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Abstract

In recent years, considerable progress on the task of
text-video retrieval has been achieved by leveraging large-
scale pretraining on visual and audio datasets to construct
powerful video encoders. By contrast, despite the natural
symmetry, the design of effective algorithms for exploiting
large-scale language pretraining remains under-explored.
In this work, we are the first to investigate the design of
such algorithms and propose a novel generalized distilla-
tion method, TEACHTEXT, which leverages complementary
cues from multiple text encoders to provide an enhanced
supervisory signal to the retrieval model. Moreover, we
extend our method to video side modalities and show that
we can effectively reduce the number of used modalities
at test time without compromising performance. Our ap-
proach advances the state of the art on several video re-
trieval benchmarks by a significant margin and adds no
computational overhead at test time. Last but not least, we
show an effective application of our method for eliminat-
ing noise from retrieval datasets. Code and data can be
found at https://www.robots.ox.ac.uk/~vgg/
research/teachtext/.

1. Introduction

The focus of this work is fext-video retrieval—the task
of identifying which video among a pool of candidates best
matches a natural language query describing its content.
Video search has a broad range of applications across do-
mains such as wildlife monitoring, security, industrial pro-
cess monitoring and entertainment. Moreover, as human-
ity continues to produce video at ever-increasing scale, the
ability to perform such searches effectively and efficiently
takes on critical commercial significance to video hosting
platforms such as YouTube.

A central theme of recently proposed retrieval methods
has been the investigation of how to best use multiple video
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Figure 1. Distilling the knowledge from multiple text encoders
for stronger text-video retrieval. Prior works [18, 28, 32] have
shown the considerable benefit of transitioning from video en-
coders that ingest a single modality (/eff) to multi-modal video en-
coders (centre). In this work, we show that retrieval performance
can be further significantly enhanced by learning from multiple
text encoders through the TEACHTEXT algorithm which imposes
no additional cost during inference. Text-to-video retrieval perfor-
mance gain (geometric mean of R1-R5-R10) is reported for a [28]
model as well as for our method on the MSR-VTT [55] dataset.

modalities to improve performance. In particular, archi-
tectures based on mixtures-of-experts [28, 32] and multi-
modal transformers [18] have shown the benefit of making
use of diverse sets of pre-trained models for related tasks
(such as image classification, action recognition and ambi-
ent sound classification) as a basis for video encoding dur-
ing training and testing.

In this work, we explore whether commensurate gains
could be achieved by leveraging multiple text embeddings
learned on large-scale written corpora. Different from
video embeddings using multiple modalities and pretrain-
ing tasks, it is less obvious that there is sufficient diversity
among collections of text embeddings to achieve a mean-
ingful boost in performance. In fact, our inspiration stems
from a careful investigation of the performance of differ-
ent text embeddings across a range of retrieval benchmarks
(Fig. 2). Strikingly, we observe not only that there is consid-
erable variance in performance across text embeddings, but
also that their ranking is not consistent, strongly supporting
the idea of using multiple text embeddings.

Motivated by this finding, we propose a simple algo-
rithm, TEACHTEXT, to effectively exploit the knowledge
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captured by collections of text embeddings. Our approach
requires a “student” model to learn from a single or multi-
ple “teacher” retrieval models with access to different text
embeddings by distilling their text-video similarity matrices
into an enhanced supervisory signal. As shown in Fig. 1,
TEACHTEXT is capable of delivering a significant perfor-
mance gain. Moreover, this gain is complementary to that
of adding more video modalities to the video encoder but
importantly, unlike the addition of video modalities, does
not incur additional computational cost during inference.

Our main contributions can be summarised as follows:
(1) We propose the TEACHTEXT algorithm, which lever-
ages the additional information given by the use of multiple
text encoders; (2) We show that directly learning the re-
trieval similarity matrix between the joint query video em-
beddings, which to the best of our knowledge is novel, is an
effective generalized distillation technique for this task (and
we compare our approach to alternatives among prior work
such as uni-modal relationship distillation [37]); (3) We
show an application of our approach in eliminating noise
from modern training datasets for the text-video retrieval
task; (4) We demonstrate the effectiveness of our approach
empirically, achieving state of the art performance on six
text-video retrieval benchmarks.

2. Related Work

Video retrieval methods. The task of indexing video
content to enable retrieval has a rich history in computer
vision—sophisticated systems have been developed to find
specific objects [45], actions [26], predefined semantic cat-
egories [21], irregularities [4] and near-duplicates [13, 44].
In this work, we focus on the task of retrieving content that
matches a given natural language description. For this par-
ticular task, there has been considerable interest in devel-
oping cross-modal methods that employ a joint-embedding
space for text queries and video content [2, 3, 15, 35, 54,
56, 57]. These joint video-text embeddings, which aim to
map videos and text descriptions into a common space such
that matching video and text pairs are close together, form
an attractive computational model for tackling this prob-
lem, since they allow for efficient indexing (although hi-
erarchical embeddings have also been investigated [12]).
Recently, two key themes have emerged towards improv-
ing the quality of these embeddings. First, large-scale
weakly supervised pretraining methods [24, 31, 33] have
sought to expand their training data by exploiting the speech
contained in the videos themselves as a supervisory sig-
nal. Second, the integration of multiple modalities (which
has long been considered important for semantic index-
ing [46]) has been shown to yield significant gains in per-
formance [18, 28, 32, 39]. We focus on candidates from this
latter theme as a basis for investigating our approach.

Text embeddings. The representation of language

through learned embeddings has been widely studied [34,
40, 41] and applied in a variety of natural language pro-
cessing applications. Several works have demonstrated that
even with large-scale pretraining, there still are benefits to
finetuning the models on the target task [14, 40] and that
larger models (often employing multiple attention heads)
yield higher performance [14]. Recently, [8] provided a de-
tailed comparisons on the importance of language features
for vision applications and proposes a word embedding that
is specifically designed for vision tasks. In this work, we
first study how various pretrained language embeddings af-
fect the performance for text-video retrieval and then pro-
pose a method to take advantage of the benefits of combin-
ing multiple text embeddings.

Knowledge Distillation/Privileged Information. The
purpose of knowledge distillation is to transfer knowledge
from one model (teacher) to another model (student). This
idea was originally introduced in the context of decision tree
simplification [6] and model compression [7], and later ex-
tended by [19] who formalised this knowledge transfer as
the temperature-parameterised process of knowledge distil-
lation. The concept was further generalised in the unify-
ing framework of generalized distillation [30] for learning
with privileged information [50] (via similarity control and
knowledge transfer [49]), together with knowledge distil-
lation [19]. Our approach distills knowledge of the sim-
ilarities between video and text samples into the student
and therefore represents a form of generalized distillation.
While most knowledge distillation methods train the student
with the teacher’s outputs as targets, more recent methods
propose different approaches [20, 43, 58]. Of most rele-
vance to our approach, [37] transfer mutual relations of data
examples and propose distance-wise and angle-wise distil-
lation losses that penalize structural differences in relations
instead of training the student to mimic the output of the
teacher—we compare to their approach in Sec. 5.

3. Motivation and intuition

Recently, [41] points out that even though language rep-
resentation learning systems (such as [25, 29, 40]) are pre-
trained on vast amounts of data, they are still sensitive to
slight changes in the data distribution and task specifica-
tion. In this way, most systems can be viewed as narrow
experts rather than competent generalists.

Consequently, in Fig. 2 we investigate how the usage of
different off-the-shelf pre-trained text embeddings affects
the retrieval performance. We observe that there is signif-
icant variance both within and across datasets, suggesting
that each embedding captures different types of informa-
tion. Our intuition is that this information comes from the
diversity of architectures, pretraining datasets and pretrain-
ing objectives, which differs across the text embeddings.

Next, we give details about the used text embeddings
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Figure 2. Influence of varying the text embedding. Different text embeddings are presented on the x axis: w2v [34], mt_grovle [8],
openai-gpt [40], roberta [29], albert [25], gpt2-large [41], gpt2-x1 [41], gpt2-x]-F along with their performance in geometric mean of R1-
R5-R10 on five datasets. For each experiment, we report the mean (diamond) and standard deviation (error bar) of three randomly seeded
runs.This study is performed using the CE retrieval architecture [28]: each model differs only in its use of pre-trained text embedding at
input. We observe a significant variance in performance when changing the text embedding, both across and within datasets. The difference
in rankings across datasets suggests the presence of additional information among different text embeddings.
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Figure 3. Share of correctly retrieved samples based on the
used pre-trained text embedding on MSR-VTT. We observe
that each embedding has a considerable share of sample retrieved
correctly only by itself (in terms of R1 left and RS right), further
justifying our approach. Best viewed in color.

and summarise the key differences between them in re-
lationship with our findings. Word2vec (w2v) [34] is a
lightweight text embedding that is widely used for vision
tasks [10, 27, 52]. Multi-task GrOVLE (mt_grovle) [8], is
an extension of w2v that is specially designed for vision-
language tasks (in our experiments, however, we find that
it slightly under-performs w2v). The finetuned transformer
language model (openai-gpt) [40] embedding is trained on
a book corpus containing long stretches of contiguous text.
We observe that it performs well on datasets that have
longer text queries such as ActivityNet. ROBERTa and AL-
BERT [25, 29] are based on the BERT architecture [14] and
are trained on the same data which consists of unpublished
books and Wikipedia articles. RoBERTa [29] focuses on
hyperparameter optimization and shows that greater model
capacity leads to better performance while ALBERT[25]
proposes some parameter-reduction techniques to reduce
memory consumption and increase training speed. In our
experiments, we observe a high variation in performance
when comparing the two. In contrast to the other embed-
dings, gpt2[41] is trained on a crawled dataset that was de-
signed to be as diverse as possible. We observe that gpt2
performs most robustly in our experiments, especially on
smaller datasets such as MSR-VTT and MSVD. However,

it nevertheless exhibits a domain gap to each corpus (high-
lighted by the fact that performance increases when fine-
tuning gpt2-x1, termed gpt2-xI-F throughout the paper, on
queries from the text-video retrieval datasets).

Additionally, in Fig. 3 we show how many correctly re-
trieved queries are shared between three text embeddings on
MSR-VTT: gpt2-x1, gpt2-x1-F and w2v. Only around 19%
(R1), respectively 42% (RS) queries are correctly retrieved
by all the three considered text embeddings. This means
that a significantly number of queries are sensitive to the
used text embedding, consolidating our intuition.

4. Method

Motivated by the findings from Sec. 3, our work aims to
study the influence of using multiple text embeddings for
text-video retrieval.

4.1. Problem description and learning setup

Let D = {(v;,c¢;)}, be a dataset of paired videos
and captions. Following the multi-modal experts approach
of [18, 28, 32], for each video we have access to a collection
of video embeddings (sometimes referred to as “experts”)
x; extracted from the various modalities of video v; using a
pretrained video encoder (VE) in addition to a text embed-
ding ¢; (extracted using a text encoder, TE) for each cap-
tion/query ¢;'. The objective of the text-video retrieval task
is to learn a model M (x;,t;) which assigns a high similar-
ity value to pairings (z;,t;) of video and text embeddings
that are in correspondence (i.e. ¢ = j) and a low simi-
larity otherwise. As is common in the literature [5, 32],
we parameterise the model as a dual-encoder that produces
joint-embeddings in a shared space such that they can be
compared directly M (z;,t;) = F(z;)TQ(t;) € R where
F and Q) represent the learnt video and text encoder respec-
tively. To train the video and text encoder for the task of

I These embeddings are produced by models that have been trained on
relevant tasks (such as action recognition for the video encoder and lan-
guage modelling for the text encoder)

11585



Teacher T,

Query; ] ]4—{ « :
“People — ‘—( Retrieval Model
are playing 4\\1 S={s} @(Sy, ..., SN) L D
" ) L 1={s;
sports ! a5 L o ;o
 — () .
[:L M | \l Teacher Ty,
i — || 3
Q L ! ‘—( Retrieval Model m
Retrieval Model L] I J C]
Fix) " S=teu}
Student (M) Multi text pipeline — used only for training

Figure 4. TEACHTEXT teacher-student framework overview. Given a batch of input videos and queries in natural language during
training, the student model, M (left) and teacher models 71, ..., Tn (right) each produce similarity matrices (visualised as square grids).
The similarity matrix produced by M is encouraged to match the aggregated matrices of the teachers through the distillation loss L4 in
addition to the retrieval loss £,-. Note that both the student and teachers ingest the same video embeddings (VE), but employ different text
embeddings (TEs for the student, TEq, ... ,TEn for the teachers). At test time, the teacher models are discarded.

retrieval, we adopt a contrastive ranking loss [47]: single text embedding. Next, we give details of the distilla-

B . . . . . .
1 tion loss used for the similarity matrix learning.
L, = B Z Z [max(0, s;; — i +m)+

=17 M Algorithm 1 TEACHTEXT algorithm
maz (0, sj; — sii +m)] 1: Phase 1: Learn teacher models

where B represents the batch size used during training, 2 Train N teacher models T, = (Fi,Qp), k €
sij = F(2:)"Q(t;) is the similarity score between the en- {1,..., N} using the training pairs (z;, t¥) where t¥
coded video F'(z;) and query Q(t;) while m is the margin. represents the text modality used by teacher 7}, in a

The key idea behind our approach is to learn a retrieval standard retrieval training setup (Sec. 4.1).
model, M, that, in addition to the loss described above, also 3: Phase 2: Learn the student model, M = (F, Q)
has access to information provided by a collection of pre- 4:  for minibatch of B paired samples {(v;, ¢;)} do
trained “teacher” retrieval models which are trained on the 5. For each pair (v;, ¢;) extract video experts and text
same task but ingest different text embeddings. embedding pairs (;, ¢;) using VE and T Eg.
4.2. TEACHTEXT algorithm 6: Compute student similarity matrix S; where

Ss(i,j) = F(x;)TQ(t;) fori,j € {1,..., B}

To enhance the retrieval performance of model M, we 7. Compute the loss £, via Eqn. 1 using S,.
propose the TEACHTEXT algorithm which aims to exploit 8: for teacher Tj,, k = 1,..., N do
cues from multiple text embeddings. An overview of our 9. For each pair (v;, ¢;) extract the video experts
approach is provided in Fig. 4. Initially, we train a col- and text embedding pairs (2, t¥) using V E and
lection of teacher models {T} : k € {1,...,N}} for TE;.
the text-video retrieval task using the approach described 10: Compute the similarity matrix S, where
in Sec. 4.1. The teachers share the same architecture but Se(i,5) = Fr(z)TQu(th) for i,j €
each model 7}, uses a different text embedding as input (ex- {1,...,B}.
tracted using a pre-trained text encoder TEy). In the sec- 11: end for
ond phase the parameters of the teachers are frozen. We 12: Compute aggregate teacher matrix
then proceed by sampling a batch of B pairs of videos and ®(S1,...,5N).
captions and computing a corresponding similarity matrix 13: Compute the loss L4 between S, and
S), € RB*B for each teacher T}, (Fig. 4 right). These N ®(Sy,...,Sy) via Eqn. 2.
similarity matrices are then combined with an aggregation 14: Update M with gradients computed from the com-
function, ® : RV*BxB _y REXB o form a single super- posite loss £ = L, + Lg.
visory similarity matrix (Fig. 4, centre-right). Concurrently, 15 end for

the batch of videos and captions are likewise processed by
the student model, M, which produces another similarity
matrix, Sy € RB*B_ Finally, in addition to the standard re-

: R 4.3. Learning the similarity matrix
trieval loss (Eq. 1), a distillation loss, L4, encourages the .S,

to lie close to the aggregate (51, ..., Sy). The algorithm As noted in Sec. 4.1, the essence of the retrieval task is
is summarized in Alg. 1. During inference, the teacher mod- to create a model that is able to establish cross-modal cor-
els are discarded and the student model M requires only a respondences between videos and texts/queries, assigning

11586



a high similarity value to a pairing in which a query ac-
curately describes a video, and a low similarity otherwise.
This renders the similarity matrix a rich source of informa-
tion about the knowledge held by the model. In order to be
able to transfer knowledge from the teachers to the student,
we encourage the student to produce a similarity matrix that
matches an aggregate of those produced by the teachers. In
this way, we convey information about texts and video cor-
respondences without strictly forcing the student to produce
exactly the same embeddings as the teachers. To this end,
we define the similarity matrix distillation loss as:

B B
Lo= 3 303 U®(i.5), 5.0 5)) @)
i=1 j=1

where B represents the batch size, ® = ®(Sq,...,Sn)
represents the aggregate of the teacher similarity matrices
and S represents the similarity matrix of the student. Fi-
nally, inspired from other distillation works such as [37], /

represents the Huber loss and is defined as

oy = d2@=9)? ifle—yl <1,
(:("ay) - 1 .
|z —y| -3 otherwise

We explored several forms of aggregation function and
found that a simple element-wise mean, ®(S7,...,Sy) =
LS | Sk, worked well in practice.

The idea of learning directly the cross-modal similarity
matrix is, to the best of our knowledge novel. It draws
inspiration from the work of relational knowledge distilla-
tion [37] which considered the idea of learning from rela-
tionships and introduced two algorithms to implement this
concept in a uni-modal setting through pairwise and triplet
distance sampling. We compare our matrix learning ap-
proach with theirs in Sec. 5.

4.4. Student model

3)

A key advantage of our approach is that it is agnostic
to the architectural form of the student and teachers, and
thus the student (and teachers) can employ any method from
the current literature. We test our TEACHTEXT algorithm
using three different recent works MoEE [32], CE [28],
MMT [18] as the student and teacher base architectures.
All these works employ multi-modal video encoders for the
text-video retrieval task. For more details, please consult
the original paper of each method.

Establishing a stronger baseline. In addition to these mod-
els, we also investigate our approach on a model which
shares the CE architecture of [28] but includes a series of
small technical improvements to provide a stronger base-
line against which we also test the TEACHTEXT algorithm.
Starting from this base architecture, we refine the input
embedding selection, finding that the face and OCR video
modalities employed by [28] do not consistently produce
improvement so we remove them as inputs to the video

encoder. We update the model to use the more powerful
gpt2-x1 text embedding of [41] and following [18], we fine-
tune this text embedding on captions from the target dataset
to bring additional improvement. Combining all of these
changes (ablations provided in Sec. 5.3 and Fig. 5a) results
in the CE+ model which we include as an additional base-
line. Thus, in summary we use four ([18, 28, 32] and CE+)
different base architectures for the student model.

4.5. Teacher models

The teacher models use the same architecture as the stu-
dent model. Concretely, for each of the four base archi-
tectures described in Sec. 4.4, we create a pool of multi-
ple teachers, each using a different pre-trained text embed-
ding as input. The candidate text embeddings we consider
are: mt_grovle [8], openai-gpt [40], gpt2-large [41], gpt2-
x1 [41], w2v [34]. So, we obtain a set of up to five models
that form the teachers T, k = 1..5 used by TEACHTEXT.

4.6. Training and implementation details

In order to train our final student, we combine the re-
trieval loss and the proposed distillation loss £ = £, + Lg.
Our model is trained in Pytorch [38] using the Adam [22]
optimizer. TEACHTEXT does not add any additional train-
able parameters or modalities to the final model. Moreover,
when training the student using TEACHTEXT, only the ad-
ditional loss term L4 is added, all other hyper-parameters
remaining the same.

5. Experimental setup
5.1. Datasets description

To provide an extensive comparison we test our approach
on seven video datasets that have been explored in recent
works as benchmarks for the task of text-video retrieval:
LSMDC [42], DiDeMo [1], MSVD [11], MSRVTT [55],
ActivityNet [9], VaTeX [53] and QuerYD [36]. We follow
the same experimental setup as prior works [12, 18, 28, 39].

5.2. Metrics

To assess performance, we follow prior work (e.g [15,
18, 28, 32, 33, 35, 57]) and report standard retrieval metrics,
including R@K (recall at rank K, where higher is better)
and MdR (median rank where lower is better). For certain
analyses, to maintain conciseness we report the geometric
mean of R@1, R@5 and R@10 rather than individual met-
rics (this statistic aims to be representative of overall re-
trieval performance). The numbers are reported for the task
of retrieving a video given text queries t 2v which is more
common in real world applications. The numbers for the
reverse task v2t and the number of parameters for each
model are reported in the Suppl. Mat. For each experi-
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ment, we report the mean and standard deviation of three
randomly seeded runs.

5.3. Ablations

In this section we present an extensive study of our
proposed approach. Following the setup used in prior
works [18, 28] we conduct ablations on the MSR-VTT
dataset [55], except where otherwise stated.

Baseline improvements. We propose CE+ as an addi-
tional baseline which consists of a series of technical im-
provements to the model of [28]. As seen in Fig. 5a each
modification described in Sec. 4.4 brings additional gain
over the base architecture. We observe in particular that
finetuning the text embedding on the target dataset has a
high influence, further highlighting the critical role played
by text embeddings and justifying their study. In addition
to other changes we found that certain video embedding ex-
pert features were highly sensitive to compression choices
used in video pre-processing, which we correct accordingly
(more details in Suppl. Mat.). Please note that for a fair
comparison, in Sec. 5.4 we report the numbers of re-training
the methods [28, 32] using these embeddings extracted with
the updated pre-processing which yields a higher perfor-
mance than the ones reported in the original papers.

Using multiple text embeddings during inference.
TEACHTEXT makes no use of additional information at
test time. However, it is natural to ask whether the ad-
ditional text embeddings can be trivially included as part
of the model architecture. In Fig. 5(b) we compare our

(b) Use additional text encoders at
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Figure 5. (a) Baseline improvements. The y-axes (scaled for clar-
ity) denotes retrieval performance on MSR-VTT. We begin by pre-
senting the performance of the original CE [28]. Firstly, we correct
compression artefacts in the pre-processing used for embedding
extraction (CE HQ, more details in Suppl. Mat.). Secondly, we
refine the used video modalities and text modalities (Mod ref and
Text ref). Finally, we finetune the text embedding (F) and change
the optimizer to Adam [22], thus obtaining the CE+ baseline. (b)
Use additional text embeddings at inference time. All experi-
ments were performed with the same architecture [28], but with
different text embeddings: gpt2-xl (first bullet), gpt2-xI-F (sec-
ond bullet), the concatenation of gpt2-xI and gpt2-xI-F (third bul-
let), the mean of gpt2-x1 and gpt2-xI-F (fourth bullet) and using
TEACHTEXT (last bullet). By using multiple text embeddings at
test time, which introduces an overhead, a boost in performance is
obtained. However, by using TEACHTEXT there is no additional
overhead at test time and the performance is superior.
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Figure 6. (a) Teacher study. We show the influence of learning
from different number of teachers on the MSR-VTT dataset (all
students share the same CE+ model, y-axes scaled for clarity). The
teachers were added in the following order: gpt2-xl, w2v, gpt2-
xI-F, mt_grovle, openai-gpt, gpt2-large. The performance of the
combined teachers grows as more teachers are added, however it
reaches a plateau after the first 3 teachers. The trend is similar
for student performance. (b) Distillation type. Presenting various
alternatives for distilling the information from the teacher: rela-
tional distillation [37] which preserves intra-text and intra-video
relationships, pairwise distance distillation (Pdist - adapting [37]
for cross modal relationships), ranking distillation inspired by [48]
at Rank 1 and Rank 10 and TEACHTEXT. The first bullet repre-
sents the student without distillation.

approach with some relatively simple text embedding ag-
gregation techniques, which require access to multiple
text embeddings during both training and inference. We
observe that TEACHTEXT outperforms these aggregation
techniques such as direct concatenation or mean of the text
embeddings, suggesting that the proposed method is effec-
tive in capturing the additional information given by multi-
ple text embeddings. Moreover, the text encoder of exist-
ing systems [18, 28, 32] typically employs many parame-
ters, so adding multiple text embeddings to the architecture
adds a significant number of parameters (100M+). For ex-
ample, the concatenation of two text embeddings (provided
that they have the same size) almost doubles the total num-
ber of parameters for CE+. In contrast, when employing
TEACHTEXT, no parameters are added.

Teacher variation. The teacher models share the same
architecture with the student, but use a different text embed-
ding. We next conduct an ablation on the influence of the
number of used teachers. We observe in Fig. 6a that perfor-
mance increases with the addition of more teachers. Since
the combined performance of the teachers after adding more
than 3 remains about the same, we do not obtain a further
improvement. Thus, for our final experiments presented in
Sec. 5.4 we use a combination of three teachers, having
the following text embeddings: w2v [34], gpt2-x1 [41] and
gpt2-x1-F (gpt2-x1 finetuned on the captions from the target
dataset). A study of how each individual text embedding af-
fects the final performance can be found in the Suppl. Mat.
section Teacher study, where we observe that even when us-
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Model MSRVTT MSRVTT 1k-A MSVD DiDeMo LSMDC ActivityNet
Base TEACHTEXT Base TEACHTEXT Base TEACHTEXT Base TEACHTEXT Base TEACHTEXT Base TEACHTEXT
MOoEE | 24.410.1 25.840.1 41.640.4 434106 418403 43.2405 332414 40.2407 23.840.4 26.040.5 40.140.3 45.240.1
CE 2444101 25.9.01 42.040.8 43.8.10.3 4234106 42.610.4 34.2404 39.5405 23.710.3 255105 404403 45.0106
MMT - - 44.710.4 45.6.10.7 - - - - 24.640.7 259106 44.040.4 47.9.10.4
CE+ 29.210.0 304400 50.340.2 50.9404 46.5410 46.610.5 35.840.4 404404 28.140.3 30.710.3 39.710.0 46.310.2

Table 1. Method generality. Retrieval performance (geometric mean of R1-R5-R10) on various datasets when applying TEACHTEXT on
top of different base models: MoEE[32], CE[28], MMT][18] (on available datasets) and CE+. We present in bold cases where TEACHTEXT
brings an improvement over the base architecture. We observe that our method improves the performance for all underlying base models

and on all datasets.
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Figure 7. (a) Denoising. We present the effect of denoising on
retrieval performance on MSR-VTT (y-axes scaled for clarity).
Some of the captions available in datasets with multiple captions
per video may be noisy and actively harm the training process. We
estimate the degree of noise present in a caption by looking at the
teacher rank and drop the caption if necessary. We observe the ef-
fectiveness of denoising when applied in isolation (CE+ vs CE+
Denoise) and in conjunction with the full TEACHTEXT method.
(b) TEACHVIDEO - Extension to video side modalities. We
observe that our method can be effective in taking advantage of
the additional information brought by using multiple video side
modalities, without incurring computational overhead at test time.

ing a teacher with lower performance (w2v), the student has
a significant boost in performance.

Distillation ablation. We compare the proposed learn-
ing of the similarity matrix with other distillation alterna-
tives. As seen in Fig.6b, our proposed approach is effective
in capturing the relationships between video and text. We
first provide comparisons between TEACHTEXT and sev-
eral possible instantiations of relational distillation [37]. In-
deed, given the highly general nature of [37], TEACHTEXT
can be interpreted within this framework as a particular re-
lational configuration that employs cross-modal distillation
through batches of similarity matrices. Since the original
work of [37] considered single-modality applications, we
explore two variations of [37] as baselines for the text-video
retrieval task. The first one (Relational), preserves the same
intra-text and intra-video relationships independently. We
use the same cost function as in [37] and enforce it on both
video and text embeddings. The second approach (Pdist),
uses the cross modal pairwise distances as a relation mea-
sure between text and video as opposed to the similarity
matrix. While these methods indeed bring a gain, we ob-
serve that TEACHTEXT is more effective.

We also provide a baseline inspired by the work of [48]
which highlights the importance of looking only at the top

K predictions given by the teacher. To do so, we enforce
the same similarities using TEACHTEXT only for the top K
ranks given by the teacher rather than for the whole mini-
batch. We show the performance for K=1 and K=10 (Rank
1 and Rank 10 presented in Fig.6b). Restricting to only top
K predictions when distilling the similarity matrix results in
a slight drop in performance.

Method generality. To demonstrate the generality of
TEACHTEXT, we test it against three state of the art meth-
ods [18, 28, 32] in addition to the proposed CE+ baseline.
In Tab. 1 we observe a consistent gain in performance, in-
dependent of the base architecture. Moreover, a gain is
achieved across all the datasets that we tested, having over
5% absolute gain on DiDeMo and ActivityNet datasets for
MOoEE, CE and CE+ models. Note that for MMT [18] we
report results on the datasets included in the public imple-
mentation provided by the authors?.

Method application — Denoising. One immediate ap-
plication of our method is data denoising. Existing real-
world text-video datasets for the retrieval task suffer from
label noise which can harm training. More concretely, in
crowd-sourced datasets such as MSR-VTT there are some
captions that are highly ambiguous/generic (e.g ”A tutorial
is presented”, ”Clip showing different colours”, ”A man is
writing”) and can describe multiple videos from the dataset.
We therefore propose to use TEACHTEXT teachers to filter
out such cases. For this scenario, we simply remove low-
ranked predictions given by teachers and re-train the stu-
dent using only the new samples. Specifically, we remove
all sentences for which the correct video is not ranked in
top 40 from the training set. This method is best-suited for
datasets where multiple captions per video are available, en-
suring that we can remove noisy captions without removing
the video itself from training. Following this, we apply the
denoising on MSR-VTT and MSVD datasets with the CE+
model. As seen in Fig. 7a, this can be an effective way of
further improving the results. Please note, denoising is not
used in any other ablations.

TEACHVIDEO — Extension to video modalities. While
the focus of this work is the use of multiple text embed-
dings, it is natural to consider whether this approach can be
extended to the video encoder modalities. Thus, we intro-
duce the TEACHVIDEO algorithm which follows the same

2https://github.com/gabeur/mmt
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Model | RQlf | RG51 | R@l0t | MdRJ
Dual[16] 7.7 22.0 31.8 32.0
HGR[12] 9.2 26.2 36.5 24.0

MOEE[32]® | 11.1401 | 30.740.1 | 42.940.1 | 15.040.0
CE[28]* 11.040.0 | 30.840.1 | 43.3+0.3 | 15.0+0.0
TT-CE 11.840.1 | 32.7x0.1 | 453101 | 13.0x0.0
TT-CE+ 15.0401 | 385101 | 517401 | 10.099
Table 2. MSR-VTT full split: Comparison to state of the art.
Model RG1T | RG51 | RQ101 | MdR |
MO]':‘I':‘[?)Z]3 21.611_0 50.811,1 65.6;&0_7 5-3:E0,6
CE[28] 217413 | 51.8405 | 65.740.6 | 5.0+0.0
MMT[18] | 24.6+0.4 | 54.010.2 | 67.1105 | 4.0+0.0
SSB[39] 27.4 56.3 67.7 3.0
TT-MMT 24.840.2 55.9410.7 | 68.5410 | 4.3405
TT-CE+ 29.64103 | 61.64105 | T4.2103 | 3.0400

Table 3. MSR-VTT 1k-A split[57]: Comparison with others.

Model RQ1 1 RQ5 1t RQ101 | MdR |
VSE++([17] 15.4 39.6 53.0 9.0
M-Cues[35] 20.3 47.8 61.1 6.0
MOEE[32]® | 21.1492 | 52.010.7 | 66.7402 | 5.010.0

CE[28]° 21.540.5 | 52.310.8 | 67.540.7 | 5.010.0

TT-CE 221404 | 52.2405 | 672106 | 5.010.0

TT-CE+ 25.4:&0_3 56.9;&0_4 71.310_2 4.010_0

Table 4. MSVD: Comparison to state of the art methods.

Model RQlt | R@51 | RQIOT | MdR|
S2VT[51] 11.9 33.6 - 13.0
FSE[60] 13.940.7 | 36.0408 - 11.040.0
MOEE[32]® | 16.1410 | 41.2416 | 552416 | 83105
CE[281° | 17.1409 | 419405 | 56.0405 | 8.010.0
TT-CE 21.0406 | 475109 | 61.9505 | 6.0400
TT-CE+ 21.6407 | 48.6104 629,06 6.0100

Table 5. DiDeMo: Comparison to state of the art methods.

Model | RGLT | RG51 | R@I0T | MdR |
JSFus[57] 9.1 21.2 34.1 36.0
MOEE[32]® | 12.1407 | 294405 | 377402 | 232408
CE[28]® 124107 | 285408 | 3794106 | 21.7+06
MMTI[18] 132104 | 292408 | 388409 | 21.0414
TT-MMT 13.6105 | 31.2404 | 40.8405 | 17.7105
TT-CE+ | 172404 | 36.5206 | 46.3405 | 13.T+05

Table 6. LSMDC: Comparison to state of the art methods.

setup as the original TEACHTEXT, but now the teacher has
access to multiple video modalities instead of multiple text
modalities. In this study, all students and all teachers use
the same text embedding, so we can assess the gains due to
TEACHVIDEO. By employing TEACHVIDEO we retain the
computational advantage of requiring fewer video modal-
ities during inference. As it can be seen from our exper-
iments presented in Fig. 7b, the method is effective and
brings a boost over the original student. We believe this
extension may be useful in scenarios in which limited com-
putational resources are available during inference.

Qualitative examples and other ablation studies are pre-
sented in Suppl. Mat.

3Please note that the numbers reported are higher than in the original
paper due to compression artefacts correction.

Model RQ11 RQ@5 1 RQ50 1 | MdR |
MOEE[32]° | 19.7405 | 50.010.5 | 92.0402 | 53405
CE[28]} 19.940.3 | 50.140.7 | 92.2406 | 5.3+05
HSE[59] 20.5 49.3 — —
MMTI[18] | 22.749.2 | 54.2410 | 93.2404 | 5.0+0.0
SSB[39] 26.8 58.1 93.5 3.0
TT-MMT 25~Oi0,3 58.7i0A4 95.6i02 4~0:t0.0
TT-CE+ | 23.5402 | 572405 | 96.140.1 | 4.040.0
Table 7. ActivityNet: Comparison to state of the art methods.
Model R@l1 | RQ51 | RQI0T | MdRJ
VSE[23] 28.0 64.3 76.9 3.0
Dual[16] 31.1 67.4 78.9 3.0
VSE++[17] 33.7 70.1 81.0 2.0
HGR[12] 35.1 73.5 83.5 2.0
SSB[39] 44.6 81.8 89.5 1.0
CE[28] 479401 | 84.2401 | 913101 | 2.0400
TT-CE 49.740.1 | 85.6+0.1 | 924101 | 2.0+00
TT-CE+ 53.2102 | 874101 | 93.310.0 | 1.010.0

Table 8. VaTeX: Comparison to state of the art methods.

Model RQ1 1 RQ5 1 RQ10 1 MdR |
MOoEE[32] | 11.641.3 | 30.243¢0 | 43.2431 | 14.2416
CE[28] | 139108 | 37.6510 | 483114 | 113400
TTCE | 142414 | 366120 | 5L.1401 | 97219
TT-CE+ | 144405 | 377417 | 509416 | 9.8+10

Table 9. QuerYD: Comparison to state of the art methods.
5.4. Comparison to prior work

As it can be seen in Tab.2,3,4,5,6,7,8,9 our approach is
effective and achieves state of the art results on six datasets.
All methods are trained for the retrieval task using only the
samples from the target datasets. In order to be as fair as
possible, we included the results of our TEACHTEXT (ab-
breviated TT) applied also to the best existing method for
each dataset. So, the architecture and the used features are
identical during inference (e.g. TT-CE has the same archi-
tecture and uses the same video and text embeddings as
CE). We highlight in bold the best performing method.

6. Conclusion

In this paper, we present a novel algorithm TEACHTEXT
for the text-video retrieval task. We use a teacher-student
paradigm where a student learns to leverage the additional
information given by one or multiple teachers, sharing the
architecture, but each using a different pre-trained text em-
bedding at input. In this way, we achieve state of the art
results on six benchmarks. Finally, we present an applica-
tion of our approach for denoising video retrieval datasets.
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