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Abstract

This paper introduces a new method of data-driven mi-
croscope design for virtual fluorescence microscopy. We
use a deep neural network (DNN) to effectively design op-
tical patterns for specimen illumination that substantially
improve upon the ability to infer fluorescence image infor-
mation from unstained microscope images. To achieve this
design, we include an illumination model within the DNN’s
first layers that is jointly optimized during network train-
ing. We validated our method on two different experimen-
tal setups, with different magnifications and sample types,
to show a consistent improvement in performance as com-
pared to conventional microscope imaging methods. Ad-
ditionally, to understand the importance of learned illumi-
nation on the inference task, we varied the number of illu-
mination patterns being optimized (and thus the number of
unique images captured) and analyzed how the structure of
the patterns changed as their number increased. This work
demonstrates the power of programmable optical elements
at enabling better machine learning algorithm performance
and at providing physical insight into next generation of
machine-controlled imaging systems.

1. Introduction
The optical microscope remains a critical tool across

a wide variety of disciplines, ranging from high-content
screening in biological labs to quality control in factories.
With the continued growth of automated software analysis
tools, many microscope images are now rarely viewed di-
rectly in their raw format by humans, but are instead com-
monly processed first by a computer. Examples include the
automatic classification of different cell types within large
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cell cultures [1], segmentation of cancerous areas from thin
pathology tissue sections [2], and, as focused upon here, the
automatic creation of fluorescence images from bright-field
data [3], which we term “virtual fluorescence” (an example
of the virtual fluorescence process is shown in Figure 1).

Despite the continued advancement of image analysis
software, microscope hardware has changed relatively little
over the past several centuries. Most microscopes still con-
sist of standard illumination units and objective lenses that
are optimized for direct human inspection. Optical micro-
scopes are constrained by several physical limitations, in-
cluding a limited resolution, field-of-view, image contrast,
and depth-of-field, which restrict the amount of information
that can be captured within each image. Standard micro-
scope design biases this limited information towards human
analysis, potentially impacting the accuracy of automated
analysis.

Here, we attempt to optimize the hardware of a new
microscope design to improve the performance of a deep
learning based image labelling task. To achieve this goal,
we present a modified neural network which includes a
physical model of our experimental microscope, which is
optimized jointly with the deep neural network (DNN) dur-
ing training. In this work, we limit our physical model to
include only the spectral and angular properties of the mi-
croscope’s illumination, realized through a programmable
LED array, but leave open the possibility of considering
other important parameters (focus setting, lens design, de-
tector properties) in future work. Our proposed system
models the microscope illumination pattern as a set of linear
weights that are directly integrated into the DNN, allow-
ing the calculation of gradients through back-propagation
and end-to-end optimization during supervised training. Af-
ter training, the optimized “physical” weights can be inter-
preted as the distribution of LED brightnesses and colors
to use in our experimental imaging setup, which transfers
performance gains seen in training to a physical setup.
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Figure 1: (A) Experimental setup: Microscope with both fluorescence and non-fluorescence imaging paths centered above
a programmable LED array for training data capture. (B/C) Example fluorescence inference pipelines: The optimized LED
pattern illuminates a sample to form an image. The neural network processes LED-illuminated images to produce an esti-
mated fluorescence result. The ground truth is shown to the right of the inference result. Example B shows the HeLa task
while Example C shows the PAN task. The red outline on the patterns indicates the bright/dark-field cutoff of the LED
array. Where in bright-field illumination, both the scattered and unscattered light transmitted through the sample is directly
observed through the lens, and in dark-field only scattered light (light which has been re-directed by the sample) is observed.

Here, our goal was to train a DNN to convert conven-
tional transmission microscope imagery, captured with our
learned illumination pattern, into a simultaneously captured
fluorescence image that highlights specific features of in-
terest via fluorescent markers. This goal of moving from
unlabelled images to labelled ones synthetically is what we
term “virtual fluorescence”, and has recently received inter-
est as a promising means to avoid the need to fluorescently
label specimens and to instead simply rely on deep learning
to post-process standard image data[3, 4, 5].

We have two main goals within our work. The first
is to understand the impact of illumination pattern design
on task performance for virtual fluorescence image gener-
ation. While illumination dramatically alters the appear-
ance of a microscopic specimen, the impact of the in-
cident light’s spatial, angular and spectral properties on
fluorescent-specific feature identification is challenging to
directly establish. Second, we will explore how the num-
ber of designed illumination patterns used for image cap-
ture changes both in terms of pattern structure and over-
all task performance. To achieve this latter goal, we vary
the number of patterns which are simultaneously optimized
with the DNN. For each set we examine the interaction be-
tween patterns within each optimized illumination set, and
how the patterns change as a function of set size. We find
that optimized patterns not only yield higher performance
than conventional alternatives, but the structure of the pat-
terns themselves provides a certain degree of physical in-
tuition between scattered bright-field light and fluorescent
emission that can be used to improve future data collection

strategies.
Furthermore, our method represents a way of perform-

ing virtual fluorescence that is cheaper, more customizable,
and potentially faster than existing alternatives. Previous
approaches built upon a physical intuition to design their
data capture system, such as Christiansen et al. [3] cap-
turing a z-stack of images, or Cheng et al. [5] using pre-
designed illumination patterns. In contrast, our method of
data collection is entirely data-driven, where the trade-off
between data collection speed and system performance is
explicit. Additionally, since our hardware setup is inexpen-
sive and uses no moving parts, it is easily deployable and
accessible.

2. Related work
In recent years, convolutional neural networks (CNNs)

have become commonplace for both medical and natural
image processing [6]. Segmenting images to find specific
cell types or sub-cellular features (e.g. cell nuclei), for ex-
ample, is now a common biomedical image analysis task
that CNNs excel at. The U-net structure [7], perhaps one of
the most widely used CNNs within biomedical image analy-
sis, has been applied across a wide variety of segmentation
tasks [8] and makes efficient use of annotated data during
training through its fully convolutional architecture.

As the use of neural networks continues to increase in
popularity, many researchers are now also applying them to
automatically analyze fluorescence imagery. Belthangady
et al. [9] recently reviewed this increasing body of work and
summarized it into two general categories: virtual labelling
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Figure 2: Diagram of training and inference pipelines for
physics-enhanced fluorescence image inference. The left
and right regions contain the setups used to capture data for
network training, and to capture data in application for flu-
orescence image prediction, respectively. The fluorescence
image and generated “k-stack” images are captured through
the same objective lens. Loss is taken as the MSE be-
tween each predicted virtual fluorescence image and match-
ing ground-truth fluorescence image, and then backprop-
agated to optimize the Neural Network and Learnable Il-
lumination modules. For fluorescence image prediction, a
Learned LED Pattern is used to illuminate the specimen.
This Learned LED Pattern is configured using the opti-
mized weights from the Learnable Illumination module de-
termined during training. The same Neural Network is used
from the training setup.

and fluorescence image enhancement.

Virtual labelling is the process of using unlabelled im-
ages to predict fluorescence images. While still a rela-
tively new concept, several recent works demonstrate that
DNNs can be quite effective at this task, which suggests that
certain future experiments may forgo fluorescence imaging
and staining entirely. Christiansen et al. [3] first demon-
strated this concept by developing a CNN which predicted
seven distinct fluorescence channels from a set of several
dozen uniquely focused bright-field images. Since then nu-
merous works have demonstrated success on similar prob-

lems, ranging from virtual fluorescence in 3D [4, 10] to
reflectance microscopy [5]. Additionally the area of “vir-
tual staining” [11, 12, 13] (inferring histologically stained
images from unstained tissue) has recently shown promise
and is in many ways similar to virtual fluorescence. These
works all demonstrate that it is possible to infer information
revealed by a fluorescent or histological stain from using
unmodified unlabelled images, albeit at varying levels of
accuracy.

Fluorescence image enhancement focuses on improving
the quality of existing fluorescence images. Weigert et al.
[14] developed a content-aware image restoration method
powered by a CNN. This work showed that fluorescence
image restoration was possible by predicting high reso-
lution fluorescence images from ones which were under-
sampled. In an earlier work, Weigert et al. [15] used
a CNN to perform isotropic reconstruction of 3D fluores-
cence data. Through these works, we can infer that data
contained within fluorescence images is potentially redun-
dant, and through the assumption of key underlying fea-
tures, it is at times possible to enhance image quality via
CNN post-processing.

However, in most studies, the focus is on post-processing
data, rather than attempting to influence or improve the im-
age acquisition process. While an early work used simple
neural networks to effectively design components of opti-
cal systems [16], the first work (to the best of our knowl-
edge) to examine hardware optimization in the context of
CNNs was by Chakrabarti [17], who presented an opti-
mal pixel level color-filter layout for color image recon-
struction. A number of subsequent works have considered
how to merge the optimization of various imaging hard-
ware components into a differentiable optimization network
[18, 19, 20, 21, 22, 23, 24, 25, 26]. However, few of these
works have proposed the use of deep learning to optimize
the image capture process for automated analysis.

Such an approach was recently considered by Muthumbi
et al. [27], who suggested the use of a “physical layer” in a
DNN to optimize an illumination pattern to improve the au-
tomated detection of the malaria infected blood cells. This
same approach has been used to optimize illumination for
other tasks, and has been extended to include the frequency
response of an imaging systems optics. Examples include
optimizing the illumination and pupil function jointly for
image classification ([28]), optimizing illumination to cap-
ture better images (phase contrast imaging [29, 30] and
fourier ptychography [31, 32, 33]), and optimizing an imag-
ing system’s optics for specific tasks (depth-of-field [34],
depth detection [35], dynamic range [36], localization mi-
croscopy [22]).

In terms of using a microscope’s illumination to achieve
new functionalities, prior work has clearly shown the ben-
efits of applying programmable LED array illumination.
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This includes variable bright-field and dark-field imag-
ing [37], measurement of a specimen’s surface gradient
[29, 30], and quantitative phase imaging [38] to name a
few. Mathematically rigorous methods have also been used
to combine variably-illuminated images to increase image
resolution. Two prominent examples are Fourier ptycho-
graphic microscopy (FPM) [39, 31] and structured illumi-
nation microscopy (SIM) [40]. These works highlight the
benefit of controlling illumination and provide ample evi-
dence that it should be targeted for optimization.

3. Methods

3.1. Image Formation

In this work, we used a programmable LED array to con-
trol the spectral and angular qualities of our illumination by
changing the brightness and color of each LED. We con-
figured out setup such that the illumination from each LED
can be modelled by a plane wave at the sample, with each
LED contributing a wave which propagates at an angle cor-
responding to it’s position within the array.

When working with biological specimens which are pri-
marily transparent, this multi-angle/multi-spectral illumina-
tion strategy yields diverse sample-specific image informa-
tion that would be unavailable under standard on-axis il-
lumination (illuminating with the center LED directly be-
neath the sample) [39]. However, this illumination strategy
creates many degrees of freedom within an illumination pat-
tern, making it challenging to directly determine which pat-
tern is best for a specific task and specimen type. Here, we
demonstrate a mechanism for jointly optimizing both the
pattern that is used to illuminate the sample and the post-
processing that maps the acquired image data into an accu-
rate map of fluorescence emission.

To solve this joint optimization problem, we use a
method called “Learned Sensing”, first introduced in
Muthumbi et al. [27], which encapsulates the physical pa-
rameters of the imaging hardware (in our case, the LED
brightness values) within a differentiable “physical layer”.
We prepended the physical layer to a deep neural network
(DNN) that has been designed to perform image labelling,
making the entire process end-to-end trainable. In this work
we further extend the initial concept of Learned Sensing to
include multiple physical parameters that we can optimize
simultaneously, to investigate the effect of capturing mul-
tiple unlabelled images per-sample (with each image taken
under a different illumination pattern).

In this type of approach, the supervised training pro-
cess optimizes both the physical parameters of our hard-
ware (LED brightness and color values) and the parame-
ters of our DNN. Therefore, while the DNN is being trained
to perform virtual fluorescence (map unlabelled images to
fluorescence maps) the illumination patterns are being op-

timized to aggregate an ideal set of unlabelled image data.
After network training, we translate the parameters of our
DNN physical layer (optimized linear weights) into a spe-
cific hardware configuration that can be realized experimen-
tally (LED brightness and color values for multiple pre-
sented patterns).

The composition of the “physical layer” in this work is
relatively straightforward. Since light from each LED is
mutually incoherent, the image formed by an arbitrary il-
lumination pattern is simply a weighted sum of the images
formed by each LED individually. If we denote each indi-
vidually illuminated image as In, it’s corresponding weight
as wn, and the final formed image as I ′, then the image
formation process can be expressed as:

I ′ =

N∑
n=1

wnIn (1)

To perform our experiments, we collect this set of N raw
individual images (In) for each specimen under study (we
call this collection our k-stack), and use Eq. 1 to define how
the parameters of our physical layer interact with the col-
lected data to create the final image I ′. To form multiple
final images, we simply repeat the process within Eq. 1,
using the same basis images (In for n = 1, . . . , N ) in com-
bination with differing weight vectors. To form M images
for example, we learn a matrix w ∈ RM×N , where Eq. 1 is
applied for every row m to create multiple formed images
I1, . . . IM . We provide a detailed derivation of Eq. 1 within
the supplement.

3.2. Network Design

Our network consists of a modified U-Net architecture
that is prepended with a physical layer that allows us to
model Eq. 1 (Figure 3). The architecture and layer config-
uration was consistent across all reported experiments and
is detailed in the supplement. During our multi-pattern ex-
periments we constrained the weight matrix (w ∈ RM×N )
within the physical layer to be positive only, allowing each
row, m, of the matrix to be physically realizable with a sin-
gle illumination pattern/captured image. However, when
comparing our method to conventional illumination strate-
gies we lifted this positivity constraint, since some of the
competing strategies we considered require the subtraction
of two images (such as differential phase contrast, DPC).
Negative weights are easily realized experimentally by sim-
ply taking two images, one with the positive weights, and
one with the negative, and taking the difference. Our ra-
tional for applying a positivity constraint during our multi-
pattern experiment is that positive-only weights offer a
larger degree of freedom for the optimizer when under a
finite image constraint (one unconstrained pattern requires
the same amount of images as two positive-only patterns)
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Figure 3: Neural network architecture used in this work. The “K-Stack” in blue represents the set of images of a specimen
collected under illumination from each individual LED. The K-Stack is transformed into an illuminated image of the speci-
men, using a linear-weighting of each channel of the K-Stack (marked as “weighted sum” in red), after which the image is
processed with a standard U-Net configured for regression.

Figure 4: Visual comparison of standard LED patterns
tested in this work, and resultant illuminated images.

and thus is a better gauge of how well additional informa-
tion can be utilized.

Although the task of optimizing a task-specific illumi-
nation pattern has been studied before ([27, 28]), such pre-
viously developed models cannot execute image-to-image
translation. Accordingly, our neural network here varies
significantly in several important ways. First, we adopted
a much deeper fully convolutional neural network (see Fig.
3). Second, our architecture uses Skip Connections, which
enabling shorter paths for gradient calculation and preser-
vation of high resolution feature maps generated early in
the model. This had the added benefit of providing a more
direct route between loss and the physical layer parameteri-
zation, without which we found successful convergence im-
possible. Finally, and most substantially, we modified the
design of the physical layer to support multi-pattern opti-
mization, which allows us to jointly optimize multiple sets
of physical parameters in a controlled manner.

Although our underlying component LED images (slices
of the k-stack) accurately capture the signal-to-noise ratio
(SNR) of our imaging system, the “illuminated image” cre-
ated by the physical layer will have an artificially inflated
SNR (e.g., averaging N images produces a

√
N improve-

ment in SNR). To compensate for this, we introduced a

Noise Layer, which adds dynamically generated Gaussian
random noise to the data after the physical layer in both
training and inference, and is modelled as: I ′′ = N (µ =
I ′, σ2 = ψ × |I ′|). Where a hyperparameter ψ controls the
scale of the noise in proportion to the pixel intensity. Note
that the variance of the random noise is proportional to the
image pixel intensity itself, and thus is consistent with a
Poisson noise model.

Finally, we applied L1 regularization to the weights of
the physical layer, w. The regularization term was given
a small weight proportional to the magnitude of the loss to
drive weights to zero, if and only if they are not signifi-
cantly contributing to the task performance. The addition
of this type of penalty reduces variance across random seeds
and aids in interpretation of the resulting LED patterns by
suppressing elements which do not contribute to enhanced
performance.

4. Experiments

In the included experiments, we used an inexpensive
15 × 15 programmable multi-color LED matrix (Adafruit
product ID 607) to illumination each specimen, where each
addressable LED included three spectral channels (with
center wavelengths of λ = 480, 540, and 632nm), repre-
senting a total of 15× 15× 3 = 675 independent illumina-
tion sources. For each experiment, we constructed a k-stack
of images by turning on each LED individually, capturing
an image, and stacking the results into a single 3D matrix.
To generate target labels, each sample was illuminated with
a blue (470nm) fluorescent excitation source and captured
using the same optical imaging setup used for k-stack gen-
erator. By using the same optical setup for each field-of-
view (FOV), we ensured that sample positioning and lens
distortion remained constant from source (k-stack) to target
(fluorescent image).

After data capture, we processed each k-
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stack/fluorescent image pair by splitting them into
tiles. Each tile was 256 × 256px for both experiments, and
the tiling process was done such that there was no overlap
between adjacent tiles. Our neural network model was
trained to predict the fluorescent label from the unlabelled
k-stack (represented by 256 × 256 × 675 matrix). The
training process jointly optimizes multiple illumination
patterns, which control how the input images are formed,
and the neural network which processes those images.
We denote the illumination portion of our model as the
“physical layer”, which produces M unique LED patterns,
encapsulated within our weight matrix w ∈ RM×675.

To compare our learned illumination method to stan-
dard, conventional, techniques we followed the same train-
ing process with a fixed w, where the values of w corre-
spond to the LED brightness values of the target illumina-
tion pattern. We selected several standard patterns which
are common in microscopy [41]; a qualitative descriptive of
these patterns is provided below, and visualized for a sam-
ple FOV in Figure 4.

1. Center is spatially coherent illumination from the cen-
ter LED and three colors

2. All is spatially incoherent illumination from all 225
LEDs and three colors

3. DPC stands for the differential phase contrast illumi-
nation method

4. Off-axis is from an LED located 4 mm off the optical
axis, illuminating at approximately 3◦

5. Random is a random set of LED brightness values
Generally speaking, both DPC and Off-axis tend to high-
light edges within the sample, while Center and All provide
more typical on-axis illumination. To provide a fair compar-
ison between our learned method, and these conventional
methods we optimized a weight vector which corresponds
to a single illumination pattern, where w ∈ R1×675, how-
ever we allowed the values of w to be negative, thus main-
taining the same restrictions as the conventional methods.

To test our approach we captured multiple unique FOVs
per biological specimen across two different fluorescently
labelled sample types. While the general approach used
across the two types of samples was consistent, some de-
tails, such as stain used, and magnification, differ. The de-
tails for each experiment are as follows.

HeLa Task: In our first experiment we used data cap-
tured in a prior experiment (see [42]), which imaged spec-
imens of 90% confluent HeLa cells stained with a fluores-
cent nuclear label (DAPI). The employed microscope used a
two-lens arrangement with a f = 200mm tube lens (Thor-
labs ITL200), and a f = 50mm Nikon lens (f/1.8D AF
Nikkor). The setup had a collection numerical aperture
(NA) of 0.085 and a magnification of 3.87x. The sample
was imaged with a Prosilica GX6600 monochromatic cam-
era (pixel size of 5.5µm). The LED array was placed 80mm

beneath the sample and k-stack was generated by scanning
through the inner 15 × 15 elements. We divided our full-
FOV images into 442 non-overlapping 256 × 256px tiles
(with each tile having a 675 k-stack and matching fluores-
cent image). We randomly split these tiles into training,
validation, and test sets containing 356, 48, and 48 tiles re-
spectively.

Pan Task: For our second experiment we captured im-
ages of Pan 16 pancreatic cancer cells stained with Cell-
Mask Green plasma membrane stain (C37608). The sample
was imaged using an Olympus PlanN 0.25NA , 10x, ob-
jective lens a Basler Ace (acA4024-29um) sensor. To cap-
ture the fluorescent label a set of filters were inserted into
the optical setup (ThorLabs MDF-GFP excitation, emis-
sion, and dichroic filters), a photo of the setup used is dis-
played in Figure 1a. As with the previous experiment, a
programmable LED array was placed beneath the sample of
which the inner 15x15 elements were used. We captured 19
unique FOVs from the sample, which were split randomly
into train, validation, and test sets (15, 2, and 2 FOVs re-
spectively). Each image was broken into non-overlapping
tiles, with the k-stacks and fluorescent labels having spatial
dimensions of 256 × 256px, with the train/validation/test
sets having a total of 818, 108, and 108 tiles accordingly.

5. Results and Discussion

5.1. Performance

Across both experimental tasks we found that our physi-
cal layer’s learned patterns outperformed all tested alterna-
tives. We evaluated the performance of our system both
through root mean squared error (RMSE) and structural
similarity index (SSIM [43]). Numerical results are pro-
vided in Table 1. This result demonstrates that under the
same information restrictions (limited to illumination pat-
terns of both negative and positive weights), learned illumi-
nation can lead to superior virtual fluorescence across mul-
tiple specimen types. To further demonstrate the superiority
of our learned illumination strategy we note that even when
under positive-only constraints (w ∈ [0,∞)) a single learn-
able illumination pattern out-performs conventional strate-
gies which require two image to physically realize (DPC
and random) for the HeLa task. While naturally there are
additional illumination patterns which could be compared
to our approach, we believe that our results as well as the
mathematical framework described provide sufficient evi-
dence to claim that a learnable illumination strategy is flex-
ible enough to converge to any arbitrary pattern, given that
the pattern is optimal for a specific task.

We next investigated the performance of our multi-
pattern experiments. We varied the number of illumina-
tion patterns that are being optimized (the size of the weight
matrix w), ranging from a single pattern (w ∈ R1×675) to

3808



Table 1: Performance across both tasks of conventional and learnable illumination strategies. The Learned configuration
(bolded) offers the lowest average MSE and highest average SSIM for both tasks. All patterns are realized with an uncon-
strained representation of the illumination patterns, such that w ∈ (−∞,∞)

Task Center All DPC Off-Axis Random Learned
HeLa-RMSE .232± .0004 .226± .002 .144± .003 .232± .0004 .199± .002 .118± 0.001
HeLa-SSIM .388± .001 .435± .006 .659± .006 .388± .001 .505± .075 .784± 0.009
PAN-RMSE .144± .002 .178± .001 .126± .007 .144± .004 .152± .152 .122± .002
PAN-SSIM .501± .001 .366± .001 .540± .007 .515± .007 .476± .020 .617± .006

Table 2: Performance across tasks of learnable illumination strategies using a constrained illumination pattern (w ∈ [0,∞)).
Numerical results are reported as the mean and variance of three independent runs. The best results for each task/category
are in bold, when equivalent multiple configurations are in bold.

Task 1 2 4 8 16 32 64
HeLa-RMSE .119± .001 .092± .001 .084± .003 .079± .003 .075± .001 .074± .002 .071± .002
HeLa-SSIM .778± .005 .866± .003 .881± .012 .897± .007 .904± .004 .908± .006 .914± .003
PAN-RMSE .132± .011 .104± .004 .107± .017 .102± .013 .111± .005 .098± .006 .101± .015
PAN-SSIM .568± .036 .639± .006 .641± .016 .654± .010 .635± .008 .653± .004 .645± .013

sixty-four patterns (w ∈ R64×675). The results are reported
in Table 2 and example patterns are in Figure 6. Overall, we
see that as more information is sampled from the k-stack,
the system performance improves. However, there are di-
minishing returns, and it appears that the majority of the
improvement is obtained in moving from 1 → 16 patterns.

Example predicted fluorescence maps for two unique
FOVs for the HeLa and PAN tasks, using both the mini-
mum number of patterns (1) and the maximum (64), are
shown in Figure 5. From these predictions, we can see that
the main difference between the results as the number of
patterns increase is the detail (i.e., high spatial frequencies)
in the generated fluorescence result. This is particularly evi-
dent for the 64 pattern configuration on the PAN task, where
the image has crisper edges and a cleaner background. The
shape of the generated fluorescence within the HeLa task
prediction is also much closer to the ground truth for the 64
pattern configuration than the 1 pattern configuration.

While it is difficult to directly compare the trends in per-
formance across tasks (due to the large difference in what
is being labelled), the greater improvement observed within
the HeLa task is nevertheless of interest. We hypothesize
that this difference in improvement is at least in part due the
HeLa setup’s use of an objective lens with a lower NA (i.e.,
lower maximum acceptance angle of light). Briefly, the ob-
jective lens NA characterizes the imaging system transfer
function and can be conceptualized as a low-pass filter, with
the spatial frequency cut-off proportional to the NA value.
A lower NA corresponds to a lower frequency cut-off and
a lower image resolution. By imaging at lower resolution,
the impact of illumination optimization in transferring oth-
erwise unobserved spatial frequency content to the imaging

plane leads to more effective HeLa task performance. This
doesn’t mean that lenses with higher NA (such as the one
used in our PAN experiment) prevent our technique from
being useful (our results provide evidence to the contrary).
However, it is likely that a different LED array (perhaps il-
luminating at higher angles, or through a condenser) would
be more effective for optical setups with a high imaging NA.

5.2. Illumination Pattern Composition

In addition to improved performance, the DNN-
optimized LED illumination patterns also offer several in-
teresting physical insights. Illumination patterns for a select
number of multi-pattern configurations are displayed within
Figure 6. For example within the HeLa task, we see a mix
of bright-field (within the red outline) and dark-field illumi-
nation, with some patterns being a mix, and others nearly
exclusively bright-field. This likely means that the con-
trast provided by dark-field illumination (primarily sample
scattering) is useful for task-specific biological structures
of interest, but only when mixed with image data from the
bright-field channel (primarily sample absorption).

Another interesting feature of our results is the diversity
between patterns, or relative lack thereof. Using the same
LED across patterns (within the same configuration) may
seem to be yield redundant image data. Considering the
presence of noise, however, it appears more sensible. Areas
with weaker signal (which tend to be in the dark-field) ex-
hibit higher noise and are thus less likely to be sampled in a
single pattern/image. Oversampling can reduce the impact
of noise to better highlight key features of interest, and it
appears like the DNN identified this as an effective strategy.
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Figure 5: Example predictions across two distinct FOVs
within the test set. The leftmost column is an example
bright field image, where the two inner columns are exam-
ple virtual fluorescence predictions for the 1-pattern and 64-
pattern optimization cases. The rightmost column contains
the true fluorescent image.

6. Conclusion
In summary, we have presented a novel method for

jointly optimizing the illumination of an imaging system
for deep learning-based fluorescence image inference. We
focused our attention on microscope imaging with a pro-
grammable LED array, and determining an optimized set of
brightnesses and colors to display on the array during im-
age capture, which provides a simple and effective means
to improve current setups The two experiments we per-
formed show that this technique is robust in its improve-
ment, with the RMSE of fluorescence image reconstruction
for each specimen type being minimized by the “learned” or
jointly optimized approach. We believe our results support
this kind of approach not only for virtual fluorescence, but
other label-free imaging techniques (such as virtual stain-
ing). Furthermore, our experiments demonstrate that this
technique scales well to optimize for multiple illumination
patterns simultaneously. Our results showed that additional
illumination patterns can be effectively utilized to improve
task performance with diminishing returns.

While many physical components of an imaging system
may be optimized in this manner to benefit inference per-
formance, our results highlight the ease of use and sim-
plicity of optimized illumination patterns. Requiring only
an inexpensive LED array placed underneath the sample to
experimentally realize, this particular strategy is generally

Figure 6: Selection of optimized illumination patterns and
their corresponding formed images for both tasks, only a
single spectral channel (green) is shown for brevity. The red
outline within the pattern indicates the separation between
the bright and dark-field areas of the LED array. As the
number of patterns being optimized increases we observe a
larger variance in pattern composition as well as a tendency
to create bright/dark-field contrast.

less expensive than creating custom-fabricated optical ele-
ments. It is also dynamically controllable and can allow
users to dial up specimen-dependent optimized illumination
patterns, and explore the trade-off between data acquisition
time (number of patterns) and desired performance. We
hope our results continue to motivate the imaging and ma-
chine learning community to re-examine how they capture
data and continue to develop understanding of the connec-
tion between data capture and data processing.
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