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Abstract

Dynamic scene graph generation aims at generating a
scene graph of the given video. Compared to the task
of scene graph generation from images, it is more chal-
lenging because of the dynamic relationships between ob-
jects and the temporal dependencies between frames allow-
ing for a richer semantic interpretation. In this paper, we
propose Spatial-temporal Transformer (STTran), a neural
network that consists of two core modules: (1) a spatial en-
coder that takes an input frame to extract spatial context
and reason about the visual relationships within a frame,
and (2) a temporal decoder which takes the output of the
spatial encoder as input in order to capture the temporal
dependencies between frames and infer the dynamic rela-
tionships. Furthermore, STTran is flexible to take varying
lengths of videos as input without clipping, which is espe-
cially important for long videos. Our method is validated
on the benchmark dataset Action Genome (AG). The ex-
perimental results demonstrate the superior performance
of our method in terms of dynamic scene graphs. More-
over, a set of ablative studies is conducted and the effect
of each proposed module is justified. Code available at:
https://github.com/yrcong/STTran.

1. Introduction

A scene graph is a structural representation that sum-
maries objects of interest as nodes and their relationships
as edges [26, 29]. Recently, scene graphs have been suc-
cessfully applied in different vision tasks, such as image
retrieval [26, 46], object detection, semantic segmenta-
tion, human-object interaction [15], image synthesis [24, 3],
and high-level vision-language tasks like image captioning
[13, 62] or visual question answering (VQA) [25]. It is
treated as a promising approach towards holistic scene un-
derstanding and a bridge connecting the large gap between
vision and natural language domains. Therefore, the task
of scene graph generation has caught increasing attention in
communities.

While the great progress made in scene graph genera-
tion from a single image (static scene graph generation), the
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Figure 1: The difference between scene graph generation
from image and video. In the video, the person is watch-
ing TV and drinking water from the bottle. Dynamic Scene
graph generation can utilize both spatial context and tem-
poral dependencies (3rd row) compared with image-based
scene graph generation (2nd row). Nodes in different colors
denote objects (person,bottle,tv) in the frames.

task of scene graph generation from a video (dynamic scene
graph generation) is new and more challenging. The most
popular approach of static scene graph generation is built
upon an object detector that generates object proposals, and
then infers their relationship types as well as their object
classes. However, objects are not sure to be consistent in
each frame of the video sequence and the relationships be-
tween any two objects may vary because of their motions,
which is characterized by dynamic. In this case, temporal
dependencies play a role, and thus, the static scene graph
generation methods are not directly applicable to dynamic
scene graph generation, which has been fully discussed in
[22] and verified by the experimental results analyzed in
Sec. 4. Fig. 1 showcases the difference between scene graph
generation from image and video.

Action recognition is an alternative to detect the dynamic
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relationships between objects. However, actions and activ-
ities are typically regarded as monolithic events that occur
in videos in action recognition [4, 27, 47, 33]. It has been
studied in Cognitive Science and Neuroscience that people
perceive an ongoing activity by segmenting them into con-
sistent groups and encoding into a hierarchical part structure
[30]. Let’s take the activity ”drinking water” as an example,
as shown in Fig. 1. The person starts this activity by holding
the bottle in front of her, and then holds it up and takes wa-
ter. More complex, the person is looking at the television at
the same time. Decomposition of this activity is useful for
understanding how it happens and what is going on. Associ-
ating with the scene graph, it is possible to predict what will
happen: after the person picks up the bottle in front of her,
we can predict that the person is likely to drink water from
it. Representing temporal events with structured representa-
tions, i.e. dynamic scene graph, could lead to more accurate
and grounded action understanding. However, most of the
existing methods for action recognition are not able to de-
compose the activity in this way.

In this paper, we explore how to generate a dynamic
scene graph from sequences effectively. The main contri-
butions are summarized as: (1) We propose a novel frame-
work, Spatial-Temporal Transformer (STTran), which en-
codes the spatial context within single frames and decodes
visual relationship representations with temporal dependen-
cies across frames. (2) Distinct from the majority of related
works, multi-label classification is applied in relationship
prediction and a new strategy to generate a dynamic scene
graph with confident predictions is introduced. (3) With
several experiments, we verify that temporal dependencies
have a positive effect on relationship prediction and our
model improves performance by understanding it. STTran
achieves state-of-the-art results on Action Genome [22].

2. Related Work
Scene Graph Generation Scene graph has first been pro-
posed in [26] for image retrieval and caught increasing at-
tention in Computer Vision community [42, 61, 35, 9, 38,
51, 55, 62, 64, 37]. It is a graph-based representation de-
scribing interactions between objects in the image. Nodes in
the scene graph indicate the objects while edges denote the
relationships. The applications include image retrieval [46],
image captioning [1, 45], VQA [51, 25] and image genera-
tion [24, 19]. In order to generate high-quality scene graphs
from images, a series of works explore different directions
such as utilizing spatial context [61, 65, 40], graph struc-
ture [60, 58, 34], optimization [8], reinforcement learning
[36, 51], semi-supervised training [7] or a contrastive loss
[66]. These works have achieved excellent results on image
datasets [29, 42, 31]. Although it is universal for multiple
relationships to co-occur between a subject-object pair in
the real world, the majority of previous works defaults to

edge prediction as single-label classification. Despite the
progress made in this field, all these methods are designed
for static images. In order to extend the gain brought by
scene graphs in images to video, Ji et al. [22] collect a large
dataset of dynamic scene graphs by decomposing activities
in videos and improve state of the art results for video action
recognition with dynamic scene graph.

Transformer for Computer Vision The vanilla Trans-
former architecture was proposed by Vaswani et al. [54]
for neural machine translation. Many transformer variants
are developed and have achieved great performance in lan-
guage modeling tasks, especially the large-scale pre-trained
language models, like GPT [44] and BERT [10]. Then,
Transformers have also been widely and successfully ap-
plied in many vision-language tasks, such as image cap-
tioning [59, 18], VQA [2, 63]. To further bridge the vision
and language domains, different Bert-like large-scale pre-
trained models are also developed, like Caption-Based Im-
age Retrieval and Visual Commonsense Reasoning (VCR)
[43, 32, 50]. Most recently, Transformers are attracting in-
creasing attention in the vision community. DETR is intro-
duced by Carion et al. [5] for object detection and panop-
tic segmentation. Moreover, Transformers are explored to
learn vision features from the given image instead of the
traditional CNN backbones and achieve promising perfor-
mance [12, 52]. The core mechanism of Transformer is its
self-attention building block which is able to make predic-
tions by selectively attending to the input points (each point
can be a word representation of a sentence or a local fea-
ture from an image), so that context is captured between
different input points and the representation of each point is
refined. Nonetheless, the above methods focus on learning
spatial context with a transformer from a single image while
temporal dependencies play a role in video understanding.
Action Transformer is proposed by Girdhar et al. [14] that
utilizes transformer to refine the spatio-temporal represen-
tations, which are learned by I3D model [6] and then pooled
from the RoI given by a RPN network [45], for recognizing
human actions in video clips. In fact, the transformer mod-
ule is still used to learn spatial context. VisTR is introduced
in [57] for video segmentation. The features of each frame
that are extracted by a CNN backbone are fed to a trans-
former encoder to learn the temporal information of a video
sequence.

Spatial-Temporal Networks Spatial-temporal informa-
tion is the key to access video understanding [39, 28, 21]
and has been long and well studied. To date, the most
popular approaches are RNN/LSTM-based [20] or 3D
ConvNets-based [23, 53] structures. The former takes fea-
tures from each frame sequentially and learns the temporal
information [49, 11]. The latter extends the traditional 2D
convolution (height and width dimension) to time dimen-
sion for sequential inputs. Simonyan et al. [48] introduce a

16373



two-stream CNN structure that spatial and temporal infor-
mation is learned on different streams respectively. Resid-
ual connections are inserted between the two information
streams to allow information fusion. Then, the 2D convo-
lution in the two-stream structure is inflated into its coun-
terpart 3D convolution, dubbed I3D model [6]. Non-local
Neural Networks [56] introduce another kind of generic
self-attention mechanism, non-local operation. It computes
relatedness between different locations in the input signal
and refines the inputs by weighted sum of different inputs
based on the relatedness. Their method is easy to be applied
in video input by extending the non-local operation along
the time dimension. However, these works are applied for
activity recognition and are not able to decompose the ac-
tivity into consistent groups. In this work, we do not only
utilize transformer to learn spatial context between objects
within a frame, but also the temporal dependencies between
frames to infer the dynamic relationships varying along the
time axis.

3. Method
A dynamic scene graph Gdyn(Vt, Et) can be modeled

as a static scene graph Gstat(V, E) with an extra index t
representing the relations over time as an extra temporal
axis. Inspired by the transformer characteristics: (1) the ar-
chitecture is permutation-invariant, and (2) the sequence is
compatible with positional encoding, we introduce a novel
model, Spatial-Temporal Transformer (STTran), in order
to utilize the spatial-temporal context along videos (see
Fig. 2).

3.1. Transformer

First, we take a brief review on the transformer struc-
ture. The transformer is proposed by Vaswani et al. [54]
and consists of a stack of multi-head dot-product attention
based transformer refining layers. In each layer, the input
X ∈ RN×D that has N entries of D dimensions, is trans-
formed into queries (Q = XWQ, WQ ∈ RD×Dq ), keys
(K = XWK , WK ∈ RD×Dk ) and values (V = XWV ,
WV ∈ RD×Dv ) though linear transformations. Note that
Dq , Dk and Dv are the same in the implementation nor-
mally. Each entry is refined with other entries through dot-
product attention defined by:

Attention(Q,K,V ) = Softmax

(
QKT

√
Dk

)
V , (1)

To improve the performance of the attention layer, multi-
head attention is applied which is defined as :

MultiHead(Q,K,V ) = Concat(h1, . . . , hh)WO,

hi = Attention(XWQi ,XWKi ,XWVi).
(2)

A complete self-attention layer contains the above self-
attention module followed by a normalization layer with

residual connection and a feed-forward layer, which is also
followed by a normalization layer with residual connec-
tion. For simplicity, we denote such a self-attention layer
as Att(.). In this work, we design a Spatio-Temporal Trans-
former based on Att(.) to explore the spatial context, which
works on a single frame, and temporal dependencies that
work on sequence, respectively.

3.2. Relationship Representation

We employ Faster R-CNN [45] as our backbone. For
the frame It at time step t in a given video with T frames
V = [I1, I2, . . . , IT ], the detector provides visual features
{v1

t , . . . ,v
N(t)
t }∈R2048, bounding boxes {b1t , . . . , b

N(t)
t }

and object category distribution {d1
t , . . . ,d

N(t)} of object
proposals where N(t) indicates the number of object pro-
posals in the frame. Between the N(t) object proposals
there is a set of relationships Rt = {r1t , r2t , . . . , r

K(t)
t }.

The representation vector xk
t of the relation rkt between the

i-th and j-th object proposals contains visual appearances,
spatial information and semantic embeddings, which can be
formulated as:

xk
t =

〈
Wsv

i
t,Wov

j
t ,Wuφ(u

ij
t ⊕ fbox(b

i
t, b

j
t ))), s

i
t, s

j
t

〉
(3)

where ⟨, ⟩ is concatenation operation, φ is flattening opera-
tion and ⊕ is element-wise addition. Ws, Wo ∈ R2048×512

and Wu ∈ R12544×512 represent the linear matrices for di-
mension compression. uij

t ∈ R256×7×7 indicates the fea-
ture map of the union box computed by RoIAlign [16] while
fbox is the function transforming the bounding boxes of sub-
ject and object to an entire feature with the same shape as
uij
t . The semantic embedding vectors sit, s

j
t ∈ R200 are de-

termined by the object categories of subject and object. The
relationship representations exchange spatial and temporal
information in Spatial-Temporal Transformer.

3.3. Spatio-Temporal Transformer

The Spatio-Temporal Transformer maintains the original
encoder-decoder architecture [54]. The difference is, the
encoder and decoder are delegated the more concrete tasks.

Spatial Encoder concentrates on the spatial context
within a frame whose input is a single Xt =

{x1
t ,x

2
t , . . . ,x

K(t)
t }. The queries Q, keys K and values

V share the same input and the output of the n-th encoder
layer is presented as:

X
(n)
t = Attenc.(Q = K = V = X

(n−1)
t ) (4)

The encoder consists of N identical Attenc. layers that are
stacked sequentially. The input of the (n)-th layer is the out-
put of the (n − 1)-th layer. For simplicity, we remove the
superscript n in the following discussion. Unlike the major-
ity of transformer methods, no additional position encoding

16374



Q

K

V

M
ul

ti-
H

ea
d

A
tte

nt
io

n

A
dd

 &
 N

or
m

FF
N

A
dd

 &
 N

or
m

M
ul

ti-
H

ea
d

A
tte

nt
io

n

A
dd

 &
 N

or
m

FF
N

A
dd

 &
 N

or
m

+

Spatial Encoder Temporal Decoder

frame
encodings

D
et

ec
to

r

video frames

tn-1 tn tn+1 C
la

ss
ifi

er
s

relation 
representations

combined 
representations

tn-1 tn tn+1

dynamic scene graph

Q

K

V

Figure 2: Overview of our method: the object detection backbone proposes object regions in RGB video frames and the rela-
tionship feature vectors are pre-processed (Sec. 3.2). The encoder of the proposed Spatial-Temporal Transformer (Sec. 3.3)
first extracts the spatial context within single frames. The relation representations refined by encoder stacks from different
frames are combined and added to learned frame encodings. The decoder layers capture temporal dependencies and rela-
tionships are predicted with linear classifiers for different relation type (such as attention, spatial, contact). ⊕ indicates
element-wise addition while FFN stands for feed-forward network.

is integrated into the inputs since the relationships within
a frame are intuitively parallel. Having said that, the spa-
tial information hiding in the relation representations (see
Eq. 3) plays a crucial role in the self-attention mechanism.
The final output of the encoder stacks is sent to the Tempo-
ral Decoder.

Frame Encoding is introduced for the temporal decoder.
Without convolution and recurrence, the knowledge of se-
quence order such as positional encoding must be embed-
ded in the input for the transformer. In contrast to the word
position in [54] or the pixel position in [5], we customize
the frame encodings to inject the temporal position in the
relationship representations. The frame encodings Ef are
constructed with learned embedding parameters, since the
amount of the embedding vectors depending on the win-
dow size η in the Temporal Decoder is fixed and relative
short: Ef = [e1, . . . , eη], where e1, . . . , eη ∈ R1936 are
the learned vectors with the same length as xk

t .
The widely used sinusoidal encoding method is also ana-

lyzed (see Table 5). We adopt the learned encoding method
because of its overall better performance. The window size
η is fixed and therefore the video length does not affect the
length of frame encodings.

Temporal Decoder captures the temporal dependencies
between frames. Not only the amount of calculation re-
quired and the memory consumption increase greatly, but
also useful information is easily overwhelmed by a large
number of irrelevant representations. In this work, we adopt
a sliding window to batch the frames so that the message is
passed between the adjacent frames in order to avoid inter-
ference with distant frames.

Different from [54], the self-attention layer of our tem-
poral decoder is identical to the spatial encoder Attenc.(),
i.e. the masked multi-head self-attention layers are re-
moved. A sliding window of size η runs over the sequence

of spatial contextualized representations [X1, . . . ,XT ] and
the i-th generated input batch is presented as:

Zi = [Xi, . . . ,Xi+η−1], i ∈ {1, . . . , T − η + 1} (5)

where the window size η ≤ T and T is the video length.
The decoder consists of N stacked identical self-attention
layer Attdec() similar as the encoder structure. Considering
the first layer:

Q = K = Zi +Ef ,

V = Zi,

Ẑi = Attdec.(Q,K,V ).

(6)

Regarding the first line in Eq. 6, same encoding is added
to the relation representations in the same frame as queries
and keys. The output from the last decoder layer is adopted
for final prediction. Because of the sliding widow, the rela-
tionships in a frame have various representation in different
batches. In this work, we choose the earliest representation
appearing in the windows.

3.4. Loss Function

We employ multiple linear transformations to in-
fer different kinds of relationships (such as atten-
tion, spatial, contacting) with the refined representa-
tions. In reality, the same type of relationship be-
tween two objects is not unique in semantics, such as
synonymous actions <person-holding-broom> and
<person-touching-broom>. Thereby, we introduce
the multi-label margin loss function for predicate classifica-
tion as follows:

Lp(r,P+,P−) =
∑
p∈P+

∑
q∈P−

max(0, 1−ϕ(r, p)+ϕ(r, q))

(7)
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For a subject-object pair r, P+ are the annotated predicates
while P− is the set of the predicates not in the annotation.
ϕ(r, p) indicates the computed confidence score of the p-th
predicate.

During training, the object distribution is computed by
two fully-connected layers with a ReLU activation and a
batch normalization in between. The standard cross entropy
loss Lo is utilized. The total objective is formulated as:

Ltotal = Lp + Lo (8)

3.5. Graph Generation Strategies

There are two typical strategies to generate a scene graph
with the inferred relation distribution in previous works:
(a) With Constraint only allows each subject-object pair
to have at most one predicate while (b) No Constraint al-
lows a subject-object pair to have multiple edges in the out-
put graph with multiple guesses. With Constraint is more
rigorous and indicates the ability of models to predict the
most important relationships, but it is incompetent for the
multi-label task. Although No Constraint can reflect the
ability of multi-label prediction, tolerant multiple guesses
cause wrong information in the generated scene graph.

In order to make the generated scene graph closer to
ground truth, we propose a new strategy named Semi
Constraint allowing that a subject-object pair has multi-
ple predicates such as <person-holding-food> and
<person-eating-food>. The predicate is regarded
as positive iff the corresponding relation confidence is
higher than the threshold.

At test time, the score of each relationship triplet
<subject-predicate-object> is computed as:

srel = ssub · sp · sobj , (9)

where ssub,sp,sobj are the confidence score of subject, pred-
icate and object respectively.

4. Experiments
4.1. Dataset and Evaluation Metrics

Dataset We train and validate our model on the Ac-
tion Genome (AG) dataset [22] which provides frame-
level scene graph labels and is built upon the Charades
dataset [47]. 476, 229 bounding boxes of 35 object
classes (without person) and 1, 715, 568 instances of 25
relationship classes are annotated for 234, 253 frames.
These 25 relationships are subdivided into three differ-
ent types: (1) attention relationships denoting whether
a person is looking at an object, (2) spatial relation-
ships and (3) contact relationships which indicate the dif-
ferent ways the object is contacted. In AG, 135, 484
subject-object pairs are labeled with multiple spatial
relationships (e.g. <door-in front of-person>

and <door-on the side of-person>) or con-
tact relationships (e.g. <person-eating-food> and
<person-holding-food>).

Evaluation Metrics We follow three standard tasks from
image-based scene graph generation [42] for evaluation :
(1) predicate classification (PREDCLS): given ground truth
labels and bounding boxes of objects, predict predicate la-
bels of object pairs. (2) scene graph classification (SG-
CLS): classify the ground truth bounding boxes and predict
relationship labels. (3) Scene graph detection (SGDET):
detect the objects and predict relationship labels of ob-
ject pairs. The object detection is regarded as success-
ful if the predicted box overlaps with the ground-truth box
at least 0.5 IoU. All tasks are evaluated with the widely
used Recall@K metrics (K = [10, 20, 50]) following With
Constraint, Semi Constraint and No Constraint. The
threshold of confidence in the relationship is set to 0.9 in
Semi Constraint for all experiments if no special instruc-
tion.

4.2. Technical Details

In this work, FasterRCNN [45] based on ResNet101 [17]
is adopted as object detection backbone. We first train the
detector on the training set of Action Genome [22] and get
24.6 mAP at 0.5 IoU with COCO metrics. The detector is
applied to all baselines for fair comparison. The parameters
of the object detector including RPN are fixed when train-
ing scene graph generation models. Per-class non-maximal
suppression at 0.4 IoU is applied to reduce region proposals
provided by RPN.

We use an AdamW [41] optimizer with initial learning
rate 1e−5 and batch size 1 to train our model. Moreover,
gradient clipping is applied with a maximal norm of 5. For
all experiments on Action Genome, we set the window size
η = 2 and stride = 1 for our STTran. The spatial en-
coder contains 1 layer while the temporal decoder contains
3 iterative layers. The self-attention module in both en-
coder and decoder has 8 heads with dmodel = 1936 and
dropout = 0.1. The 1936-d input is projected to 2048-d
by the feed-forward network, then projected to 1936-d
again after ReLU activation.

4.3. Quantitative Results and Comparison

Table 1 shows that our model outperforms state-of-the-
art image-based methods in all metrics following With
Constraint, Semi Constraint and No Constraint. For the
fair comparison, all methods share the identical object de-
tector which provides feature maps and region proposals of
the same quality.

The bold numbers denote the best result in any column.
With the help of temporal dependencies our model im-
proves state-of-the-art (GPS-Net [40]) 1.9% on PredCLS-
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Method
With Constraint No Constraint

PredCLS SGCLS SGDET PredCLS SGCLS SGDET

R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50
VRD[42] 51.7 54.7 54.7 32.4 33.3 33.3 19.2 24.5 26.0 59.6 78.5 99.2 39.2 49.8 52.6 19.1 28.8 40.5

Motif Freq[65] 62.4 65.1 65.1 40.8 41.9 41.9 23.7 31.4 33.3 73.4 92.4 99.6 50.4 60.6 64.2 22.8 34.3 46.4
MSDN[35] 65.5 68.5 68.5 43.9 45.1 45.1 24.1 32.4 34.5 74.9 92.7 99.0 51.2 61.8 65.0 23.1 34.7 46.5

VCTREE[51] 66.0 69.3 69.3 44.1 45.3 45.3 24.4 32.6 34.7 75.5 92.9 99.3 52.4 62.0 65.1 23.9 35.3 46.8
RelDN[66] 66.3 69.5 69.5 44.3 45.4 45.4 24.5 32.8 34.9 75.7 93.0 99.0 52.9 62.4 65.1 24.1 35.4 46.8

GPS-Net[40] 66.8 69.9 69.9 45.3 46.5 46.5 24.7 33.1 35.1 76.0 93.6 99.5 53.6 63.3 66.0 24.4 35.7 47.3
STTran 68.6 71.8 71.8 46.4 47.5 47.5 25.2 34.1 37.0 77.9 94.2 99.1 54.0 63.7 66.4 24.6 36.2 48.8

Table 1: Comparison with state-of-the-art image-based scene graph generation methods on Action Genome [22].The same
object detector is used in all baselines for fair comparison. STTran has the best performance in all metrics. Note that the
evaluation results of baselines are different from [22] since we adopted a more reasonable relationship output method, more
details are provided in the supplementary material.

Method
Semi Constraint

PredCLS SGCLS SGDET

R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50
VRD[42] 55.5 64.9 65.2 36.2 39.7 40.1 19.0 27.1 32.4

Motif Freq[65] 65.7 74.1 74.5 45.5 49.3 49.5 22.9 33.7 39.0
MSDN[35] 69.6 78.9 79.9 48.3 54.1 54.5 23.2 34.2 41.5

VCTREE[51] 70.1 78.2 79.6 49.0 53.7 54.0 23.7 34.8 40.4
RelDN[66] 70.7 78.8 80.3 49.4 53.9 54.1 24.1 35.0 40.7

GPS-Net[40] 71.3 81.2 82.0 50.2 55.0 55.2 24.5 35.3 41.9
STTran 73.2 83.1 84.0 51.2 56.5 56.8 24.6 35.9 44.0

Table 2: Evaluation results of Semi Constraint which in-
dicates the relationship between object pair is regarded as
positive if the confidence score is higher than the threshold.

R@20, 1.0% on SGCLS-R@20 and 1.0% on SGDET-
R@20 for the strategy With Constraint, which shows that
STTran performs better than image-based baselines in pre-
dicting the most important relationships between an object
pair. Our model also has excellent performance (see Table
2): 1.9% on PredCLS-R@20, 1.5% on SGCLS-R@20 and
0.6% improvement on SGDET-R@20 for Semi Constraint
that allows multiple relationships between a subject-object
pair. For No Constraint, STTran outperforms other meth-
ods in all settings except PredCLS-R@50. Due to the small
number of object pairs and the large number (50) of chances
to guess, the results in this column are unstable and uncon-
vincing. Motif Freq [65] which is very dependent on statis-
tics achieves the highest score. However, the results become
reliable with the less prediction number K = [10, 20].

Note that there is no difference between PredCLS-R@20
and PredCLS-R@50 for With Constraint because of a lim-
ited number of object pairs and edge restriction. This also
happens on SGCLS. Compared with PredCLS or SGCLS,
the gap of SGDET between STTran and other methods is
narrowed since the increased false object proposals cause
interference, especially for Semi Constraint and No Con-
straint using small K. Furthermore, the reproduced results
of some methods are different from [22] since a more rea-
sonable relationship output method is adopted and the ob-
ject detectors are different.

In Semi Constraint, the threshold of confidence in the

relationship is set to a fixed number (0.9) in the exper-
iments. In order to study the impact of such threshold
in Semi Constraint on Recall@K, the R@20-Threshold
curves of [35, 66, 40] and STTran are shown in Fig. 3.
STTran consistently outperforms all three models at all
threshold levels from 0.7 to 0.95. The high threshold sup-
presses the R@20 values except in SGDET since there are
more pair proposals.
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Figure 3: R@20-Threshold Curves in three standard tasks
(PredCLS/SGCLS/SGDET) for Semi Constraint.

4.4. Temporal Dependency Analysis

Compared to the previous image-based scene graph gen-
eration, a dynamic scene graph has additional temporal de-
pendencies that can be utilized. We discuss whether tempo-
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ral dependencies can improve the relationship inference and
validate that our proposed method utilize temporal depen-
dencies. In this subsection, we measure PredCLS-R@20
(With Constraint) as the performance indicator that shows
the ability of single relationship classification strictly.

Is temporal dependence easy to use? Spatial context
plays a relevant role in scene graph generation as validated
by several image-based methods [65, 40]. To explore the ef-
fectiveness of temporal dependencies, we graft the widely-
used recurrent network, LSTM onto the baselines in Table
3 as follows. Before forwarding the feature vectors into the
final classifiers, the entire vectors representing relationships
in the video are organized as a sequence and processed by
LSTM.

Table 3 shows all baselines can gain more or less from
the temporal dependencies. For Motif Freq [65], PredCLS-
R@20 increases from 65.1% to 65.2% slightly probably due
to the relatively simple feature representation. Meanwhile,
the score of GPS-Net [40] is improved from 69.9% to 70.4%
significantly. The experiment shows that temporal depen-
dencies are helpful for scene graph generation. However,
the previous methods were designed for static images. This
is why we propose Spatial-Temporal Transformer (STTran)
to make better use of temporal dependencies.

Method PredCLS-R@20

original +LSTM
Motif Freq[65] 65.1 65.2

MSDN[35] 68.5 68.8
RelDN[66] 69.5 69.7

GPS-Net[40] 69.9 70.4

Table 3: We integrate LSTMs to process the relationship
features before forwarding them into the classifier into some
representative baselines. All baselines are improved with
temporal dependencies but worse than our STTran.
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(b) complete STTran

Figure 4: Two relationship instances respectively generated
by the spatial encoder and STTran. (a) Spatial encoder pre-
dicts the wrong relationship only with the spatial context in
the second frame while (b) STTran can infer more accurate
results with the help of temporal dependencies.

Can STTran really understand temporal dependencies?
In order to verify that STTran really improves performance
through temporal dependencies in the video, instead of us-
ing clearer feature representation or powerful multi-head at-
tention module, we trained our model with the processed
training set and show the results in Table 4.

We randomly sample 1/3 videos in the training set and
shuffle/reverse them. Meanwhile, the test set remains un-
changed. As shown in Table 4, PredCLS-R@20 (With
Constraint) drops significantly from 71.8% to 71.0%,
when one-third of the training videos are reversed, which
is equivalent to adding noise in the temporal information.
Moreover, shuffled videos indicate the temporal informa-
tion is completely broken and the noise is further amplified.
The experimental result (first row) is in line with expecta-
tions: PredCLS-R@20 drops to 70.6%. The experiments
demonstrate where the improvement comes from and vali-
date that the temporal dependencies are learned in STTran.

Normal Video Processed Video Processing PredCLS-R@20
2/3 1/3 shuffle 70.6
2/3 1/3 reverse 71.0
1 - - 71.8

Table 4: We shuffle/reverse one-third of the videos in the
training set to explore the sensitivity of the model to frame
sequence. By disorganizing the temporal information via
shuffling or reversing the video sequence, the performance
of the model degrades accordingly as expected.

4.5. Ablation Study

In our Spatial-Temporal Transformer, two modules are
proposed, a Spatial Encoder and Temporal Decoder. Fur-
thermore, we integrate the temporal position into the re-
lationship representations with the frame encoding in the
Temporal Decoder. In order to clarify how these modules
contribute to the performance, we ablate different compo-
nents and present the results in Table 5. We adopt PredCLS-
R@20 and SGDET-R@20 as the metrics with With Con-
straint and Semi Constraint. PredCLS shows the ability of
relationship prediction intuitively while SGDET indicates
the performance of scene graph generation.

When only the spatial encoder is enabled, the model
works the same as the image-based method and also
has a similar performance as RelDN [66]. The isolated
temporal decoder (second row) boosts the performance
significantly with the additional information from other
frames. PredCLS-R@20 is improved slightly when the
encoder and decoder both work whereas the improvement
of SGDET-R@20 is limited by the object detection back-
bone. The learned frame encoding helps STTran fully un-
derstand the temporal dependencies and has a strong, pos-
itive effect both on PredCLS-R@20 and SGDET-R@20
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Figure 5: Qualitative results for dynamic scene graph generation. The scene graphs from STTran are generated with the
top-10 confident relationship predictions with different Strategies. The green box is the undetected ground truth. The melon
and gray colors indicate true positive and false positive respectively. Correct relationships are colored with light blue for
clarity and ing is omitted for brevity. It shows poor object detection results reduce the performance and the result of Semi
Constraint is closer to the ground truth.

while the fixed sinusoidal encoding performs unsatisfac-
torily. Two instances respectively predicted by the spa-
tial encoder only and the complete STTran are shown in
Fig. 4. Without temporal dependencies, the spatial en-
coder mistakenly predicts <person-eating-food>
as <person-touching-food> in the second frame
whereas STTran infers the relationship correctly. This ex-
plicitly proves that STTran can utilize temporal context to
improve scene graph generation.

Spatial Temporal Frame PredCLS-R@20 SGDET-R@20

Encoder Decoder Encoding With Semi With Semi
✓ - - 69.6 78.7 32.9 35.1
- ✓ - 71.0 82.2 33.7 35.5
✓ ✓ - 71.3 82.7 33.8 35.6
✓ ✓ sinusoidal 71.3 82.8 33.9 35.7
✓ ✓ learned 71.8 83.1 34.1 35.9

Table 5: Ablation Study on our STTran. ✓ indicates the cor-
responding module is enabled while − indicates disabled.
We also compare the effectiveness of sinusoidal and learned
positional encoding.

4.6. Qualitative Results

Fig. 5 shows the qualitative results for the dynamic scene
graph generation. The five columns from left to right are
RGB frame, scene graph generated by ground truth, scene
graph generated with the top-10 confident relationship pre-
dictions with the Strategies With Constraint, Semi Con-
straint and No Constraint. The melon color indicates truth
positive whereas gray indicates false positive. The green

box is the ground truth not detected by the detector. In
the first row, two false positives with high object detec-
tion confidence (medicine and notebook ) result in wrong
predictions among the top-10 relationships. All the top-
10 confident relationships following three strategies are of
high quality in the second row when the object detection is
successful. <person-drinking from-bottle> in
the third column is lost because With Constraint only al-
lows at most one relationship between each subject-object
pair for each type of relationship while <person-not
contacting-bottle> replaces the attention relation-
ship between person and bottle in the top-10 confident list
when using No Constraint. The two frames in Fig. 5 are
not adjacent since the detected persons overlap with the
ground truth IoU < 0.5 in the frames between them.

5. Conclusion
In this paper, we propose Spatial-Temporal Transformer

(STTran) for dynamic scene graph generation whose en-
coder extracts spatial context within a frame and decoder
captures the temporal dependencies between frames. Dis-
tinct from single-label losses in previous works, we utilize a
multi-label margin loss and introduce a new strategy to gen-
erate scene graphs. Several experiments demonstrate that
temporal context has a positive effect on relationship pre-
diction. We obtain state-of-the-art results for the dynamic
scene graph generation task on the Action Genome dataset.
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