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Abstract

Previous adversarial training raises model robustness
under the compromise of accuracy on natural data. In this
paper, we reduce natural accuracy degradation. We use the
model logits from one clean model to guide learning of an-
other one robust model, taking into consideration that logits
from the well trained clean model embed the most discrim-
inative features of natural data, e.g., generalizable classi-
fier boundary. Our solution is to constrain logits from the
robust model that takes adversarial examples as input and
makes it similar to those from the clean model fed with cor-
responding natural data. It lets the robust model inherit the
classifier boundary of the clean model. Moreover, we ob-
serve such boundary guidance can not only preserve high
natural accuracy but also benefit model robustness, which
gives new insights and facilitates progress for the adversar-
ial community. Finally, extensive experiments on CIFAR-10,
CIFAR-100, and Tiny ImageNet testify to the effectiveness of
our method. We achieve new state-of-the-art robustness on
CIFAR-100 without additional real or synthetic data with
auto-attack benchmark 1. Our code is available at https:
//github.com/dvlab-research/LBGAT.

1. Introduction
Deep neural networks have achieved great success in

many tasks, especially with the surge of neural architecture
search [58, 24, 40, 11, 3]. However, with the concern of se-
curity of deep models, several methods [14, 51, 39, 36, 43,
57, 43, 17, 20, 37] have shown that deep models could be
vulnerable to adversarial attack. Data that is intentionally
created may easily fool strong classifiers.

In response to the vulnerability of deep neural networks,
adversarial defense has become an essential topic in com-
puter vision. There are now a sizable body of work ex-
ploring different ways to get adversarial settings, including
defensive distillation [30], feature squeezing [53], random-
ization based methods [49, 13] and augmenting the training

1https://github.com/fra31/auto-attack
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Figure 1: Model robustness on CIFAR-100 evaluated with
20 iterations PGD under white-box attack. “Natural Acc”
represents classification accuracy on natural (clean) data.
“Robust Acc” represents classification accuracy on adver-
sarial data. Our method (LBGAT+TRADES with α = 0)
improves robustness with the least natural accuracy degra-
dation.

with adversarial examples [56, 21, 27, 43], i.e., adversarial
training. However, training a robust model is still challeng-
ing. Recently, adversarial training with PGD attack [27]
becomes an effective defense strategy. However, when plot-
ting results of recent work [56, 21, 27] in Fig. 1, it is still
noticeable that higher robustness is often accompanied with
more accuracy degradation on natural data classification.

Different from previous work that mainly pursues var-
ious ways to improve robustness, we meanwhile pursue
accuracy preservation on natural data. In this paper, we
propose a novel adversarial training scheme, which signif-
icantly improves classification accuracy on natural data. It
also achieves high robustness under black- and white-box
attack. We take advantage of logits from a clean model,
which is trained only on natural data, to guide the learning
of a robust model.

A conceptual illustration is shown in Fig. 2 to explain
our motivation. As shown in (a), when only trained on natu-
ral (clean) data, the learned model Mnatural separates nat-
ural data (plotted in yellow) well. But it may fail to clas-
sify perturbed data and misclassifies the dark circle into the
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Figure 2: Conceptual illustration of our method vs. previous adversarial training approaches. Solid lines denote real classifier
boundary of the trained model, while the dotted line is the classifier boundary of the clean model Mnatural. Different shapes
represent logits of images in various classes. Black color marks adversarial examples.

rectangle category. Previous standard adversarial training
methods, e.g., Madry et al. [27], mainly improve the ro-
bustness towards adversarial examples. As shown in Fig.
2(c), adversarial examples (plotted in black) can be mostly
correctly classified with this strategy. However, some clean
data is wrong. Thus, our motivation is to leverage the clean
model Mnatural to improve the natural data accuracy of
Mrobust.

In order to seek guidance from clean model Mnatural,
we expect the logit output of adversarial example xadv from
Mrobust to be similar to logits output of corresponding nat-
ural data x that goes through Mnatural. As plotted in Fig.
2(b), the classifier boundary of our Mrobust is constrained
by that of the clean model, which helps classify the clean
data into correct categories. At the same time, adversarial
examples are also correctly labeled, benefiting from the ad-
versarial training scheme.

Instead of constraining Mrobust with the classifier
boundary from one well trained static Mnatural, we fur-
ther generalize our method to Learnable Boundary Guided
Adversarial Training (LBGAT) by training Mnatural and
our required model Mrobust at the same time to dynami-
cally adjust the classifier boundary of Mnatural and learn
the most robustness-friendly one to further help Mrobust

enhance robustness. To show the flexibility of our method,
we incorporate our model into state-of-the-art methods Ad-
versarial Logit Pairing (ALP) [21] and TRADES [56] re-
spectively and accomplish remarkable improvement over
the baselines. Interestingly, in our exploration, we observe
the classifier boundary guidance from Mnatural can also
enhance model robustness, which gives us new insights and
potentially facilitates progress for adversarial robustness.

We conduct experiments on CIFAR-10, CIFAR-100, and
Tiny ImageNet to evaluate the performance of our mod-

els under both white- and black-box attacks. Our mod-
els achieve impressive performance on these datasets and
outperform previous work in a large margin. Particularly,
we achieve state-of-the-art model robustness on CIFAR-100
without extra real or synthetic data under current the most
popular auto-attack.

2. Related Work

2.1. Adversarial Attack

White-box Attack Szegedy et al. [39] observed that
CNNs are vulnerable to adversarial examples computed
by the proposed box-constrained L-BFGS attack method.
Goodfellow et al. [16] attributed the existence of adversar-
ial examples to the linear nature of networks, which yields
the fast gradient sign method (FGSM) for efficiently gener-
ating adversarial examples.

FGSM was further extended to different versions of it-
erative attack methods. Kurakin et al. [23] showed that
adversarial examples could exist in the physical world with
an I-FGSM attack and iteratively applied FGSM multiple
times with a small step size. Madry et al. [27] proposed
Projected Gradient Descent (PGD) method as a universal
“first-order adversary”, i.e., the most active attack utilizing
the local first-order information about the network.

Dong et al. [14] integrated the momentum term into an
iterative process for attack, called MI-FGSM, to stabilize
update of directions and escape from poor local maxima
during iterations. This method obtains more transferable
adversarial examples. Moreover, boundary-based methods
like DeepFool [29] and optimization-based methods like
C&W [4] were also developed, making adversarial defense
more challenging. Recently, the ensemble of diverse attack
methods – auto-attack [10] by Croce et al., consisting of
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APGD-CE [10], APGD-DLR [10], FAB [9], and Square
Attack [1], became popular benchmark for testing model
robustness.

Black-box Attack There are also many ways to explore
the transferability of adversarial examples for the black-
box attack. Liu et al. [25] was the first to study the trans-
ferability of targeted adversarial examples. They observed
that a large proportion of target adversarial examples were
able to transfer with their target labels using the proposed
ensemble-based attack method. Dong et al. [14] showed
that iterative attack methods incorporating the momentum
term achieved better transferability. Further, Xie et al. [52]
boosted the transferability of adversarial examples by cre-
ating diverse input patterns with random resize and random
padding.

2.2. Adversarial Defense

Recent work focuses generally on developing defense
methods to improve model robustness, including input
transformation-based methods, randomization based meth-
ods [49, 13], and adversarial training [56, 21, 27, 43]. Atha-
lye et al. [2] showed that adversarial training with PGD had
withstood active attacks. Tramèr et al. [43] raised model ro-
bustness under black-box attack by the proposed ensemble
adversarial training, i.e., producing adversarial examples by
static ensemble models. Madry et al. [27] used the universal
first-order adversary, i.e., PGD attack, to obtain adversarial
examples in the course of adversarial training. Differently,
Kannan et al. [21] enhanced model robustness with adver-
sarial logit pairing, which encourages the logits from nat-
ural images and adversarial examples to be similar to each
other in the same model.

Moreover, Zhang et al. [56] regularized the output
from natural images and adversarial examples with the KL-
divergence function, meanwhile using a variant of PGD at-
tack. Xie et al. [50] studied the effect of normalization in
adversarial training and proposed the Mixture BN mecha-
nism that uses separate batch normalization layers for nat-
ural data and adversarial examples in one model. It still
requires the strong assumption of knowing whether an im-
age is natural or adversarial, at inference time, which may
not be that practical.

2.3. Knowledge Distillation

Knowledge distillation was first used in [19] by Hinton et
al., which was then widely applied to distill knowledge from
a teacher model to a student model. The typical application
of knowledge distillation is model compression, transfer-
ring from a large network or ensembles to a small network
that better suits low-cost computing. Since this work, sev-
eral methods [44, 31, 34, 41, 26, 42, 7] were proposed to fur-
ther improve performance on model compressing and other

tasks.
Goldblum et al. [15] analyzed the application of knowl-

edge distillation in adversarial training and proposed Adver-
sarial Robust Distillation (ARD) to transfer robustness from
a large adversarially trained model to a smaller one. In this
paper, we propose to use one robustness-friendly boundary
learned by one natural model, not necessarily large, to guide
the adversarial training without cross-entropy loss. By this
way, the robust model can sufficiently inherit the classifier
boundary and thus preserves high accuracy on natural data.

3. Our Method
3.1. Boundary Guided Adversarial Training

As suggested by Madry et al. [27], projected gradient
descent (PGD) is a universal first-order adversary. Robust
methods to defense PGD might be able to resist attack stem-
ming from other first-order methods as well. Similarly, we
use adversarial training with PGD as

min
θ

E(x,y)∈p̂data

(
argmax

δ
L̂(θ, x+ δ, y)

)
(1)

where p̂data is the training data distribution, L̂(θ, x, y) is
the standard cross-entropy loss function with data point x
and its corresponding true label y. θ represents parame-
ters of the model, and the maximization with respect to δ is
approximated using noisy BIM [23]. We denote the adver-
sarial example x + δ across the paper as xadv . Following
previous work [56, 27], δ is bounded by l∞.

Our expectation of the robust model is to achieve decent
robustness and at the same time keep high accuracy on nat-
ural images. As illustrated in Fig. 2, we make use of logits
from a clean model to help shape the classifier boundary of
the robust model. The logits of our required robust model
Mrobust with xadv taken as input should be similar to those
of Mnatural taking x as input. This relation is expressed as

min
θ

E(x,y)∈p̂data
L
(
Mrobust(xadv),Mnatural(x)

)
(2)

where L is Mean Square Error (MSE) loss function in our
experiments and M(x) denotes the logits of model M tak-
ing x as input. θ is the parameter of Mrobust. We randomly
initialize Mrobust and off-line train Mnatural on natural
data in our experiments.

Our method can be understood from the perspective of
classifier boundary guidance. Here we give analysis of why
our method can yield high performance on natural data.

Natural Classifier Boundary Guidance Since we as-
sume that Mnatural is well trained on natural data, log-
its from Mnatural embed more discriminative features for
classification, especially the classifier boundary. According
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to Eq. (2), when we impose the logits constraints, the sys-
tem penalizes more on those pairs (x and xadv) that have
more substantial discrepancy in classification. Therefore,
this logit guidance makes Mrobust inherit decent classifier
boundary for adversarial data. Actually, the inherited classi-
fier boundary is still applicable to natural data in following
explanation.

It is noteworthy that the adversarial example xadv is lo-
cated in the l∞ ball of x. According to the min-max mecha-
nism of PGD [27], when the adversarial training converges,
the loss value corresponding to xadv is always larger than
the loss value corresponding to x when passing xadv and
x into the same model Mrobust. Therefore, when we pull
xadv into the correct class with our proposed logits con-
straints, x is also squeezed into the correct class. Thus the
inherited classifier boundary from Mnatural separates nat-
ural data well and preserves high natural accuracy.

3.2. Learnable Boundary Guided Adv. Training

For Boundary Guided Adversarial Training (BGAT)
method, Mrobust is constrained by logits of the static
Mnatural. The well trained Mnatural has the most de-
sirable classifier boundary for natural data. Thus, inherit-
ing such classifier boundary, Mrobust tends to achieve high
performance on natural images.

Nevertheless, the classifier boundary coming from static
Mnatural might not be the most suitable choice for pursu-
ing robustness. We generalize the BGAT method to Learn-
able Boundary Guided Adversarial Training (LBGAT) by
training Mnatural and Mrobust simultaneously and collab-
oratively. The loss function is therefore changed from Eq.
(2) to

min
θ,θ∗

E(x,y)∈p̂data
L
(
Mrobust(xadv),Mnatural(x)

)
+ β CE

(
σ(Mnatural(x)), y

)
(3)

where xadv is the adversarial example corresponding to its
natural data x, and y is the true label. σ(·) is a softmax
function. CE represents cross-entropy loss, Mnatural and
Mrobust are parameterized by θ∗ and θ respectively. We
use Mean Square Error (MSE) loss as L function. β is the
trade-off parameter. In this paper, we choose β = 1. We
randomly initialize Mrobust and Mnatural in our experi-
ments.

Under the regularization of the proposed logits con-
straints, i.e., the L(·) loss item in Eq. (3), Mnatural adap-
tively learns one most robustness-friendly classifier bound-
ary during the collaborative training. At the same time, it
guarantees least performance degradation on natural data
with CE(·) loss item in Eq. (3). Note there is no addi-
tional cross-entropy loss for optimizing Mrobust, which
makes the classifier boundary be sufficiently inherited from
Mnatural. More details are listed in Algorithm 1.

Algorithm 1 Learnable Boundary Guided Adversarial
Training (LBGAT)

1: Input: step size η1 and learning rate η2, batch size m,
number of iterations K in inner optimization, model
Mrobust parameterized by θ, Mnatural parameterized
by θ∗. β is one hyper-parameter.

2: Output: robust model Mrobust with θ.
3: Initialize Mrobust and Mnatural randomly or with pre-

trained configuration.
4: repeat
5: Read mini-batch X = {x1, ..., xm}, Y =

{y1, ..., ym} from training set;
6: Get adversarial examples Xadv = {xadv

1 , ..., xadv
m }

by PGD attack with input X , Y ;
7: outputn = Mnatural(X);
8: outputr = Mrobust(Xadv);
9: lossce = cross− entropy(σ(outputn), Y );

10: lossreg = L(outputn, outputr);
11: θ∗ = θ∗ − η2

∑m
i=1 ∇θ∗(βlossce + lossreg)/m;

12: θ = θ − η2
∑m

i=1 ∇θ(βlossce + lossreg)/m;
13: until training converges

3.3. Boundary Guidance Improving Robustness

Zhang et al. [56] identified a trade-off between perfor-
mance on natural data and robust accuracy. Xie et al. [48]
observed that adversarial examples were helpful to model
generalization ability on natural images. However, using
models trained only with natural data to enhance model ro-
bustness remains unexplored. We instead notice that proper
classifier boundary learned by the naturally trained model
not only helps preserve high natural accuracy but also en-
hances model robustness (2.44% improvement on CIFAR-
100 dataset under the strongest auto-attack [10] shown in
Table 5. We attribute the improvement to the guidance of
natural classifier boundary with the following explanation.

Empirically, as shown in Fig. 1, an adversarially trained
model usually suffer from natural accuracy degradation,
which means the adversarially trained model can not model
the relations among different classes as well as the naturally
trained model.

For example, with an image of a dog, the naturally
trained model can misclassify it as a cat with the proba-
bility of 0.5. Under some case, we can accept this result
because some dogs are very like a cat in real life. However,
the adversarially trained model can misclassify a dog into
a truck with high confidence because attackers can change
the prediction of an image into any other class. And this is
not acceptable for us because a dog is very different from
a truck. Thus, with the guide of classifier boundary from a
naturally trained model, the adversarially trained model can
avoid such issues to some degree in training optimization.
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3.4. Model Flexibility

Our method provides a new training scheme for adver-
sarial training. It does not conflict or overlap with other
adversarial training methods. We show the flexibility of our
approach by using it in other state-of-the-art methods, e.g.,
Adversarial Logit Pairing (ALP) [21] and TRADES [56].
We validate the improvement over these baselines.

Combined with Adversarial Logit Paring Adversarial
logit pairing (ALP) requires the logits of natural data x and
the corresponding adversarial example xadv to be the same
in one model, which is achieved by adding an extra mean
square loss item between two logits output. We combine
our BGAT with ALP as the loss of

min
θ

E(x,y)∈p̂data
L
(
Mrobust(xadv),Mnatural(x)

)
+ α MSE

(
Mrobust(xadv),Mrobust(x)

)
(4)

where α is a trade-off parameter. σ(·) is a softmax
function and y is the true label. θ is the parameter
of Mrobust. We replace the cross-entropy loss item
CE(σ(Mrobust(xadv)), y) in the original ALP loss func-
tion with our Eq. (2).

Combined with TRADES The proposed TRADES algo-
rithm [56] explores the trade-off between model robustness
and accuracy on natural data by optimizing one regularized
surrogate loss. We use our BGAT in the TRADES algorithm
as

min
θ

E(x,y)∈p̂data
L
(
Mrobust(xadv),Mnatural(x)

)
+ α DKL

(
σ(Mrobust(xadv))||σ(Mrobust(x))

)
(5)

where α is still a trade-off parameter. θ is the parame-
ter of Mrobust. σ(·) is softmax function and y is the true
label. DKL(·) is the boundary error term, pushing classi-
fier boundary away from data point x, originally defined in
TRADES [56]. We replace the cross-entropy loss item of
CE(σ(Mrobust(x)), y) in original TRADES loss with our
Eq. (2).

It is noted that our LBGAT method can also be combined
with both ALP and TRADES methods by simply replacing
the first loss item in Eqs. (4) and (5) with Eq. (3).

4. Experiments

In this section, we verify the effectiveness of our meth-
ods by conducting both white- and black-box attack fol-
lowing the same experimental settings in [56], i.e., apply-
ing FGSMk (white-box or black-box) attack with 20 iter-
ations, perturbation size ϵ = 0.031 with step size 0.003.

Table 1: Ablation study for boundary inheritance on
CIFAR-10. 20 iterations PGD white-box attack is applied.
We adopt ResNet18 as Mnatural for LBGAT method.
Accn represents accuracy on natural images while Accr
represents robustness of models.

Methods Accn Accr
vanilla AT 86.82% 52.87%
TRADES (α = 6) 84.92% 56.61%
LBGAT (α = 0) (KL) 88.00% 56.10%
LBGAT (α = 0) w/ 88.35% 55.50%
LBGAT (α = 0) w/o 88.22% 57.55%

Datasets. To evaluate the robustness of our models, we
conduct extensive experiments on CIFAR-10, CIFAR-100
and Tiny ImageNet datasets. CIFAR-10 dataset consists of
60,000 32x32 color images in 10 classes, with 6,000 images
per class. There are 50,000 training images and 10,000 test
images. CIFAR-100 has 100 classes containing 600 images
each. There are 500 training images and 100 testing images
per class. Tiny Imagenet [12], which is with more complex
data, is a miniature of ImageNet dataset. It has 200 classes.
Each class has 500 training images, 50 validation images.
In our experiments, we resize the image to 32x32 and nor-
malize pixel values to [0,1]. Following [56], we perform
standard data augmentation including random crops with 4
pixels of padding and random horizontal flip during train-
ing.

Training Details. We use the same neural network archi-
tecture as [56], i.e., the wide residual network WRN-34-10.
Following [56], We set perturbation ϵ = 0.031, perturba-
tion step size η1 = 0.007, number of iterations K = 10,
learning rate η2 = 0.1, batch size m = 128, and number of
training epochs 100 with transition epochs {75, 90} on the
training dataset. Similarly, SGD optimizer with momentum
0.9 and weight decay 2e− 4 is adopted.

4.1. Ablation Studies

4.1.1 Natural Classifier Boundary Inheritance

To show the importance of boundary inheritance from
Mnatural, we conduct ablation experiments with and with-
out cross-entropy loss for Mrobust in Eq. (3). Experimental
results are summarized in Table 1. ”w/o” additional cross-
entropy loss for Mrobust enjoys 2.05% higher robust ac-
curacy than ”w/”, which further manifests vast importance
of the natural classifier boundary inheritance. We also re-
place MSE loss with KL-Divergence loss in Eq. (3). KL-
Divergence loss encourages the outputs of Mrobust and
Mnatural to enjoy the same distribution while MSE loss
encourages the outputs of Mrobust and Mnatural to have
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(b) Visualization for LBGAT.

Figure 3: Feature Visualization for LBGAT and TRADES
on 5 random selected classes.
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(b) Visualization for LBGAT.

Figure 4: Feature Visualization for LBGAT and TRADES
on 20 random selected classes.

the same classifier boundary. After replacing MSE with
KL-Divergence, we observe performance degradation.

4.1.2 Feature Visualization

We randomly sample 5 or 20 classes in CIFAR-100. The
numbers in the pictures are class indexes. For each sampled
class, we collect the logit features of clean images and the
corresponding adversarial examples. As shown in the fig-
ures below, LBGAT can inherit a good classifier boundary
from a naturally trained model, benefiting performance on
both natural data and adversarial data of the adversarially
trained model.

4.1.3 Separate Batch Normalization

Xie et al. pointed that clean and adversarial images are
drawn from two different domains and disentangling the
mixture distribution for normalization can enhance model
robustness. However, in this paper, we explore the inter-
action of information from those two domains, i.e., using
classifier boundary information from clean images to assist
the learning for adversarial examples.

Here we go deeper to explore whether the convolution
weights can be shared in Mnatural and Mrobust with ex-
periments on CIFAR-100. The experimental results are
shown in Table 2. Unfortunately, we observe robustness
drops.

Table 2: Ablation study for separate batch normalization.
Robustness is evaluated under auto-attack. †denotes mod-
els trained with shared convolution and separate batch nor-
malization.

Methods Accn Accr Datasets
LBGAT (α = 0) 70.03% 27.05% CIFAR-100
LBGAT (α = 6) 60.43% 29.34% CIFAR-100
LBGAT (α = 0) † 64.89% 24.02% CIFAR-100
LBGAT (α = 6) † 60.62% 27.26% CIFAR-100

Table 3: Comparison with vanilla AT method. For BGAT,
we use the ensemble of WideResNet and InceptionRes-
NetV2 as Mnatural. ResNet18 as Mnatural is for LBGAT
on CIFAR-10 and CIFAR-100. Accn represents accuracy
on natural images, while Accr represents the robustness of
models.

Methods Accn Accr Datasets
vanilla AT 60.90% 27.46% CIFAR-100
BGAT 67.72% 30.20% CIFAR-100
LBGAT 66.29% 34.30% CIFAR-100
vanilla AT 86.82% 52.87% CIFAR-10
BGAT 89.00% 55.40% CIFAR-10
LBGAT 87.08% 56.60% CIFAR-10

4.1.4 Effectiveness of Our Method

We first verify the effectiveness of our method compared
with vanilla Adversarial Training (AT). Evaluation of model
robustness is under the white-box attack using the same
setting as described at the beginning of Sec. 4. Both
our BGAT and LBGAT methods significantly outperform
vanilla AT shown by results in Table 3. As analyzed in
Sec. 3.2, the BGAT method can achieve higher natural ac-
curacy while the LBGAT method tends to have stronger ro-
bustness. Since we aim to achieve the strongest robustness
while preserving natural accuracy as high as possible, we
use LBGAT by default.

4.1.5 Combing with ALP and TRADES

To verify the flexibility of our method, we show that
combined with our BGAT and LBGAT methods, ALP
and TRADES further improve performance. For ALP,
BGAT+ALP and LBGAT+ALP methods, we adopt α = 1
following the setting in [21]. For the TRADES method, we
adopt α = 6, with which TRADES achieves the best ro-
bustness, as demonstrated in [56].

The evaluation is under the white-box attack following
the same setting as described at the beginning of Sec. 4. We
summarize the results in Table 4. Equipped with regular-
ization items of ALP and TRADES, our method can further
enhance model robustness. For CIFAR-100, LBGAT+ALP
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outperforms ALP by 2.92% and 6.31% respectively on
natural accuracy and robust accuracy under the white-
box attack respectively. Meanwhile, the BGAT+TRADES
method also outperforms TRADES in terms of both nat-
ural accuracy and robustness under the white-box attack
for CIFAR-10, which manifests the great flexibility of our
method.

Table 4: Our method is supplementary to ALP and
TRADES. For BGAT, we use the ensemble of WideRes-
Net and InceptionResNetV2 model as Mnatural. ResNet18
is adopted as Mnatural for LBGAT+TRADES and LB-
GAT+ALP. Accn represents accuracy on natural images
while Accr represents robustness of models.

Methods Accn Accr Datasets
ALP 59.75% 28.94% CIFAR-100
BGAT+ALP 63.46% 31.27% CIFAR-100
LBGAT+ALP 62.67% 35.25% CIFAR-100
TRADES (α = 1) 62.37% 25.31% CIFAR-100
TRADES (α = 6) 56.51% 30.94% CIFAR-100
BGAT+TRADES (α = 0) 71.27% 28.70% CIFAR-100
LBGAT+TRADES (α = 0) 70.03% 33.01% CIFAR-100
LBGAT+TRADES (α = 6) 60.43% 35.50% CIFAR-100
ALP 85.55% 54.59% CIFAR-10
BGAT+ALP 86.58% 55.74% CIFAR-10
LBGAT+ALP 85.05% 57.60% CIFAR-10
TRADES (α = 1) 88.64% 49.14% CIFAR-10
TRADES (α = 6) 84.92% 56.61% CIFAR-10
BGAT+TRADES (α = 0) 89.06% 56.75% CIFAR-10
LBGAT+TRADES (α = 0) 88.22% 57.55% CIFAR-10
LBGAT+TRADES (α = 6) 81.98% 57.78% CIFAR-10

4.2. Robustness on CIFAR-10 and CIFAR-100

White-box Regular Attacks. We evaluate the robustness
of our models under the white-box attack using the same
setting as described at the beginning of Sec. 4. For CIFAR-
10, our LBGAT+TRADES (α = 0) achieves 88.22% ac-
curacy on natural images, which outperforms TRADES
(α = 6) by 3.3% at the same time remaining 57.55% ro-
bust accuracy, 0.94% higher than that of TRADES (α = 6).

For CIFAR-100, our LBGAT+TRADES (α = 0)
achieves 70.03% accuracy on natural images and 33.01%
robust accuracy, improving TRADES (α = 6) by 13.53%
and 2.08% respectively. Moreover, our LBGAT+TRADES
(α = 6) further boosts robustness to 57.78% and 35.50%
on CIFAR-10 and CIFAR-100 respectively.

We also apply several other regular attack methods, like
FGSM and CW, to evaluate our models. Compared with
TRADES, our proposed methods consistently achieve bet-
ter accuracy on natural images and stronger robustness on
both CIFAR-10 and CIFAR-100 datasets. The details of our
results are presented in Table 5. Note that the CW attack de-
notes using CW-loss within the PGD framework here. The
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Figure 5: “White-box Robust Acc” represents classification
accuracy under white-box attack. “Black-box Robust Acc”
represents classification accuracy under black-box attack.
Models on the right of the red line are evaluated with the
clean model as the source one, while models on the left of
the red line models are evaluated with the robust model as
the source. More details are included in Table 7 of Ap-
pendix A.

evaluation under CW attack is also with 20 iterations, step
size 0.003 and perturbation ϵ = 0.031.

White-box Auto-Attack (AA). Auto-Attack [10] is to re-
liably evaluate model robustness with an ensemble of di-
verse strong attack methods, including APGD-CE, APGD-
DLR, FAB, and Square Attack. We use the open-source
code from [10] to test our models with perturbation size
0.031. The results are listed in Table 5. Compared with
TRADES (α = 6), our LBGAT+TRADES (α = 0)
model improves natural accuracy by 13.53% and 3.30%
on CIFAR-100 and CIFAR-10 separately, while achieving
comparable robustness. Our LBGAT+TRADES (α = 6)
model further boosts robust accuracy, obtaining 29.34%
and 53.14% on CIFAR-100 and CIFAR-10, outperforming
TRADES (α = 6) by 2.44% and 0.5% respectively.

Black-box Attacks. We verify the robustness of our mod-
els under the black-box attack. We first train models without
using adversarial training on the CIFAR-10 and CIFAR-100
datasets. The same network architectures that are specified
at the beginning of this section, i.e., the WRN-34-10 ar-
chitecture [54], are adopted. We denote these models by
naturally trained models as (Natural).

The accuracy of the naturally trained WRN-34-10 model
is 95.80% on the CIFAR-10 dataset and 78.76% on the
CIFAR-100 dataset. We also implement the method pro-
posed in [56] on both datasets with their open-source code-
base. For both datasets, the FGSMk (black-box) method is
applied to attack various defense models. We set ϵ = 0.031
and apply FGSMk (black-box) attack with 20 iterations
with step size set to 0.003. Note that the setup is the same
as that specified in the white-box attack.
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Table 5: Comparison of our method with previous defense models under white-box attack on CIFAR-10 and CIFAR-100.
We use ResNet18 as Mnatural for LBGAT method. Accn represents accuracy on natural images while Accr represents
robustness of models. AA is the strongest attack, i.e., auto-attack [10]. * denotes the model is WRN-34-20.

Defense Attack CIFAR-10 CIFAR-100
Accn Accr Accn Accr

Baseline None 95.80% 0% 78.76% 0%
TRADES (α = 1) FGSM20(PGD) 88.64% 49.14% 62.37% 25.31%
TRADES (α = 6) FGSM20(PGD) 84.92% 56.61% 56.50% 30.93%
LBGAT+ALP FGSM20(PGD) 85.05% 57.60% 62.67% 35.25%
LBGAT+TRADES (α = 0) FGSM20(PGD) 88.22% 57.55% 70.03% 33.01%
LBGAT+TRADES (α = 6) FGSM20(PGD) 81.98% 57.78% 60.43% 35.50%
TRADES (α = 1) CW 20(PGD) 88.64% 50.93% 62.37% 24.53%
TRADES (α = 6) CW 20(PGD) 84.92% 54.98% 56.50% 28.43%
LBGAT+ALP CW 20(PGD) 85.05% 55.78% 62.67% 31.97%
LBGAT+TRADES (α = 0) CW 20(PGD) 88.22% 56.38% 70.03% 31.14%
LBGAT+TRADES (α = 6) CW 20(PGD) 81.98% 55.53% 60.64% 31.50%
TRADES (α = 1) AA 88.64% 48.11% 62.37% 22.24%
TRADES (α = 6) AA 84.92% 52.64% 56.50% 26.87%
LBGAT+TRADES (α = 0) AA 88.22% 52.86% 70.03% 27.05%
LBGAT+TRADES (α = 6) AA 81.98% 53.14% 60.43% 29.34%
LBGAT+TRADES (α = 0)* AA 88.70% 53.58% 71.00% 27.66%
LBGAT+TRADES (α = 6)* AA 83.61% 54.45% 62.55% 30.20%

The results on CIFAR-100 are summarized in Table 7 of
Appendix A. We use source models to generate adversar-
ial perturbations where the perturbation directions are ac-
cording to the gradients of the source models on the in-
put images. Our models are more robust against black-
box attack transferred from naturally trained models and
TRADES [56], while yielding stronger robustness under
white-box attack and higher performance on natural images.
Specifically, our best model is 12.83% and 8.60% higher
than TRADES (α = 6) with the naturally trained model
and robust model as the source model separately on CIFAR-
100. For robustness under black-box attack with one robust
source model, our model is tested under TRADES (α = 6)
while TRADES is tested under our LBGAT trained model.
More comparison between our method and TRADES is
shown in Fig. 5, which exhibits results on the more chal-
lenging dataset CIFAR-100.

4.3. Robustness on Tiny-ImageNet.

To further demonstrate the effectiveness of our method
on more complex data, we conduct experiments on Tiny
ImageNet. Table 6 shows the experimental results. Our
method is better than ALP and TRADES, surpassing
baselines with a large margin. Specifically, our LB-
GAT+TRADES (α = 0) outperforms the most robust base-
line TRADES (α = 6) by 9.29% on natural data, mean-
while LBGAT+TRADES (α = 6) is 3.00% higher than it
on adversarial data, which verifies the effectiveness of our
approach again.

Table 6: Results on Tiny ImageNet [12]. The same evalua-
tion setting with CIFAR is applied under 20-iteration PGD
white-box attack. We adopt ResNet18 as Mnatural for LB-
GAT methods. Accn represents accuracy on natural images
while Accr represents robustness of models.

Methods Accn Accr Datasets
vanilla AT 30.65% 6.81% Tiny ImageNet
LBGAT 36.50% 14.00% Tiny ImageNet
ALP 30.51% 8.01% Tiny ImageNet
LBGAT+ALP 33.67% 14.55% Tiny ImageNet
TRADES (α = 6) 38.51% 13.48% Tiny ImageNet
LBGAT+TRADES (α = 0) 47.80% 14.31% Tiny ImageNet
LBGAT+TRADES (α = 6) 39.26% 16.42% Tiny ImageNet

5. Conclusion

In this paper, we have proposed the Learnable Boundary
Guided Adversarial Training (LBGAT) method, to improve
model robustness without losing much accuracy on natural
data. Our approach can be understood from the perspec-
tive of natural classifier boundary guidance. Moreover, an
interesting phenomenon that the boundary guidance from
a naturally trained model can also enhance model robust-
ness is observed during our exploration. Finally, extensive
experiments on CIFAR-10, CIFAR-100, and more challeng-
ing Tiny ImageNet datasets proved the effectiveness of our
methods.
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