
0
, Ip

1
| sp,dp) (4)

= fsp

(

h
(

(Ip
0
)↓
sp
, (Ip

1
)↓
sp

∣

∣

∣
dp

))

, (5)

where H and h allow early exit with respect to dp.

Our final output is generated by merging all interpolated

sub-regions. In the following sections, we describe the de-

tailed training process and how each component is con-

nected to be differentiable and hence end-to-end trainable

with backpropagation.

3.2. Scale and depth finder (SD­finder)

The role of our proposed SD-finder is to decide the in-

ference path in our dynamic framework, thereby allocating

the appropriate amount of computation to each local region.

The two components of SD-finder, ScaleNet and DepthNet,

receive different inputs and do not share any parameters.

Specifically, the magnitude of the flow map (Fmag) passes

through the ScaleNet to generate the scale map s, while the

difference of image I↓
0
− I↓

1
is used as the input to Depth-

Net to generate the depth map d. The sizes of s and d are

R
ns×nh×nw and R

nd×nh×nw , respectively, where ns is the

number of scaling factors and nd is the full depth of our in-

terpolation model. In practice, we use ns = 3 for the three

scaling factors of 1, 2, and 4, and nd = 5 for the number of

residual groups in CAIN.

Let us first consider sp, the scale variable of the p-th local

region. After setting the scale factor si (i = 1, 2, ..., ns), we

define πi as the probability of choosing the scale si. From

the categorical distribution of π1, π2, ..., πns
, we can draw

the discrete sample ms
p using the Gumbel-Max trick [29],

ms
p = one hot

(

argmax
k

[gk + logπk]

)

, (6)

where gj ∼ Gumbel(0, 1) is an i.i.d noise sample. How-

ever, sampling from a categorical distribution makes our

framework non-differentiable. Therefore, we relax ms
p to

be continuous using the Gumbel-Softmax trick [16, 28], re-

placing the argmax operation in Eq. (6) with a softmax func-

tion. The i-th element of ms
p is calculated as

ms
p,i =

exp [(log(πi) + gi)/τ ]
∑

k exp [(log(πk) + gk)/τ ]
. (7)

We use the fixed temperature τ = 1 in our experiments.

Although the continuous relaxation makes our model

differentiable in the backward pass, choosing the scale path

for the forward pass still needs to be discrete. Thus, we

use the Straight-Through (ST) Gumbel-Softmax trick [16]

which allows ms
p to be discrete as in Eq. (6) for the forward

pass and continuous as in Eq. (7) for the backward pass.

At test time, the discrete mask is sampled, but we do not

add gumbel noise gj when applying the argmax operation

to remove the randomness.

The depth variable, dp, follows the similar process to sp.

Sampling the discrete depth md
p, a one-hot representation of

dj , can be done as in Eq. (6), and its continuous relaxation

can be obtained as in Eq. (7). Training with the discrete

depth also uses the ST Gumbel-Softmax trick.

Note that, the calculation of motion magnitude (Eq. (1)-

(2)) and passing through SD-finder (Eq. (3)) are additional

components that are not existent in the original CAIN

model. Thus, to keep this extra computation minimal, we

use an extremely simple 3-layer CNN as the architectures

of our scale/depth networks. Since we also downscale the

input frames before calculating the motion magnitude, the

extra computation induced by calculating Eq. (1)-(3) is only

1-5% of the original full model for an HD-resolution input

and becomes negligible for higher input resolution.

3.3. Dynamic interpolation model

In this section, we describe how to modify the baseline

interpolation model (CAIN, denoted as h) to be dynamic,

with multiple scale paths and allowing for early exits. As

illustrated in Fig. 2, each local region of the input frame is

downscaled w.r.t. the scale si. The one-hot representation of

the scale sample, ms
p (see Eq. (6)), has binary values in {0,

1} and can be used as a masking variable. Then, the output

interpolation calculated using Eq. (4) can be expressed as

Îpt =
∑

i

ms
p,i · H (Ip

0
, Ip

1
; si,dp) . (8)

Using the ST Gumbel-Softmax trick described in Sec. 3.2,

we can differentiate through the discrete switching of the

inference path for each scale.

To incorporate the depth variable dp, we set nd as the

number of exits to our interpolation model h ( A©- E© in

Fig. 2). Denoting the output of each computation block of h
(residual group of CAIN) as Bp

j , (j = 1, 2, ..., nd), we can

change the expression in Eq. (5) into

Îpt = fsp (h (·, · | dp)) = fsp





∑

j

md
p,j · B

p
j



 . (9)

Similar to switching the scale, we can also differentiate

through the depth switches using the ST Gumbel-Softmax

trick. If we consider all masking variables for the scale and

depth, the final interpolation for the current local region p
can be computed as

Îpt =

ns
∑

i=1

ms
p,i · fsp





nd
∑

j=1

md
p,j · B

p
j



 . (10)
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We can obtain the full-frame prediction Ît by merging all

sub-regions without overlap.

3.4. Training

Objective We use two types of objective functions: re-

construction loss Lr to measure the interpolation accuracy,

and the resource-aware regularization term R to reduce the

computational complexity. We use a standard pixel-wise ℓ1
loss as Lr. For R, following the approaches used in re-

search areas for neural architecture search [6, 19, 50], we

calculate the number of floating point operations (FLOPs)

of each component of our dynamic model and directly use it

as the regularization term. Specifically, since the total num-

ber of operations is proportional to the input size, we divide

it into the spatial dimension and compute per-pixel FLOPs.

Let us denote the function to calculate the FLOPs of a model

as C. Given a fixed inference path with the scale si and the

depth dj and the corresponding one-hot mask vectors ms
p,i

and md
p,j , the computational resource for the local region p

can be calculated as

Rp =

ns
∑

i=1

nd
∑

j=1

ms
p,i ·m

d
p,j · C (H(·, · ; si, dj)) . (11)

Combining all regions, the final per-pixel FLOPs becomes

R =
1

H ×W

np
∑

p=1

|p| · Rp, (12)

where H and W are the height and width of the original

input resolution, |p| is the area of p, and np (= nh ×nw) is

the number of local regions. Note that, in practice,
∑np

p=1
|p|

can be bigger than H × W if we make p overlapping with

its neighboring regions to mitigate the boundary effects.

The final objective function combines both terms with a

hyperparameter λ, which controls the trade-off between the

accuracy and efficiency:

Ltotal = Lr + λR. (13)

Using a small λ will push the model to use the original reso-

lution and the full depth to achieve high accuracy with more

computation. The larger λ will make the model more ef-

ficient by appropriately downscaling the spatial resolution

as well as exiting the interpolation model early, but perfor-

mance may drop accordingly.

Curriculum training Although our framework is differ-

entiable, end-to-end learning of all components at once

leads to unstable training, which attributes to the the highly

discretized FLOPS for each inference path. Therefore, we

separate the training into several steps, and design the train-

ing curriculum as follows:

1. Pretrain the baseline multi-exit version of the frame

interpolation model (CAIN, h), so that outputs Bj , j =
1, ..., nd from any exit show good interpolations.

2. Using the different exits, jointly train the DepthNet of

the SD-finder, the interpolation network (h), and the

super-resolution network (f ). We fix the scale to the

original input resolution for this step.

3. Fix the parameters of the DepthNet and train the

ScaleNet jointly with h and f until convergence.

In step 1, the computational complexity is fixed, so we

train the model with Lr only. On the other hand, steps 2

and 3 incorporates the full objective including the resource-

aware regularization. However, since we decompose the

training of depth estimation (step 2) and scale estimation

(step 3), calculation of the per-pixel resource consumption

in Eq. (11) can be reduced to (see supplementary)

Rp = λs

ns
∑

i=1

ms
p,i · C

(

H
i,d̂

)

+ λd

nd
∑

j=1

md
p,j · C (Hŝ,j) ,

(14)

where we abuse the notation Hi,j to indicate the inference

path through H(·, ·, ; si, dj), and ŝ and d̂ denotes the fixed

scale and depth, respectively.

4. Experiments

4.1. Datasets

In this work, we use 3 datasets for training and evaluation.

Vimeo-90K [53] triplet is a widely-used dataset due to its

clean, high-quality frames with little noise. However, its

spatial resolution is small (448 × 256), making it not suit-

able for training the models that aims to handle high reso-

lution frames with extremely large motion. Thus, we use

Vimeo-90K only for the first step of our traning curriculum.

REDS-120fps [34] is a challenging high-fps video dataset

recently made public, and all frames are of HD resolution

(1280 × 720). We train the remaining steps (2 and 3)

with REDS-120fps by randomly sampling three consecutive

frames with one (60 → 120-fps) or two (30 → 60-fps) frame

gaps. For validation, we evaluate on the first 50 frames for

each sequence in the validation split in 30 → 60-fps setting

since 30-fps is common in many real-world videos.

Xiph1 videos are used for evaluation in [36], and we follow

the similar settings. While the original frames are near 4K

resolution (4096× 2160), we use the downsampled version

as Xiph-2K (2048 × 1080) and the center-cropped version

as Xiph-“4K”, where the resolution is 2K but the motion

magnitude levels are of 4K.

1https://media.xiph.org/video/derf/
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Table 1. Quantitative results for the proposed framework on Xiph videos. Computational complexity is measured in tera-FLOPs (TFLOPs)

and CPU/GPU time (sec.), and the performance is measured in PSNR (dB) and SSIM.

Xiph-2K Xiph-“4K”

TFLOPs↓ CPU time↓ GPU time↓ PSNR↑ SSIM↑ TFLOPs↓ CPU time↓ GPU time↓ PSNR↑ SSIM↑

SepConv [38] 2.078 11.07 0.218 34.85 0.9308 2.078 11.10 0.219 32.10 0.8861

SuperSloMo [17] 2.957 17.86 0.337 33.88 0.9247 2.957 18.12 0.352 31.99 0.8800

AdaCoF + [21] 5.433 26.70 0.518 35.09 0.9309 5.433 26.72 0.522 32.19 0.8818

DAIN [2] 13.22 66.43 4.619 35.97 0.9400 13.22 66.45 4.620 33.51 0.8983

CAIN [10] 3.133 10.64 0.225 35.21 0.9366 3.133 10.35 0.239 32.56 0.9005

CAIN-SD (Ours) 1.598 8.83 0.237 34.68 0.9235 1.983 9.25 0.242 32.92 0.8934

Table 2. Validation set performance on REDS-120fps.

TFLOPs↓ CPU time↓ GPU time↓ PSNR↑ SSIM↑

CAIN [10] 1.305 4.15 0.103 28.62 0.8303

CAIN-S 1.507 4.76 0.127 28.58 0.8281

CAIN-D 1.008 3.67 0.101 28.29 0.8214

CAIN-SD 0.882 3.82 0.122 28.32 0.8212

4.2. Implementation details

In general, we follow the details from the original

CAIN [10]. We use PWC-Net [47] for optical flow esti-

mation, and the mini version of CARN, CARN-M [1], is

used for the image super-resolution (SR) model. We use the

patch size of 256 × 256 To train the interpolation model.

For calculating the SD-finder inputs, however, we down-

scale the input frames to have the minimum edge length of

192 to keep the additional computation minimal. We use

PyTorch [42] framework for all of our implementation. We

use a single NVIDIA Quadro RTX6000 for training, and

also when measuring the test time. The code and the pre-

trained models will be made public for reproducibility and

further research. For the additional training details, please

refer to the supplementary materials.

4.3. Quantitative comparison

Metrics. For the computational complexity, we calculate

the number of floating-point operations (FLOPs) and the ac-

tual running time (latency) in CPU and GPU. For the perfor-

mance measures, we use the standard peak signal-to-noise

ratio (PSNR) and structural similarity index (SSIM).

Compared models. We report three variants of the pro-

posed method, using CAIN as the baseline. The scale-only

version only considers the ScaleNet of SD-finder by skip-

ping step 2 of our training curriculum, and we denote it

as CAIN-S. For this setting, we do not use multi-exits and

fix the depth of the interpolation model to maximum (origi-

nal). The depth-only version skips the third training step and

only consider the DepthNet of SD-finder, which is denoted

as CAIN-D. Lastly, both scale and depth are adaptively re-

duced for CAIN-SD, which is our final version. We also re-

port the performance and the computational complexity of

the existing frame interpolation models: SepConv [38], Su-

perSloMo [17], AdaCoF + [21], DAIN [2], and CAIN [10].

Results. The quantitative results for Xiph-2K and Xiph-

“4K” videos are shown in Table 1. For Xiph-2K, our final

CAIN-SD model can reduce the FLOP of the original CAIN

both by 49%, with small loss in the performance measures.

However, for the actual CPU/GPU latency, which includes

all parts (optical flow estimation, SD-finder, interpolation,

and super-resolution) is not improved as much; while the

CPU runtime is improved by 17%, CAIN-SD runs slightly

slower than the original CAIN on GPU. This is mainly due

to the slow latency in SR model; out of 236.7 ms average

GPU latency, SR model alone consumes 71.3 ms. The re-

maining parts are indeed made efficient by running in 165.4

ms. We believe that jointly learning a more efficient SR

model with our framework can further reduce the CPU/GPU

latency, which remains as our future work.

For Xiph-“4K”, CAIN-SD can save 36.7% FLOPs com-

pared to the baseline, with even higher PSNR. We believe

the higher performance is due to the scaling capability of

CAIN-SD. Since 4K videos usually contain extremely large

motions (sometimes over 100 pixels), it is hard to interpo-

late or compensate for using the existing models. However,

by downscaling the inputs, the effective amount of motion

is reduced by the scaling factor, and our models can find

the correct intermediate position better, as shown in the vi-

sual results (Sec. 4.4). We believe that further exploiting the

scale space is crucial for handling high-resolution frames

for future research. Note that, although both Xiph-2K and

“4K” have the same spatial resolution and the FLOPs for

the existing models stay the same, the proposed method au-

tomatically saves the computation w.r.t. the inherent motion

in order to improve the efficiency.

Compared to the existing frame interpolation models

other than the baseline CAIN, our CAIN-SD always require

the smallest FLOPs and CPU runtime. SepConv shows the

fastest GPU latency but with more FLOPs; also, the per-

formance of CAIN-SD for Xiph-“4K” is significantly better

than SepConv, with more than 0.8dB PSNR gain. DAIN

shows the best performance, but it is extremely slow with

heavy compute. Compared to SuperSloMo and AdaCoF +,

CAIN-SD is computationally more efficient in all measures
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Table 3. Effects of resource-aware regularization hyperparameters.

We report the quantitative results for Xiph-2K videos.

λs λd TFLOPs↓ PSNR↑ SSIM↑

5× 10−9

5× 10−10 2.154 33.94 0.9178

5× 10−11 1.598 34.68 0.9235

5× 10−12 3.804 35.33 0.9334

5× 10−8

5× 10−11

1.827 31.10 0.8599

5× 10−9 1.598 34.68 0.9235

5× 10−10 1.699 34.71 0.9244

with large motion. For additional qualitative comparison in

different scenes, please refer to our project page: https:

//myungsub.github.io/adaptive-int.

4.5. Ablation study

We analyze how each aspects of our proposed framework

affects the trade-off between performance and efficiency.

Accuracy-resource trade-off. In Table 3, we vary λs and

λd to investigate the changes in performance and FLOPs.

First, we fix λs to the value for our final CAIN-SD model,

5 × 10−9, and modify λd. We conjecture that as λd gets

smaller, the resource-aware regularization term decreases

and the loss is more dominated by the pixel-wise recon-

struction errors, leading to higher performance. However,

FLOPs for λd = 5 × 10−10 is higher than λd = 5 × 10−9

with a large margin. We attribute this phenomenon to the

mismatch between the ratio between λs and λd. Though we

fix each hyperparameter to examine its effects separately

for this analysis, we found λd

λs
= 0.01 to be a good ratio to

control the accuracy-resource trade-off in practice.

Setting λd fixed with varying λs also shows a similar

phenomenon, where the performance increases with smaller

value of λs. When λs = 5 × 10−8, however, we observe

that the scales predicted by SD-finder is highly polarized

to either extremely downscale with a scaling factor of 4 or

to remain in its original resolution. We believe that down-

scaling with such a big scaling factor excessively lose the

image details, making the regions not able to recover the

performance. Since the other regions have to make up for

the low performance, they remain in the original scale and

contribute to make FLOPs larger.

Effects on patch size. Although the training patch size

for our method is fixed to 256, we can change the patch size

at the inference stage, so we study its effects in Table 4. For

the ‘full frame’, we regard the whole input frame as a single

large patch. However, in full-frame test setting, the perfor-

mance deteriorates significantly since downscaling the in-

put or exitting the model early is conducted as a whole, and

the regions with detailed texture get over-smoothed. The

large patch size of 512 shows higher performance with more

computation due to the bigger overlap size of the neighbor-

ing patches. When we use a small patch size of 128, the

Table 4. Effects of patch size at inference stage for Xiph-2K.

Test TFLOPs↓ GPU time↓ PSNR↑ SSIM↑

Full frame 1.530 222.2 33.24 0.8972

512 2.190 304.0 34.88 0.9248

256 1.598 236.7 34.68 0.9243

128 1.712 266.6 33.89 0.9184

accuracy is considerably lower than 256, even with more

FLOPs. We believe this is due to the high resolution of the

input frames, and the SD-finder may not be able to decide

the appropriate scale and depth with such limited spatial

context. The result of patch size 256 is the closest to the

optimum in the accuracy-resource trade-off, which explains

why we chose 256 for all other experiments.

Varying the inputs and weights of SD-finder. For our

SD-finder, ScaleNet receives the magnitude of the opti-

cal flow estimation as its input, and DepthNet receives the

difference image. Using the other combinations of input

modalities for SD-finder did not show any improvements;

e.g. 1) using both modalities resulted in the same accu-

racy with slightly more FLOPs, 2) ScaleNet without flow

magnitude input or DepthNet without difference image in-

put resulted in significantly worse accuracy, and 3) Using

RGB images as additional inputs also worsened the accu-

racy and the computational complexity. For more detailed

results and analyses, please refer to our project page.

5. Conclusion

In this work, we exploit the accuracy-resource trade-off

of the existing video frame interpolation model and present

a dynamic framework to improve its computational effi-

ciency. The proposed SD-finder adaptively estimates the

input resolution (scale) and the model depth, allocating the

proper amount of computation for each local region by de-

ciding the inference path w.r.t. the level of motion between

the two input frames. This is achieved by allowing our in-

terpolation model to have multiple exits and incorporating a

super-resolution model to restore the textural details of the

downscaled inputs. Consequently, the experimental results

show that the proposed framework can save almost 50%

of the FLOPs on average compared to the baseline while

maintaining the interpolation quality. Our framework is es-

pecially more effective in high-resolution scenarios, where

many existing approaches fail to generate accurate interpo-

lations even with high computational cost.
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