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Abstract

We present a method for differentiable rendering of 3D
surfaces that supports both explicit and implicit represen-
tations, provides derivatives at occlusion boundaries, and
is fast and simple to implement. The method first samples
the surface using non-differentiable rasterization, then ap-
plies differentiable, depth-aware point splatting to produce
the final image. Our approach requires no differentiable
meshing or rasterization steps, making it efficient for large
3D models and applicable to isosurfaces extracted from im-
plicit surface definitions. We demonstrate the effectiveness
of our method for implicit-, mesh-, and parametric-surface-
based inverse rendering and neural-network training appli-
cations. In particular, we show for the first time efficient,
differentiable rendering of an isosurface extracted from a
neural radiance field (NeRF), and demonstrate surface-
based, rather than volume-based, rendering of a NeRF.

1. Introduction
Computing the derivatives of rendered surfaces with re-

spect to the underlying scene parameters is of increasing
interest in graphics, vision, and machine learning. Triangle
meshes are the predominant shape representation in many
industries, but mesh-based derivatives are undefined at oc-
clusions or when changing topology. As a result, volu-
metric representations have risen in prominence for com-
puter vision applications, notably Neural Radiance Fields
or NeRF [27]. So far, these volumetric shape representa-
tions have been rendered using volume rendering. Volume
rendering is naturally differentiable, but is expensive and
unnecessary if the underlying shape can be represented well
by a surface.

This paper proposes a method to render both explicit
(e.g., mesh) and implicit (e.g., isosurface) representations
and produce accurate, smooth derivatives, including at oc-
clusion boundaries. Our method uses a non-differentiable
rasterization step to sample the surface and resolve occlu-
sions, then splats the samples using a depth-aware, differen-
tiable splatting operation. Because the sampling operation
need not be differentiable, any conventional surface extrac-
tion and rasterization method (e.g., Marching Cubes [24])

Figure 1. Our method provides efficient, differentiable rendering
for explicit and implicit surface representations. Examples in-
clude a textured triangle mesh (YCB toy airplane [4]), a cubic B-
spline surface, and an isosurface of a density volume (Lego from
NeRF [27]). The Lego is rendered by turning a pretrained NeRF
into a surface light field. Since surface light fields only require
one evaluation per pixel, we achieve a 128× speed up for render-
ing compared with the original NeRF.

may be used. The splats provide smooth derivatives of the
image w.r.t. the surface at occlusion boundaries. Splatting is
performed on a fixed-size pixel grid and is easily expressed
using automatic-differentiation, avoiding the need for cus-
tom gradients. Since no custom gradients are needed, both
forward- and reverse-mode differentiation are immediately
supported. We term this method rasterize-then-splat (RtS).

In between the rasterization and splatting steps, the sur-
face samples may be shaded by any differentiable function
evaluated on a rasterized image buffer – not the original sur-
face – using deferred shading [9]. Since the complexity of
the shading and splatting computation is bounded by the
number of pixels, not the complexity of the surface, RtS is
able to scale to highly detailed scenes.

One example of a differentiable shading function is a
NeRF network: given a position in space and a viewing di-
rection, it outputs the corresponding radiance. While NeRF
is trained using volume rendering, our method can convert
a pretrained NeRF into a surface light field [28, 39], remov-
ing the need for expensive raymarching. We represent the
surface as an isosurface of the density field extracted from
a pretrained NeRF, shade it with the NeRF color prediction
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branch, and jointly finetune the NeRF network and the den-
sity field. The resulting optimized surface and surface light
field matches the original NeRF network in rendering qual-
ity (within 0.3 PSNR) but requires only a single network
evaluation per pixel, producing a 128× speedup (Fig. 1).

We further demonstrate that RtS provides high-quality
derivatives for inverse rendering of meshes and parametric
surfaces, while remaining simple to implement. An imple-
mentation of RtS for mesh-based rendering is provided as
part of TensorFlow Graphics1.

2. Related Work
Early differentiable rendering explored the derivatives

of specialized shape parameterizations (e.g., a morphable
model [3] or a heightfield [36, 15, 2]). Recent work has
focused on general 3D triangle meshes and implicit repre-
sentations such as signed-distance fields and volumes.

2.1. Rendering Triangle Meshes

When rendering triangle meshes, topology is assumed to
be constant. The remaining major challenge for computing
derivatives is handling of occlusion boundaries. Previous
work falls into four main categories:
Gradient Replacement. Methods such as [16, 23, 14]
use heuristics to define smooth derivatives for the mesh
rendering while leaving the forward rendering unchanged.
OpenDR [23] and DiRT [14] use image-space filtering op-
erations to find the derivatives, while Neural Mesh Renderer
(NMR) [16] defines a special, per-triangle derivative func-
tion. A differentiable version of surface splatting [42] is
proposed in [41] with a modified gradient function. These
approaches do not easily support textures or complex shad-
ing models, and in some cases produce convergence prob-
lems due to the mismatch between the rendering and its
gradient. Custom gradient functions are implemented only
for the Jacobian-vector product necessary for gradient back-
propagation, and new, additional functions are necessary to
support forwards-mode or higher-order derivatives.
Edge Sampling. Redner [19], nvdiffrast [18], DEODR [8],
and others [13, 10] explicitly sample the occluding edges of
the shape to compute derivatives. They require shape pro-
cessing to find and sample the edges, so the cost of comput-
ing derivatives grows with the number of edges in the mesh.
Nvdiffrast mitigates the cost using tightly optimized CUDA
kernels, however their code requires specific GPU hardware
and is not easy to alter for new systems. RtS can be imple-
mented without any shape processing or custom derivative
code, and the cost of the differentiable sections is indepen-
dent of the size of the mesh.
Reparameterizing the Rendering Integral. When per-
forming Monte-Carlo path tracing, occlusion discontinu-

1https://www.tensorflow.org/graphics

ities may be handled using reparameterizations of the ren-
dering equations [25, 1]. These methods are related to ours
in that they choose surface samples without explicit sam-
pling of occlusion boundaries. However, these methods ap-
ply only in the context of path tracing, while RtS supports
simple shading and rasterization.
Forward Rendering with Smooth Gradients. Similar to
our approach, Soft Rasterizer and related methods [21, 32,
6], as well as the differentiable visibility method of [34]
change the forward rendering process such that its gradient
is smooth by construction. Unlike Soft Rasterizer, RtS does
not require costly closest-point queries or mesh processing.

2.2. Surface Splatting

Surface splatting [42] treats the surface as a point cloud
and renders disk primitives at each point that overlap to cre-
ate a continuous surface. Splatting has been adapted for
differentiable rendering of 3D shapes [41] and forward-
warping of images [30]. Similar to splats, differentiable
visibility using 3D volumetric primitives has also been ex-
plored [34]. Compared to these approaches, our method
uses a true surface representation as the underlying geom-
etry, rather than a point set, and resamples the splats at
each frame, avoiding issues with under- or over-sampling
of splats as optimization proceeds.

2.3. Rendering Implicit Surfaces

Implicit surface representations such as signed-distance
fields naturally handle topological changes, but rendering
still requires explicit handling of occlusion boundaries. In
recent work, an occlusion mask is sometimes assumed to be
provided by the user [40, 29], or computed by finding the
nearest grazing point on a ray that hits the background [22].
Neither method handles self-occlusion, which is the only
type of occlusion in walkthrough-style scenes (Fig. 10).

Volume rendering [11, 27] provides smooth derivatives
at occlusions, including self-occlusions, but requires ex-
pensive ray marching to find the surface. Marching Cubes
(MC) isosurface extraction [24] may be used to convert the
volume into a surface for optimization, but this process is
not naturally differentiable [20]. Our method extracts and
rasterizes the isosurface in a single non-differentiable step,
then computes derivatives in image-space, avoiding the sin-
gularity in the MC derivative.

Most related to RtS is MeshSDF [33], which also uses
non-differentiable sampling of the implicit surface, fol-
lowed by differentiable occlusion testing using NMR [16].
However, MeshSDF defines a custom derivative using the
normal of the SDF, a technique that holds for true SDFs
but not for general isosurfaces. Further, MeshSDF demon-
strates only a neural representation of the surface, whereas
our method allows isosurfaces parameterized by a grid or
any other differentiable function.
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Figure 2. Rasterize-then-splat system. Scene parameters θ are first passed through a sampling function U , yielding per-layer screen-space
parameter buffers Uk. These buffers are non-differentiable and computed only in the forward pass (dotted arrows). Evaluation function G
uses them to interpolate shape attributes, such as positions and normals, into G-buffers Gk. Automatic differentiation may be applied to G
and downstream functions (solid arrows). The evaluated attributes are combined to compute splat colors Ck via deferred shading function
C and the corresponding screen-space positions Pk via projection function P . Function S then splats the shaded colors the corresponding
pixel locations using a 3x3 kernel to produce the final result S.

3. Method

The rasterize-then-splat method consists of three steps:
rasterization of the surface (Sec. 3.1), shading the surface
samples (Sec. 3.2), and multi-layer splatting (Sec. 3.3). All
derivatives are produced using automatic differentiation, so
the implementer only needs to write the forward rendering
computation (Fig. 2).

3.1. Rasterization via Non-Differentiable Sampling

Rasterization can be expressed as a function that takes
scene parameters θ containing geometry attributes such as
position, normal, or texture coordinates, as well as camera
parameters, and produces screen-space geometry buffers (or
G-buffers [35]) Gk∈1..K containing interpolated attributes
at the K closest ray intersections to the camera. To make
this process both differentiable and efficient, we divide ras-
terization into two stages: a sampling function U(θ)→ Uk

that produces non-differentiable surface parameters Uk,
and an evaluation function G(θ,Uk) → Gk that produces
the G-buffers. The necessary parameters vary with the sur-
face type (see below).

Evaluation of surface attributes given surface parame-
ters is typically a straightforward interpolation operation,
so G can be easily expressed in an automatic-differentiation
framework. The difficult and computationally-intensive op-
eration is the sampling function U that finds the intersec-
tions of the surface with the camera rays. However, since
we are not interested in derivatives w.r.t. the sampling pat-
tern itself, U may act as a non-differentiable “oracle” that
finds the intersections but produces no derivatives for them.

Below we give concrete examples of U and G for triangle
meshes, parametric surfaces, and implicit surfaces.

3.1.1 Triangle Meshes

For triangle meshes, the parameters Uk consist of per-pixel
triangle indices Tk and the (perspective-correct) barycen-
tric coordinates Bk of the pixel inside the corresponding
triangle. The sampling function U can compute these val-
ues extremely efficiently with conventional Z-buffer graph-
ics processing, using depth peeling [12] to retrieve multiple
intersections per pixel. The evaluation function G simply
looks up the three vertex attributes for each pixel using T,
then interpolates them using B.

3.1.2 Parametric Surfaces

Bicubic regular B-spline surfaces [5] are a type of smooth
parametric surface, a representation that so far has not
supported differentiable rendering. Efficient rasterization
of these surfaces is achieved by subdividing rectangular
patches until the resulting facets are smaller than a pixel,
complicating the propagation of derivatives. We avoid this
difficulty with the non-differentiable sampling function U
that returns per-pixel patch indices and patch parameters.
The evaluation function G then interpolates the patch ver-
tex attributes using the parameters and the B-spline basis
matrix (Equation 1 in [5]). This approach can be extended
to all parametric surfaces with a closed form evaluation ex-
pression, such as Catmull-Clark subdivision surfaces [38]
and Bézier surfaces.

3.1.3 Implicit Surfaces

We treat implicit surfaces as isocontours of a function fθ :
R3 → R over 3D space. Unlike meshes or spline patches,
implicit surfaces do not have a natural parameterization. We
choose a parameterization based on the triangulation of the
isosurface provided by the Marching Cubes [24] algorithm.
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The parameters Uk are 9-D vectors, consisting of 6 lattice
indices v1..6 defining the 3 edges that cross the isosurface,
and 3 triangle barycentric coordinates β1..3.
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The evaluation function G
evaluates f at the v1..6 (sim-
ply looking up their values if
f is already defined on a grid),
interpolates along the edges to
find the coefficients α1..3 that de-
fine the triangle vertices, then
interpolates the vertices using
β1..3 to produce the surface point
x. Critically, this scheme hides
the complex topological rules of
Marching Cubes in the non-differentiable function U , re-
moving the need to store or differentiate through the full
mesh topology [20].

Note that while the Marching Cubes algorithm is not it-
self differentiable due to the singularity when neighboring
grid values are nearly identical [20, 33], our procedure side-
steps this issue by evaluating the surface only where the
derivative is well-defined. We remove samples from nearly
identical grid cells in the sampling function U .

3.2. Shading

The G-buffers Gk contain various surface attributes de-
pending on the shading required. Any shading function C
that can be expressed as a deferred shading operation [9]
can be applied. For a texture-mapped mesh (Fig. 6), each
pixel in Gk contains a 3D position, a 3D surface normal and
2D texture coordinates. For parametric surface rendering
(Fig. 8) and implicit surface rendering using a NeRF shader
(Fig. 10), Gk contains only 3D world-space positions. The
output of the shading step is a set of RGBA buffers Ck.

3.3. Depth-Aware Splatting

The shaded colors Ck have derivatives w.r.t. the surface
attributes, but because they were produced using point sam-
pling, they do not have derivatives w.r.t. occlusion bound-
aries. To produce smooth derivatives at occlusions, the
splatting function S converts each rasterized surface point
into a splat, centered at the corresponding pixel in Pk and
colored by the corresponding shaded color in Ck. In or-
der to handle splat overlap at occlusion boundaries, we in-
troduce a multi-layer accumulation strategy for the splats
based on depth (Sec. 3.3.2) that provides superior accuracy
for occlusions and disocclusions (Sec. 4.1).

Though a splat is always centered on a pixel, the position
of the splat must be computed using the surface definition
in order for derivatives to flow from the image back to the
surface. The splat positions are defined by an additional G-
buffer Pk, which contains the screen-space xyz positions
of each surface sample. Pk may be computed by rendering

a G-buffer of object-space xyz positions (Sec. 3.1), then
applying the camera view and projection transformation at
each pixel.

3.3.1 Single-Layer Splatting

The splat kernel is defined by a Gaussian with narrow vari-
ance. If p is the center position of a single splat, the weight
of the splat at a nearby pixel q is:

wp(q) =
1 + ε

Wp
exp

(
−‖q− p‖22

2σ2

)
(1)

where ε is an small adjustment factor, and Wp is a normal-
ization factor computed from the sum of all weights in a 3x3
neighborhood. By setting σ = 0.5, we have:

Wp =

1∑
i=−1

1∑
j=−1

exp
(
−2 ‖bpc+ (i, j)− p‖22

)
. (2)

The final color sq at pixel q is then the weighted sum
of the shaded colors cr of the neighboring pixels r ∈ Nq

divided by the accumulated weights:

sq =

∑
r∈Nq

wr(q) cr

/max

1,
∑
r∈Nq

wr(q)

 (3)

where the normalization factor has a floor of 1 to handle
boundaries where the weights inNq may sum to< 1.0. Due
to the adjustment factor ε = 0.05, a full 3x3 neighborhood
of weights always sum to > 1.0 (see below).

Importance of Normalization. The need for the adjust-
ment factor ε in Eq. 1 and the additional normalization in
Eq. 3 is subtle; the splats are resampled at exactly pixel rate
every frame, so normalization by the accumulated weights
of neighboring splats as in [42] is not necessary for forward
rendering. The derivatives of sq, however, do not account
for resampling, and do need to be normalized by the accu-
mulated weights in order to match the forward pass. Since
we want to allow the accumulated weights to sum < 1 at
boundaries with the background, we add ε to ensure the nor-
malization always occurs for interior splats.

3.3.2 Multi-Layer Splatting

Single-layer splatting treats all splats as existing at the same
depth and ignores occlusions, producing spurious deriva-
tives for occluded objects (Fig. 3c). Instead, depending on
a splat’s relation to the visible surface at a target pixel, it
should either occlude the pixel, be occluded itself, or be ac-
cumulated as in Eq. 3.
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Figure 3. Visualization of rendering derivatives for our and baseline methods. From top to bottom: the green bunny moves to the right
on black background, the red cube moves behind the bunny, and the bunny moves in front of the cube. Finite differences (a) can be treated
as ground-truth in this case. Our method with 2 layers (b) closely matches the finite difference result, while ours with 1 layer (c) produces
spurious derivatives when the cube moves behind the bunny. Baseline methods (d-h) shown for comparison. See Sec 4.1 for analysis.

Our solution is to render multiple layers of G-buffers,
and maintain three accumulation buffers during the splat-
ting process: S+ for splats occluding the target pixel, S-

for occluded splats, and So for splats at the same depth as
the target pixel. When applying a splat centered at p to a
pixel q, weighted colors and weights are accumulated into
exactly one of the three buffers (Fig. 4).

To determine whether the splat lies in front on, behind,
or coincident with the pixel, we propose a simple heuristic
that is more robust than picking a fixed depth threshold. We
pair up the multi-layer surface intersections at p with the
closest intersections at q in depth. The p layer paired with
the front-most q layer is assigned to So, layers in front of it
(if any) to S+, and the rest to S-.

Once all splats are rendered, buffers are separately nor-
malized following Eq. 3 and composited in S-,So,S+ order
using over-compositing [31] to produce the final result S.
This scheme correctly handles occlusions between the first
and second layers of the surface (Fig. 3d).

Z

p q p q p q

Figure 4. Multi-layer splat accumulation. When the splat at p
is being applied to the pixel q, it contributes to one of the three
accumulation buffers: So (green) when p is coincident with the
visible surface at q (thick curve), S+ (red) when p is in front, or
S- (blue) when p is behind. Different cases arise depending on
whether there is an occlusion boundary between p and q. We
ignore rare cases of multiple coincident occlusion boundaries.

4. Results and Evaluation

4.1. Analysis of Derivatives

Fig. 3 visualizes the image derivatives for a green bunny
superimposed on a black background and on a diffuse red
square. The derivative shown is ∂S/∂t, where t is the trans-
lation of either the bunny or the square. Finite differences
(Fig. 3a) provide a “ground-truth,” since ∆t can be chosen
to produce ≈ 1 pixel motion in this case. Multi-layer splat-
ting (Fig. 3b) produces derivatives that closely resemble the
finite difference result. Single-layer splatting (Fig. 3c) pro-
vides derivatives at occlusion boundaries, but confuses self-
occlusions: when the red square moves behind the bunny
(middle row), single-layer splatting produces a spurious
derivative around the bunny’s outline.

Fig. 3(d-h) show baseline methods for comparison.
Differentiable rasterization without splatting (d) provides
derivatives in the interior of the shape, but not at the occlu-
sion boundaries. PyTorch3D [32] (e) produces inaccurate
derivatives for self-occlusions (bottom row). Redner [19]
(f) better handles self-occlusions, but may miss edges due to
sampling (middle row). nvdiffrast [18] (g,h) relies on pixel
sampling to find edges and so misses sub-pixel edges as ex-
ist along the bunny outline. FSAA (h) improves the result
but does not solve the problem completely. See supplemen-
tal material for the parameters used for these comparisons.

While the result S looks as if Ck were simply blurred
slightly, blurring S is not sufficient to produce non-zero
derivatives w.r.t. the surface at occlusions. As shown
in Fig. 3b, rasterization without splatting produces zero
derivative at occlusion boundaries, so any blur following
rasterization will also produce zero derivative.

Effect of blur. The blur applied by our method is slight
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Figure 5. Pose estimation from silhouettes. Given a perturbed
initial pose (left), three models are rotated and translated back to
their original orientation (right) by following an L2 pixel loss on
the silhouette (black).

(σ = 0.5px), though not invisible. To analyze whether this
blur affects optimization when image sharpness is impor-
tant, we repeat the texture optimization experiment from
Fig. 6 of [18], which optimizes a textured sphere to match
target images. With mipmapping on, a blur of σ = 0.5 re-
duces PSNR by 1.5% from 33.7 to 33.2. With mipmapping
off, the blur increases PSNR from 25.4 to 28.3, likely due
to the slight anti-aliasing effect of the blur.

4.2. Pose Estimation

A common use-case for differentiable rendering is to es-
timate the pose of a known object given one or more images
of that object. Compared with previous work, RtS is partic-
ularly suitable for this task because its runtime increases
slowly with mesh complexity, and it supports more sophis-
ticated optimizers than gradient descent.
Performance Comparison. RtS is fast for large meshes
(Table 1) as it uses a conventional forward rendering pass
over the geometry, followed by image-space operations. Py-
Torch3D (based on Soft Rasterizer) requires spatial binning
to achieve acceptable performance, and does not scale as
well to large meshes. Redner [19] similarly suffers due to
the cost of sampling and processing the occluding edges.
Nvdiffrast [18] achieves excellent performance at the cost
of a complex, triangle-specific implementation. On a task
of pose estimation from silhouettes (Fig. 5), RtS achieves
a speedup up to 20× over PyTorch3D and Redner for the
Nefertiti [7] mesh (2m faces), and smaller but significant
speedups for the Teapot (2.5K faces). Our method performs
within 2× of Nvdiffrast without any custom CUDA kernels.

In the specific case of pose fitting to silhouettes, the sam-
pling function U can return world-space positions directly,
instead of triangle ids T and barycentric coordinates B.
Since the mesh itself is not changing, only the pose defined
by the projection function P , the world-space positions do
not need to be differentiable and the evaluation function G

Triangles RtS RtS-pose P3D Redner Nvdr
2.5K 16 16 21 240 7
326K 18 16 47 247 9
2M 26 17 588 306 19

Table 1. Pose estimation performance. Milliseconds per itera-
tion for alignment to silhouettes on V100. Methods compared are
“RtS” (ours), “RtS-pose“ (ours optimized for pose fitting), “P3D”
(PyTorch3D [32]), “Redner” [19], and “Nvdr” (Nvdiffrast [18]).

Initialization After Optimization Target Photograph Difference (Red Channel)

Iterations Seconds

2-Layer LM
1-Layer LM
2-Layer ADAM
1-Layer ADAM
No SplattingL2

 L
os

s

0 10 20 30 40 50 60 0 2 4 6 8 10

Figure 6. LM vs. ADAM for pose estimation. Starting from an
initial camera pose, field of view, background color, and diffuse
lighting (left), the rendering of the toy airplane [4] is optimized
to match the photograph (middle right), resulting in a close pose
match (right). Total iterations are plotted on left, wall time on
right. Levenberg-Marquardt [26] (LM) converges in fewer iter-
ations and more smoothly than Adam [17], though total time to
convergence is similar. Baseline rasterization (no splatting) does
not converge to the correct solution. Multi-layer splatting has a
limited effect for pose estimation.

can skip the potentially costly step of looking up vertex at-
tributes given T. This optimization (“RtS-pose”) removes
the dependence on mesh complexity entirely from the dif-
ferentiable components of the system, yielding performance
largely independent of mesh complexity and faster than
Nvdiffrast on the Nefertiti model.
Optimization with Levenberg-Marquardt. Since RtS
requires no custom gradient code, both forwards-mode
and backwards-mode automatic differentiation can be ap-
plied. Pose estimation problems have fewer input vari-
ables (pose) than output variables (pixels), making forward-
mode an efficient choice for computing the full Jaco-
bian matrices required for optimization algorithms such as
Levenberg-Marquadt [26], which are prohibitively costly
using backwards-mode differentiation. LM optimization
provides robust convergence compared to Adam, though
under our current implementation, the extra cost of LM
means the two methods have similar total runtimes of ≈ 4
seconds to convergence (Fig. 6).

4.3. Mesh Optimization

Fig. 7 shows optimization of the vertex positions and
colors of a hand template mesh [8]. The hand is first
roughly aligned to the input images and given a uniform
gray color (Fig. 7a), then optimized to match the input pho-
tographs from 3 camera views using Adam. The surface is
regularized using an As-Rigid-As-Possible deformation en-
ergy [37]. Rather than set a solid background color, a solid
rectangle is placed behind the hand to show the effect of
multiple layers of geometry.

As shown in Fig. 7 bottom, multi-layer splatting is im-
portant for convergence when optimizing the vertex posi-
tions. Convergence is slower for single-layer splatting, and
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Initialization Final Iteration Target

Figure 7. Hand mesh optimization. Given a roughly aligned tem-
plate mesh (a), the vertex positions and colors are refined (b) to fit
3 target photographs (c, one shown). Because of the flexibility of
the optimization, single-layer splatting can be unstable, and multi-
layer splatting is necessary for consistent results (bottom).

single-layer optimization becomes unstable at higher learn-
ing rates. Each vertex depends on fewer pixels compared to
pose estimation (Fig. 6) and the shape is more flexible, so
errors in the image derivatives are more significant.

4.4. Parametric Surface Optimization

Fig. 8 shows a simple demonstration of silhouette opti-
mization for a bicubic uniform B-spline surface [5]. The
surface is defined by a swept curve, producing an approx-
imate surface-of-revolution. The variables of optimization
are the radii of the 8 control points of the profile curve. The
surface is initialized to a cylinder, and optimized to match
the silhouette of another spline surface similar to a chess
piece. The optimization converges in 200 iterations.

A triangle-based renderer would require differentiation
through a densely tessellated mesh, whereas our method
only uses tessellation to rasterize the surface parameters in-

Figure 8. Silhouette fitting of a B-spline surface. A cylindrical
subdivision surface (left) is deformed into a curved shape (right)
by fitting silhouettes. Top row shows the optimized control mesh
and the corresponding subdivided surface. Bottom row shows the
silhouette overlap (black: silhouette agrees with ground truth, red:
surface needs to be removed, green: surface needs to be added).

Swept
Sphere
Param.

Random
Spheres
Param.

Initialization TargetFinal Iter.

Figure 9. Implicit surface optimization. An SDF is defined on
a 503 grid using two different parameterizations: Swept Sphere
(top) has ring radius and sphere radius parameters, while Random
Spheres (bottom) has n spheres each with 2-D center and radii
parameters. Both are optimized to match an image of a torus.

side the non-differentiable sampling function U . Once ras-
terized, the surface parameters are used to differentiably in-
terpolate the control points, shade, and splat the silhouette
image without tessellation.

4.5. Implicit Surface Optimization

Fig. 9 shows fitting an image of a torus using an im-
plicit surface and demonstrates that our method can handle
topology changes. We show two possible parameterizations
based on spheres: the first sweeps a sphere of radius r1
along a circle of radius r2, and a second defines the sur-
face as the union of 200 spheres with individual radii and
2-D positions. The loss is mean-absolute error between the
rendering and the target. Both optimizations are run for 400
iterations using Adam [17]. Note that for the swept sphere
initialized in the center of the torus, a rotated camera view
(Fig. 9 top) is necessary to break symmetry that otherwise
traps the optimization in a local minimum.

These results may be compared to MeshSDF (Fig. 3 in
[33]), which also optimizes a sphere into a torus to demon-
strate change in topology. In their case, however, the param-
eterization is a latent code of a deep neural network trained
to produce spheres and tori. Unlike MeshSDF, our method
does not rely on a deep neural network to compute gradi-
ents, so we are free to choose any implicit surface parame-
terization that can be evaluated on a grid.

4.6. Surface NeRF

NeRF [27] solves for a function from 3-D position x and
viewing direction d to RGB color and density σ, such that
when this function is rendered using volumetric raycasting,
the result matches a set of posed input images. This method
produces very high-quality view synthesis results, at the
price of long rendering times. Using our approach, how-
ever, we can convert a pre-trained NeRF into a 3D mesh
and a surface light field [39]. This representation requires
only a single NeRF evaluation per pixel vs. the 128 re-
quired by volume rendering, reducing per-pixel cost from
226 MFLOPS to 1.7 MFLOPS.
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(a) Test Image (b) NeRF[27] (c) NeRF surf. (d) SNeRF (fixed) (e) Opt. surf. (f) SNeRF
Figure 10. Surface rendering results on NeRF test scenes. Image quality is evaluated on held-out views (a). Full volume rendering of
the NeRF produces a high-quality image (b), but an isosurface extracted from the trained NeRF (c) is noisy. With this surface fixed, the
finetuned NeRF produces reduced quality (d). After optimizing the surface and finetuning the NeRF, we obtain an improved surface (e)
and a high-quality rendering (f).

Surface Optimization. We first evaluate NeRF on a regular
grid to construct the input density field, then extract an iso-
surface at a fixed threshold. This surface is an accurate but
noisy model of the subject shape (Fig. 10c). Furthermore,
since NeRF is trained under the assumption of volume ren-
dering, it must be finetuned in order to produce good results
when evaluated only at the surface.

Given this initialization, we directly optimize the density
grid while finetuning the NeRF network under the original
NeRF L2 loss. We render the isosurface using RtS, where
the NeRF network produces the shaded colors Ck, effec-
tively acting as a surface light field [28]. After optimization,
the isosurface is refined (Fig. 10e), and the output RGB has
similar quality to the original NeRF rendering (Fig. 10f).
We use Adam [17] for finetuning the NeRF network and
standard gradient descent for optimizing the density grid,
as Adam is unstable for grid optimization due to the isosur-
face not constraining all grid values at each iteration. At
each iteration, we take one gradient step on the NeRF net-
work while holding the density grid fixed, followed by one
gradient step on the density grid while holding the NeRF
network fixed. We use an isosurface threshold of 50 (sug-
gested by [27]) and optimize for 5000 iterations.
Evaluation. Table 2 shows the results of our approach on
the NeRF “Lego” and “Fern” datasets (the two for which
pre-trained weights are available). We compare image qual-
ity for baseline NeRF and our Surface NeRF (SNeRF). We

Lego Fern
PSNR SSIM PSNR SSIM

NeRF (baseline) 29.91 0.962 24.38 0.864
SNeRF 29.61 0.957 23.52 0.813
SNeRF (fixed) 27.44 0.945 23.41 0.809

Table 2. Image quality for NeRF methods. PSNR and SSIM for
two scenes for baseline NeRF [27], our surface NeRF (SNeRF),
and SNeRF without geometry optimization (fixed surface).

also evaluate SNeRF without surface optimization (“fixed
surface”) where the NeRF network is finetuned by only
sampling on the fixed isosurface. On Lego, a scene that was
synthesized from a surface, SNeRF achieves PSNR within
0.3 of NeRF and improves 2.2 PSNR over the baseline with-
out surface optimization. On Fern, SNeRF loses 0.9 PSNR
to full volume rendering, and improves only 0.1 PSNR over
the fixed surface baseline. This result is likely due to the
extremely complex isosurface of the Fern scene (Fig. 10).

5. Discussion and Limitations

Rasterize-then-splat is a general method that addresses
two key issues of differentiable surface rendering: handling
varying surface representations, and providing derivatives
at occlusion boundaries. Our method applies to any surface
that can be expressed as a non-differentiable sampling and a
differentiable evaluation function. This flexibility opens the
door for researchers to explore surface representations not
previously supported by differentiable rendering, including
spline surfaces and general isosurfaces. We have demon-
strated that isosurface rendering can be used to reduce the
runtime cost of NeRF rendering by more than 100×.

Our method requires a closed-form evaluation function,
which may not be available at all (e.g., some subdivision
schemes) or only available via a Marching Cubes discretiza-
tion. For surfaces that are defined as continuous functions
of space, the discretization can affect surface quality. Since
the evaluation happens only near the surface, however, qual-
ity may be improved by increasing resolution at a quadratic
(not cubic) cost in evaluations.

While we render multiple layers in order to resolve oc-
clusions, the splatting step currently assumes a single sur-
face at each pixel and does not handle semi-transparent ob-
jects. A direction for future work is to extend the method to
handle semi-transparent layers, which could improve qual-
ity on scenes that include reflections or translucency.
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