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Abstract

Multi-object tracking and segmentation (MOTS) is im-
portant for understanding dynamic scenes in video data.
Existing methods perform well on multi-object detection
and segmentation for independent video frames, but track-
ing of objects over time remains a challenge. MOTS meth-
ods formulate tracking locally, i.e., frame-by-frame, leading
to sub-optimal results. Classical global methods on track-
ing operate directly on object detections, which leads to a
combinatorial growth in the detection space. In contrast,
we formulate a global method for MOTS over the space of
assignments rather than detections: First, we find all top-k
assignments of objects detected and segmented between any
two consecutive frames and develop a structured prediction
formulation to score assignment sequences across any num-
ber of consecutive frames. We use dynamic programming to
find the global optimizer of this formulation in polynomial
time. Second, we connect objects which reappear after hav-
ing been out of view for some time. For this we formulate an
assignment problem. On the challenging KITTI-MOTS and
MOTSChallenge datasets, this achieves state-of-the-art re-
sults among methods which don’t use depth data.

1. Introduction

Multi-Object Tracking and Segmentation (MOTS) not
only requires to detect and segment objects in a video, but
also asks to assign consistent IDs, i.e., each visible instance
of the same object is always given the same ID. MOTS
is important for understanding scenes in a video and is
crucial for autonomous driving, robotics, agricultural and
biomedical data analysis, etc. While the MOTS sub-task
of multi-object detection and segmentation on individual
video frames has received a considerable amount of atten-
tion [14, 35, 9, 13, 42, 40, 17, 18, 19, 16], tracking of objects
over multiple frames remains a challenge, especially in the
presence of occlusions and viewpoint variations.

Tracking of objects over a sequence has been addressed
using batch and online-methods. The former assumes
an entire sequence is available, while the latter operates
frame-by-frame. These methods face two main challenges.
Firstly, current MOTS methods (batch or online) formu-
late tracking locally. We note that accurate global track-

ing is important to understand complex environments, as
it ensures consistency in preserving identities of objects
over a long period. Classical global batch methods for
multi-object tracking (MOT) have been proposed in the past
[20, 3, 59, 4, 49, 2, 55]. These formulations face the second
challenge: Tracking is formulated directly on object detec-
tions [20, 3, 59, 4, 49, 2, 55], which leads to a combinatorial
growth of options. We note that directly formulating track-
ing on detections seems appealing because those are the ob-
jects of interest. However, this form of data representation
also complicates optimization because one needs to solve
for the best path for each object in the video. Note that the
number of objects is generally unknown.

To address both challenges, we propose to formulate
tracking over the space of assignments rather than object
detections. For this, we first find the top-k assignments
of object detections (and segmentations) between any two
consecutive frames. This is efficiently doable using the
Hungarian-Murty algorithm [34]. We then develop a struc-
tured prediction formulation which globally scores an as-
signment sequence rather than a detection sequence. By
finding the global optimizer of the structured formulation in
polynomial time using dynamic programming we can ad-
dress tracking in MOTS. We jointly learn the tracking pa-
rameters and the detection/segmentation network. Further,
to establish long term connections, we introduce a post-
processing step which associates objects over longer time
intervals. This step uses an assignment problem to construct
long-term connections between previously unassigned ob-
ject detections and detection sequences.

On the challenging KITTI-MOTS and MOTSChallenge
datasets [54], the method achieves state of the art results on
MOTS when compared to other 2D methods, i.e., TrackR-
CNN [54] and PointTrack [58]. On the KITTI-MOTS test
data, we improve upon PointTrack [58] (the next best 2D
method) by 14% (car) and 9% (pedestrian) in association
(AssA) and 8% (car) and 4% (pedestrian) overall (HOTA).
On the MOTSChallenge test data, we improve upon Point-
Track [58] by 5% on sMOTSA. A qualitative comparison
with PointTrack [58] is shown in Fig. 1. We also improve
upon MOTSFusion [27], a 3D method requiring depth in-
formation, on pedestrian tracking on the KITTI-MOTS test
data (8% improvement in association (AssA), 5% improve-
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Figure 1. Use of assignment space better preserves identities of objects when compared to PointTrack [58]. We highlight the identity
switches from PointTrack using yellow rectangles. Our method is able to recover those identities (highlighted using cyan rectangles). For
example, in the last 2 columns (right-most example), Point track wrongly identifies two different cars to be the same (row 1 and 2). The
mismatch is continued forward (row 3).

ment overall (HOTA)). Quantitative results are summarized
in Tab. 1, Tab. 2 and Tab. 6. To establish generality, we
also study our approach on the MOT task and compare with
other MOT batch methods (Tab. 7).

2. Related Work
2.1. Multi-Object Tracking

Due to recent progress in object detection [13, 42, 40],
tracking-by-detection has become a leading paradigm in
multiple object tracking (MOT) [56]. MOT methods per-
form tracking on detected bounding boxes, and are broadly
partitioned into two categories: batch-methods and online-
methods. We review both of them next.
Batch methods. Batch methods assume all frames in a se-
quence to be available, and globally solve for object tracks.
Hierarchical track association [20], global trajectory opti-
mization via dynamic programming [3] and network flow
[59, 4, 49, 2, 55] have been proposed in the past. These
approaches work directly on object detections. While ele-
gant solutions were formulated to work with a large num-
ber of detections, some of the approaches were limited to
tracking only a few objects. For instance, Berclaz et al. [3]
describe a min-cost flow approach, that tracks up to 6 peo-
ple in a video. In a typical MOTS task, 100s of objects
may be present. Multiple Hypotheses Tracking (MHT) [41]
and Joint Probabilistic Data Association (JPDA) [11] were
used in classical batch tracking [57, 47, 38]. But they re-
quire highly efficient pruning of the detection search space
to reduce the combinatoric growth. For instance, Kim et
al. [21] proposed a modern formulation of a classical MHT,
utilizing rich appearance features of objects from deep-nets.
Rezatofighi et al. [43] proposed a computationally tractable
approximation to the original JPDA algorithm and achieved
SOTA performance on tracking.
Online methods. Online MOT methods rely on past video
frames to estimate the current state [25, 53, 20, 46, 37, 48].
For example, DeepSORT [56] uses motion estimates from
a Kalman filter and appearance features from a convolu-
tional neural net to link detections locally over time. Luo

et al. [30] perform end-to-end detection and tracking in 3D.

2.2. Multi-Object Tracking and Segmentation
Deep segmentation networks [10, 26, 45, 14, 9, 35] per-

form remarkably well in image segmentation tasks. Re-
cently mask-based tracking is gaining popularity as it is of-
ten more robust than tracking of bounding boxes [54].

Mask-based tracking on the KITTI dataset was per-
formed using stereo information [37]. Alternatively, joint
tracking and segmentation of objects via conditional ran-
dom fields was also discussed [32]. While many of these
methods perform well on specific tasks, their performance
could not be evaluated comprehensively previously, due
to the lack of MOTS spcific datasets [54]. Voigtlaender
et al. [54] created the KITTI-MOTS and MOTSChallenge
datasets, provide new metrics to evaluate the MOTS task
and also proposed the TrackRCNN baseline. In TrackR-
CNN [54], MaskRCNN [14] is augmented via 3D convo-
lutional filters to generate temporally enhanced features.
Tracking is performed by an association head, that is trained
to re-identify objects. However, the approach is often prone
to ID switches. MOTSFusion [27] is a batch method, that
addresses the task of tracking in 2 steps. First, frame-
by-frame local assignments of objects are obtained using
the Hungarian algorithm [33], which generates short tracks.
Following this, 3D reconstruction of objects is performed to
join the short tracks based on motion consistencies. MOTS-
Fusion [27] depends on multiple data modalities like cam-
era egomotion and depth maps, which may not be avail-
able for all datasets. For example, MOTSFusion cannot
be tested on the MOTSChallenge dataset [54] which lacks
such modalities. The recently introduced PointTrack [58]
learns instance embeddings on segments by considering im-
age pixels as unordered 2D point clouds. Tracking is per-
formed locally using the Hungarian algorithm [33].

In prior MOTS works [27, 58], the Hungarian algorithm
[33] is used to get local frame-by-frame assignments of de-
tections. However, a set of best local assignments calculated
on consecutive frames is not necessarily globally optimal
over an entire video. This sets the stage for a dynamic pro-
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 (b) Assignment Space(a) Original Detection Space

Figure 2. Overview of our approach (Sec. 3). (a) shows the detection space D = {Dt}Tt=1 where Dt = {dt1, dt2, . . . } represents the set
of all detections at frame t (Sec. 3.1). We represent detections as nodes. Note that by detections, here, we mean both bounding boxes and
segmentations. c(dt−1

i , dtj) is the cost of assigning detection dt−1
i to detection dtj . (b) shows the assignment space A = {At} (Sec. 3.1),

where At = {at1, at2, . . . , atkt} denotes the set of kt best assignments for frame-pair (t − 1, t), ordered by ascending cost. The global
minimum cost path is highlighted in light red (Sec. 3.2). As described in Sec. 3.1, φ2(y

t, yt+1) denotes the edge cost between assignments
atyt and at+1

yt+1 . The node cost of each assignment node is represented by φ1(y
t) (not shown in figure for simplicity).

gramming based approach for MOTS which optimizes for
the best track for each object in a video. However, as men-
tioned earlier, global optimization over the space of object
detections is difficult if the number of objects is large and
unknown.

Different from the aforementioned approaches, we pro-
pose a batch method for MOTS by formulating a structured
prediction that directly infers the assignment of detected
and segmented objects globally across video frames. We
argue that it is much simpler to operate over a pruned space
of assignments rather than over the space of detections: this
formulation requires to only find a single optimal path.

2.3. Structured Prediction
Structured prediction is particularly suitable for joint

prediction of multiple variables: it permits to exploit the
dependencies between the involved variables while explic-
itly modeling their correlations. Structured prediction has
been used in numerous computer vision applications like
segmentation [1], localization [7, 24], pixel-wise classifica-
tion [51], etc. In [50, 55, 23] a structured prediction-based
approach was adopted for the task of MOT. In this work, we
use structured prediction for the MOTS task.

3. Structured Prediction using Assignments
The goal of multi-object tracking and segmentation is to

detect and segment objects in individual frames and track
the detections and segmentations of the same object across
frames of a given input sequence. An overview of our two-
step batch approach is given in Fig. 2 (step 1) and Fig. 3
(step 2). Step 1 detects, segments and tracks objects that
are missed for at most one frame via an end-to-end trained
assignment-based formulation. Step 2 links tracks obtained

from step 1 that were interrupted for more than one frame,
e.g., due to occlusions. As current deep-nets perform multi-
object detection and segmentation well [14, 9, 35], we focus
on the tracking aspects of the MOTS task and follow prior
work w.r.t. detection and segmentation.
Overview. As shown in Fig. 2, after a deep-net yields de-
tections and segmentations for T frames, we compute the
top-k (the k best) detection assignments between the T − 1
consecutive frame pairs using the Hungarian-Murty algo-
rithm [34]. Subsequently, we formulate a structured predic-
tion over the assignment space (k assignments for T − 1
consecutive frame pairs) as discussed in Sec. 3.1. To solve
this formulation and obtain a globally optimal minimum-
cost path, we use dynamic programming. This is discussed
in Sec. 3.2. We describe end-to-end learning of the param-
eters of the structured prediction formulation and the de-
tection/segmentation deep-net in Sec. 3.3. Finally and as
illustrated in Fig. 3, we uncover long-range assignments in
a post-processing step via an assignment formulation over
the space of tracks from step 1. See Sec. 3.4 for details.

3.1. Assignment-based Formulation
Assume a deep-net yields a set of detections Dt =

{dt1, dt2, . . . } for every frame t in a video. Fig. 2a uses
nodes to illustrate the detections obtained in all T frames,
i.e., D = {Dt} ∀t ∈ {1, . . . , T}. Each detection is linked
to a set of node attributes, which includes the corresponding
segmentation mask, an appearance feature vector, the video
frame and the optical flow computed between the previous
frame and the current frame in the video.

We first construct the assignment space using the k best
assignments for the T −1 consecutive frame pairs. Then we
devise a cost function for a sequence of assignments.
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Constructing assignment space. Formally, we use the ma-
trix at ∈ {0, 1}|Dt−1|×|Dt| to represent an assignment be-
tween detections Dt−1 at time t − 1 and detections Dt at
time t. Specifically, at(i, j) = 1 indicates that detection
dt−1i is assigned to detection dtj . The row sum and column
sum of at are enforced to equal 1. To enable that detections
don’t always have to be assigned, we introduce auxilliary
detections, representing ‘no assignment.’ Since it is hard
to optimize over all possible assignment matrices between
all consecutive frame pairs, we first reduce the space of as-
signments between consecutive frames. For this we find the
kt best assignments for every pair (t − 1, t) of consecu-
tive frames from the set of (max{|Dt−1|, |Dt|} + 1) · . . . ·
(max{|Dt−1|, |Dt|}−min{|Dt−1|, |Dt|}+ 1) possible as-
signments. This is efficiently possible using the Hungarian-
Murty algorithm [34]. We use Yt = {1, . . . , kt} to repre-
sent the indices of the top kt best local assignments between
frame pair (t − 1, t). In our case kt is chosen to equal the
minimum of 20 and the number of possible assignments.
Every yt ∈ Yt refers to one assignment matrix atyt . E.g.,
yt = 1 refers to the best local assignment

at1 = arg min
at∈At

∑
dt−1
i ∈Dt−1,dtj∈Dt

at(i, j)c(dt−1i , dtj),

which can also be obtained using the Hungarian algorithm
[33], while yt = 2 refers to the second best assignment at2,
etc. The constraint set At ensures that at is a valid assign-
ment by enforcing that the row sum and the column sum of
at are equal to 1. One might argue that the actual assign-
ment space is much larger, and pruning the local space to
the 20 best assignments is sub-optimal. Empirically we find
that any kt ≥ 15 is a reasonable choice. Our cost function
is well optimized, so that the optimal assignment lies within
the first 20 best local assignments. (This is demonstrated
with the help of Tab. 4 and Fig. 4.)

The cost of assigning detection dt−1i to detection dtj is
given by

c(dt−1i , dtj) = λioufiou(dt−1i , dtj)+ (1)

λappfapp(dt−1i , dtj) + λdistfdist(d
t−1
i , dtj),

where fiou(dt−1i , dtj) is the intersection over union calcu-
lated between the segmentation dtj and the segmentation
dt−1i warped to frame t using optical flow. The optical flow
is calculated using RAFT [52]. We use fapp(dt−1i , dtj) to
denote the Euclidean distance between the appearance fea-
ture vectors for detections dt−1i and dtj . We get this feature
from PointTrack [58]. fdist(dt−1i , dtj) denotes the Euclidean
distance between the bounding box centers of the detections
dt−1i and dtj . The parameters λiou, λapp and λdist are train-
able. We discuss learning in Sec. 3.3.
Assignment sequence cost. Fig. 2b represents the assign-
ment space discussed above. Each possible assignment atyt

with yt ∈ Yt is illustrated via a plate. Note that each plate,
i.e., each assignment between two consecutive frames, has
a unary cost when being selected:

φt1(yt) =
∑

dt−1
i ∈Dt−1,dtj∈Dt

atyt(i, j)c(d
t−1
i , dtj). (2)

Intuitively, we accumulate the costs of all assignments
(dt−1i , dtj) that are indicated by assignment matrix atyt .
Moreover, a pair of consecutive plates (yt, yt+1) represent-
ing frame pairs (t− 1, t) and (t, t+ 1) has a pairwise cost

φt2(yt, yt+1) =
∑

dt−1
i ∈Dt−1,dts∈Dt+1

at,t+1
yt,yt+1(i, s)c2(dt−1i , dt+1

s ).

(3)
Here, matrix at,t+1

yt,yt+1 = atyt ·a
t+1
yt+1 represents the local track

of assignments from time t− 1 to time t+ 1. Intuitively, if
there exists a local track of assignments from detection dt−1i

via dtj to dt+1
s given the assignment matrices atyt and at+1

yt+1 ,
then we pay cost c2(dt−1i , dt+1

s ). This cost is computed via:

c2(dt−1i , dt+1
s )=λiou,2fiou,2(dt−1i , dt+1

s )+

λapp,2fapp(dt−1i , dt+1
s ) + λdist,2fdist(d

t−1
i , dt+1

s ). (4)

Note that in Eq. (4) we refer to the intersection over union
using fiou,2 as the detections are warped by two frames, i.e.,
from t−1 to t+1. The parameters λiou,2, λapp,2 and λdist,2
are trained, which is discussed in Sec. 3.3.

We now discuss how to find the optimal sequence of as-
signments given the costs defined in Eq. (2) and Eq. (3).

3.2. Inference via Dynamic Programming
Given the costs defined in Eq. (2) and Eq. (3), our ob-

jective is to find the minimum-cost assignment sequence
y∗ = (y1,∗, . . . , yT,∗) ∈ Y =

∏T
t=1 Yt, picking exactly

one assignment per frame pair. Formally, we address

y∗ = arg min
y∈Y
L(y) ,

T∑
t=1

φt1(yt) +

T−1∑
t=1

φ2(yt, yt+1). (5)

Importantly, because the domain of the program given in
Eq. (5) is discrete and because the loss L(y) only consists
of functions which depend on pairs (yt, yt+1) of successive
variables ∀t, classical dynamic programming is directly ap-
plicable. It yields the global minimizer y∗ for the program
given in Eq. (5) in polynomial time.

Note, the global minimizer y∗ points to an assignment
yt,∗ per frame pair (t− 1, t), which points to an assignment
matrix atyt,∗ , which in turn indicates the chosen assignment
between detections Dt−1 at time t− 1 and Dt at time t.
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3.3. Parameter Learning
Note that the program solved during inference,

i.e., Eq. (5), depends on tracking parameters λ =
[λiou, λapp, λdist, λiou,2, λapp,2, λdist,2]. In addition, it also
depends on deep-net parameters θ via the detections that are
used in the cost functions shown in Eq. (1) and Eq. (4). We
didn’t make the dependence of detections on θ explicit for
readability. We jointly train λ and θ end-to-end.

To derive the learning objective, we follow the learn-
ing goal of classical structured prediction: the ground truth
configuration yGT ∈ Y should have a lower cost than any
other configuration y ∈ Y . Intuitively, if we find parame-
ters (λ, θ) which achieve this lowest cost for a large number
of training samples, we have a reasonable tracker. Hence,
following classical structured prediction we use an objec-
tive to linearly penalize the trainable parameters whenever
our learning goal is not satisfied. Further, this objective
permits to back-propagate all the way into the detection-
segmentation network. Formally, the learning objective is

min
λ,θ
R(λ, θ)+

∑
yGT∈T

max
y∈Y

(∆(y, yGT)−L(y;λ, θ))+L(yGT;λ, θ).

(6)
Hereby we useR(λ, θ) to denote a regularizer. In our case,
the regularizer consists of the segmentation loss that was
used to initially train the deep-net parameters θ. ∆ denotes
the loss function which compares a configuration y to the
ground truth yGT and T is the training set. Note, for read-
ability we ignore any dependence on data such as images.

We use stochastic gradient descent to update the param-
eters (λ, θ). The gradients w.r.t. λ are easily computable.
The gradients w.r.t. θ are

∇θφt1(yt) =
∑

dt−1
i ∈Dt−1,dtj∈Dt

[atyt(i, j)∇θc(dt−1i , dtj)+

c(dt−1i , dtj)∇θatyt(i, j)], and (7)

∇θφt2(yt, yt+1) =
∑

dt−1
i ∈Dt−1,dt+1

s ∈Dt

[at,t+1
yt,yt+1(i, s)∇θc2(dt−1i , dt+1

s )+

c(dt−1i , dt+1
s )∇θat,t+1

yt,yt+1(i, s)]. (8)

Note, the gradients∇θatyt and∇θat,t+1
yt,yt+1 are hard to com-

pute: they require to backprop through an optimization. To
simplify we assume no dependence of the assignment ma-
trices on detections, and hence on θ. We verified on syn-
thetic data that this simplification leads to meaningful re-
sults while avoiding complex and slow computation.
Loss Function ∆. The loss ∆(y, yGT) compares the ground
truth configuration yGT to any other configuration y. In-
tuitively, it refers to the margin of separation between the
ground truth and other configurations. In our case, we ob-
tain ∆ by summing the number of wrong assignments per

 Long-term assignments in detection space

Cost matrix

Figure 3. Post-processing for long range assignments (Sec. 3.4).
Linking of tracklets is shown on the left (with dotted lines). Link-
ing is posed as an assignment problem with a cost matrix (right).
Dark blue cost matrix entries represent time-inconsistent impossi-
ble assignments. Lighter color denotes lower cost.

frame across all frames. Formally, this loss is the squared
Frobenius norm applied to the difference of the assignment
matrices referred to via y and yGT, i.e.,

∆(y, yGT) =
1

2

T∑
t=2

‖atyt − atytGT
‖2F . (9)

This counts the number of identity switches of the predicted
assignments, based on the ground truth assignments. Cru-
cially, the loss given in Eq. (9) decomposes into a sum of lo-
cal terms across time. Consequently, maximization of ∆−L
w.r.t. y during learning, as used in Eq. (6), is also possible
via dynamic programming.
Training data T . To optimize the training objective given
in Eq. (6), our training set is T = {(x, yGT)}. Here x is a
video clip of T frames and yGT = (y2GT, . . . , y

T
GT) denotes a

sequence of elements ytGT ∈ Yt that refer to the ground truth
assignment atytGT

of objects Dt−1 and Dt between frames
t− 1 and t.

3.4. Long-Range Assignments
Using the approach discussed in Sec. 3.2, we obtain a

path in the assignment space connecting every frame-pair.
This path is globally optimal for the formulated cost and
results in multiple tracklets being formed in the detection
space, as shown in Fig. 3 (left). However, the formulation
in Sec. 3.2 does not recover links between detections miss-
ing for more than one frame. In the case of occlusions and
faulty detections, objects may reappear in the video after
multiple frames. To account for this situation, we devise a
global assignment based approach to connect the obtained
tracklets. This is illustrated in Fig. 3 and described next.

Consider r tracklets obtained by optimizing the program
given in Eq. (5). Note that the r tracklets also contain detec-
tions that haven’t yet been assigned. We construct an r × r
cost matrix clr ∈ Rr×r where the (i, j)th element denotes
the cost of joining the ith tracklet to the jth tracklet. The
cost is based on detections in tracklet i and detections in
tracklet j. Specifically, our cost function is

clr(i, j)=λapp,lrfapp,lr(i, j)+λdist,lrfdist,lr(i, j).

Here, fapp,lr(i, j) denotes the Euclidean distance between
the average of the appearance feature vectors for detections
in tracklets i and j. fdist,lr(i, j) is the Euclidean distance
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between bounding box centers of the last occurring detec-
tion in tracklet i and the first occurring detection in tracklet
j. We obtain the appearance features from PointTrack [58].
The parameters λapp,lr and λdist,lr are trainable. Specif-
ically, the learning objective follows Eq. (6) with the no-
table difference that we are not considering a temporal se-
quence here, i.e., dynamic programming isn’t needed for
long-range assignments. The task loss ∆ is either 0 or 1 de-
pending on whether the particular long-range assignment is
a valid assignment or not a valid assignment.

Note, linking of tracklets should be time-consistent, i.e.,
tracklets that end at or before frame t cannot be merged with
tracklets that begin at or before frame t+1. We also assume
that objects that don’t appear in the scene for more than 40
consecutive frames have left the scene, and won’t appear
again. In other words, tracklets that end at or before frame
t cannot be merged with tracklets that begin after frame t+
40. These constraints are imposed via a very high cost (=
105) in the corresponding positions of the cost matrix. In
Fig. 3, the dark blue positions in the cost matrix represent
the time-inconsistent assignments.

After constructing the cost matrix, we use the Hungar-
ian algorithm [33] to solve this assignment problem. Tracks
are linked according to the assignment solution, if the corre-
sponding cost is less than an empirically determined thresh-
old. Otherwise, a new track ID is assigned to the tracklet.

4. Experiments
We study our proposed method on the MOTS task. The

datasets and evaluation metrics for these tasks are discussed
in Sec. 4.1. We provide quantitative analysis and compar-
isons to other MOTS methods in Sec. 4.2. To demonstrate
generality, we also study the approach on the MOT task and
compare to recent batch-methods in Sec. 4.2. In Sec. 4.3 we
present a qualitative comparison of our approach to Point-
Track [58], the next best among the MOTS methods which
do not require additional depth information. Next, we also
discuss some failure cases of our approach.

4.1. Datasets and Evaluation Metrics
We use the KITTI-MOTS and MOTSChallenge datasets

to assess results on the MOTS task. We use the MOT17
dataset to study our approach on the MOT task. The datasets
are described in the supplementary.

The main evaluation metric on the official KITTI-MOTS
benchmark is the recently introduced higher order tracking
accuracy (HOTA) [28]. To compare trackers, HOTA ex-
plicitly balances detection accuracy (DetA), association ac-
curacy (AssA) and localization accuracy (LocA) [28] into
a single unified metric. For completeness we also report
performance on the previously common evaluation met-
rics for MOTS: MOTSA (MOTS Accuracy) and sMOTSA
(soft MOTS Accuracy) [54]. MOTSA assesses the true
positive detections (TP) and penalizes false positives (FP),

false negatives (FN) and ID switches (IDS) between ob-
jects. sMOTSA is a variant of MOTSA that accounts for
the segmentation accuracy by incorporating the intersection
over union of the predicted segmentations and ground truth
segmentations. sMOTSA and MOTSA overemphasize the
importance of detections in the task of MOTS. For this rea-
son, we also report the ID F1 scores (IDF1) [44] whenever
available, which quantifies identity preservation, an impor-
tant aspect of tracking. For the MOT task, Multiple Object
Tracking Accuracy (MOTA) [6], IDF1 [44] and ID switches
are reported, which are official metrics for MOTChallenge.

4.2. Quantitative Results
We quantitatively analyze the approach on the KITTI-

MOTS (Tab. 1, Tab. 2) and MOTSChallenge (Tab. 6)
datasets for the MOTS task. For the comparison we use
the evaluation metrics discussed in Sec. 4.1. Note, in all ex-
periments “Ours (JT)” represents jointly training (λ, θ) as
discussed in Sec. 3.3. “Ours” refers to training of tracking
parameters λ, while fixing pre-trained deep-net parameters
θ. Specifics of the deep-net are provided in the appendix.

We also study the effects of each component and parame-
ter in our method carefully through an ablation study on the
KITTI-MOTS car validation set (Tab. 3, Tab. 4 and Tab. 5).
Results on KITTI-MOTS. In Tab. 1, we compare the ap-
proach to all published methods on the KITTI-MOTS test
data available on the leaderboard. ViP-DeepLab [39] and
MOTSFusion [27] use additional depth information and are
hence reported separately. Our method outperforms other
available 2D methods on the overall HOTA metric. The
main improvement is due to associations. We improve
AssA by 14% (car) and 9% (pedestrian) compared to Point-
Track [58]. On pedestrian tracking we also improve upon
MOTSFusion [27], which uses 3D information. The im-
provement is again due to associations (8% improvement in
AssA) which translates to 4.8% improvements for HOTA.

Tab. 2 shows the results for cars and pedestrians respec-
tively on the KITTI-MOTS validation data, when the de-
tections and segmentations are obtained from the TrackR-
CNN [54] deep-net. For a fair comparison, we fix Track-
RCNN [54] to be the deep-net for all the tracking methods
shown in Tab. 2. Note that HOTA, DetA, AssA and LocA
metrics are not available for these trackers on the valida-
tion data. We hence use the old metrics sMOTSA, MOTSA
and IDS. We observe that our method outperforms Point-
Track [58] by 10% on cars, and by 7% on pedestrians in
terms of IDS. sMOTSA and MOTSA are not available for
PointTrack on TrackRCNN detections. Tab. 3 shows ad-
ditional analysis of tracking on PointTrack detections, de-
tailed later in the ablation study.
Ablation Study on KITTI-MOTS. In Tab. 3, we com-
pare configurations of PointTrack [58] and our approach.
In PointTrack(liv:1) only 2 frames are considered at a time.
‘Ours (WL)’ (without long-range associations) refers to the
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KITTI-MOTS Test: Car

Method 3D Off. HOTA↑ DetA↑ AssA↑ DetRe↑ DetPr↑ AssRe↑ AssPr↑ LocA↑ sMOTSA↑ MOTSA↑ IDS↓
ViP-DeepLab [39] X 76.38 82.70 70.93 88.70 88.77 75.86 86.00 90.75 81.03 90.74 392
MOTSFusion [27] X X 73.63 75.44 72.39 78.32 90.78 75.53 89.97 90.29 74.98 84.12 201
TrackR-CNN [54] 56.63 69.90 46.53 74.63 84.18 63.13 62.33 86.60 66.97 79.67 692
PointTrack [58] 61.95 79.38 48.83 85.77 85.66 79.07 56.35 88.52 78.50 90.88 346

Ours (JT) X 68.73 76.43 62.24 79.73 89.62 71.01 77.77 89.65 75.51 85.46 300

KITTI-MOTS Test: Pedestrian

Method 3D Off. HOTA↑ DetA↑ AssA↑ DetRe↑ DetPr↑ AssRe↑ AssPr↑ LocA↑ sMOTSA↑ MOTSA↑ IDS↓
ViP-DeepLab [39] X 64.31 70.69 59.48 75.71 81.77 67.52 74.92 84.40 68.76 84.52 209
MOTSFusion [27] X X 54.04 60.83 49.45 64.13 81.47 56.68 70.44 83.71 58.75 72.89 279
TrackR-CNN [54] 41.93 53.75 33.84 57.85 72.51 45.30 50.74 78.03 47.31 66.14 482
PointTrack [58] 54.44 62.29 48.08 65.49 81.17 64.97 58.66 83.28 61.47 76.51 176

Ours (JT) X 58.81 60.72 57.67 63.10 84.41 64.47 79.96 85.20 60.27 72.65 143
Table 1. Comparison on the KITTI-MOTS Test data. All published methods on the KITTI-MOTS leaderboard are displayed. ‘3D’
represents additional depth information. ‘Off.’ represents offline methods. ‘Ours (JT)’ performs the best in terms of association (AssA)
and overall (HOTA) when 2D methods are compared.

KITTI-MOTS Validation: Car

Tracking Detections 3D Off. sMOTSA↑ MOTSA↑ IDS ↓
CIWT [36] TRCNN [54] X 68.1 79.4 106
BePix [48] TRCNN [54] X 76.9 89.7 88

MOTSFusion [27] TRCNN [54] X X 78.2 90 36
CAMOT [37] TRCNN [54] 67.4 78.6 220
TRCNN [54] TRCNN [54] 76.2 87.8 93

PointTrack [58] TRCNN [54] - - 46
Ours TRCNN [54] X 77.4 89.6 41

KITTI-MOTS Validation: Pedestrian

Tracking Detections 3D Off. sMOTSA↑ MOTSA↑ IDS ↓
CIWT [36] TRCNN [54] X 42.9 61 42

MOTSFusion [27] TRCNN [54] X X 50.1 68 34
CAMOT [37] TRCNN [54] 39.5 57.6 131
TRCNN [54] TRCNN [54] 46.8 65.1 78

PointTrack [58] TRCNN [54] - - 30
Ours TRCNN [54] X 48.9 66.7 28

Table 2. Results on the KITTI-MOTS Validation using old metrics
(HOTA is not available for most methods). ‘3D’ represents ad-
ditional depth information. ‘Off.’ represents offline method. We
use ‘-’ for numbers that weren’t reported. Note: sMOTSA and
MOTSA are detection heavy metrics, and hence IDS is a more
accurate indicator of tracking performance in this case.

Tracking Dets. HOTA DetA AssA LocA IDF1 sMOTSA IDS ↓
Pt.(liv:1) Pt. [58] 70.1 85.6 59.3 91.1 70.1 84.7 84
Pt. [58] Pt. [58] 73.8 85.6 64.0 91.1 74.8 85.5 22

Ours (WL) Pt. [58] 81.3 85.6 77.8 91.1 85.3 84.9 77
Ours Pt. [58] 83.4 85.6 81.8 91.1 89.4 85.4 22

Ours (JT) Pt. [58] 85.0 85.3 86.1 90.9 92.2 85.3 20
Table 3. Different configurations of our approach and PointTrack
(Pt.) [58] on PointTrack detections. ‘Pt.(liv:1)’ and ’Ours (WL)’
only consider consecutive frames.

same setting where consecutive frames are considered via
dynamic programming, but long-term associations are ig-
nored. ‘Ours (WL)’ outperforms PointTrack (liv:1) estab-
lishing the effectiveness of the dynamic programming based
tracking. In the last 2 rows, we show how joint-training
(‘Ours (JT)’), as discussed in Sec. 3.3, improves the results
over ‘Ours.’ Note that the detection-segmentation network
is fixed to be PointTrack for Tab. 3. There is a 12% im-

K HOTA DetA AssA LocA IDF1 sMOTSA IDS↓
Ours 1 80.6 85.6 76.4 91.1 85.8 85.5 25
Ours 2 82.5 85.6 79.9 91.1 88.8 85.5 24
Ours 5 82.5 85.6 80.0 91.1 88.8 85.5 22
Ours 15 83.4 85.6 81.8 91.1 89.4 85.4 22
Ours 20 83.4 85.6 81.8 91.1 89.4 85.4 22

Table 4. Study on how k affects tracking on the KITTI-MOTS
validation set (cars). Detections are fixed (from PointTrack [58]).

Cost HOTA DetA AssA LocA IDF1 sMOTSA IDS↓
iou app dist

Ours (WL) X X 80.5 85.6 76.4 91.1 84.1 84.4 108
Ours (WL) X X 80.6 85.6 76.8 91.1 84.5 84.6 96
Ours (WL) X X 81.2 85.6 77.4 91.1 85.0 84.5 100
Ours (WL) X X X 81.3 85.6 77.8 91.1 85.3 84.9 77
Table 5. Study on how the cost modalities affect tracking on the
KITTI-MOTS validation set (cars). Detections are fixed (from
PointTrack [58]). ‘Ours (WL)’ represents our method without
long-range connections (discussed in Sec. 3.4).

provement in HOTA from PointTrack to ‘Ours (JT).’ ‘Ours
(JT)’ outperforms PointTrack by 22% on the association ac-
curacy (AssA). This establishes the efficacy of the struc-
tured learning approach discussed in Sec. 3.

Tab. 4 shows the effect of choosing k (Sec. 3.2). Here
k = 1 defaults to local frame-by-frame assignments ob-
tained from the Hungarian algorithm [33]. No pairwise cost
(Eq. (3)) is involved when k = 1. The performance im-
proves by increasing k, but beyond k = 15, we observe no
improvement on the KITTI-MOTS car validation set. We
fix k = 20 in all experiments. A high value of k doesn’t
incur any noticeable additional computational cost. Fig. 4
further highlights this. It shows the best paths {yt,∗}, ob-
tained from Sec. 3.2, for each video of the KITTI-MOTS
car validation set. Notice that yt,∗ is often higher than 1 but
never higher than 7, indicating that k = 20 is suitable.

Tab. 5 shows the effect of different modalities: (a) inter-
section over union (iou), (b) the appearance features (app),
and (c) distance measures (dist), as discussed in Sec. 3. In
the first, second and third rows, we remove the parameters
corresponding to “iou”, “app” and “dist” respectively and
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Figure 4. We show the optimal path {yt,∗} obtained from Eq. (5)
for the KITTI-MOTS validation set on cars. Different markers
represent different videos.

MOTSChallenge Val
Method sMOTSA↑ IDF1 ↑ MOTSA↑ IDS↓

TRCNN [54] 52.7 81.7 66.9 315
PointTrack [58] 58.1 - 70.6 -

Ours 63.2 85.2 72.9 289

MOTSChallenge Test
Method sMOTSA↑ IDF1 ↑ MOTSA↑ IDS↓

TRCNN [54] 40.6 42.4 55.2 567
Ours 55.0 64.0 64.2 330

Table 6. Results on the MOTSChallenge dataset (‘-’ indicates
numbers that weren’t reported).

analyze the effects of each missing term. Note that WL
refers to the “without long-term” configuration, i.e., we do
not use long range assignments described in Sec. 3.4.
Results on MOTSChallenge. Tab. 6 compares track-
ing methods on the MOTSChallenge validation and test
dataset. To evaluate generality we use the same tracking
parameters (λ) that were used for evaluating on the KITTI-
MOTS dataset. Our approach improves TrackRCNN [54]
and PointTrack [58] on all the official metrics (sMOTSA,
MOTSA, IDF1 and IDS). Note that IDF1 and IDS scores
of PointTrack on the MOTSChallenge validation set have
not been reported by Xu et al. [58]. PointTrack results on
the test set are not available on the leaderboard. 3D meth-
ods [27, 39] could not be evaluated on the MOTSChallenge
data because this dataset lacks depth information.
Batch Methods on MOT17. Tab. 7 compares different
batch methods on the MOT17 train dataset. Following [15],
our method is trained in a leave-one-out fashion, so that re-
sults can be compared meaningfully. We notice that our
method consistently outperforms other methods in terms of
IDF1, which is a good indicator of identity preservation.
Note that Lif-T [15], MPNTrack [8] and ‘Ours’ use addi-
tional detections from [5] following [15]. Our MOTA score
is slightly lower than [15], which is due to higher false
positive (FP) and false negetive (FN) detections. We also
compare a variant, where we use only linear interpolation
as a post processing step, rather than obtaining predictions
from [5] (indicated by ‘(lin)’ in Tab. 7). We outperform
Lif-T [15] in both MOTA and IDF1 in this setting.

4.3. Qualitative Results
Success cases. Fig. 1 shows some qualitative examples
where our method preserves the ID of objects, misidenti-
fied by PointTrack [58]. The color of a mask represents the

MOT17

Method MOTA ↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS.↓
Tracktor [5] (o) 55.7 65.2 550 374 1732 124291 903

MHT-bLSTM [22] 51.5 59.9 410 590 10583 151561 1233
MHT-DAM [21] 53.0 53.2 441 555 8798 148108 1237

TT17 [60] 56.5 67.1 465 571 8097 137789 600
MPNTrack [8] 64.4 71.2 649 360 5715 113738 482

Lif-T [15] 66.9 72.3 679 364 2655 107803 791
Ours 66.7 72.6 650 360 2791 108738 771

Lif-T [15] (lin) 59.5 68.8 556 412 7518 128153 774
Ours (lin) 59.6 69.4 562 410 7381 128695 768

Table 7. Results on the MOT17 train data. To ensure a fair compar-
ison, our method is trained in a leave-one-out fashion, following
Lif-T [15]. ‘(o)’ represents online method. All the other methods
are batch methods. ‘(lin)’ indicates linear interpolation.

Figure 5. Failure case: The person previously assigned pink is as-
signed yellow when it reappears. An ID switch also happens for
the other person (blue switches to pink).

object’s ID. In the first example (left), PointTrack misidenti-
fies the purple car as green when it reappears. In the second
example (middle), PointTrack misidentifies the blue car as
red, even though the car is always visible and detected. In
the third example (right), a car rightly classified as blue in
the 3rd frame, is misidentified as green in the 1st frame.
Failure cases. Our method fails when the appearance of
reappearing objects changes significantly. Fig. 5 shows one
such case. The person previously assigned pink gets as-
signed yellow after being occluded for multiple frames. The
person initially assigned blue is assigned pink later. This
could be addressed by using more robust appearance fea-
tures. We defer this to future work. Several other reasons
for failure modes are: (1) The threshold for long-range as-
signments (Sec. 3.4) is determined heuristically. (2) The
cost function for parameter training (Sec. 3.3) is a linear
function of its constituent terms. Exploring better functions
is part of our future work.

5. Conclusion
We designed an assignment-space-based formulation for

MOTS. It differs from prior work which operates on object
detections. We use dynamic programming to find the global
minimum cost path which associates detections over con-
secutive frames. Parameters are learned end-to-end. Long-
range associations are formed in a 2nd assignment task.
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