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Abstract

In this paper, we present LOOKOUT, a novel autonomy
system that perceives the environment, predicts a diverse
set of futures of how the scene might unroll and estimates
the trajectory of the SDV by optimizing a set of contingency
plans over these future realizations. In particular, we learn
a diverse joint distribution over multi-agent future trajec-
tories in a traffic scene that covers a wide range of future
modes with high sample efficiency while leveraging the ex-
pressive power of generative models. Unlike previous work
in diverse motion forecasting, our diversity objective ex-
plicitly rewards sampling future scenarios that require dis-
tinct reactions from the self-driving vehicle for improved
safety. Our contingency planner then finds comfortable and
non-conservative trajectories that ensure safe reactions to
a wide range of future scenarios. Through extensive evalu-
ations, we show that our model demonstrates significantly
more diverse and sample-efficient motion forecasting in a
large-scale self-driving dataset as well as safer and less-
conservative motion plans in long-term closed-loop simula-
tions when compared to current state-of-the-art models.

1. Introduction
Self-driving vehicles (SDVs) have the potential to en-

hance considerably the safety of our roads as, unlike hu-
mans, they can constantly scan the surrounding environ-
ment without getting distracted or being impaired while
driving. Key to the success of a self-driving vehicle is its
ability to perceive its surroundings and predict the future
trajectory of the traffic participants, particularly those that
might affect its decision making. These predictions are then
exploited by the motion planning module to plan a safe and
comfortable maneuver towards the goal.

Forecasting the behavior of traffic participants is very
challenging as humans do not always follow the rules of
the road and sometimes exhibit erratic behaviors. Further-
more, the scene might unroll in many possible ways in the
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Figure 1. We illustrate the fact that the future is highly uncertain
and multimodal by showing 2 distinct futures at the scene-level.
In such scenario, LOOKOUT plans a short-term executable action
that leads to 2 different contingent plans to stay safe in both cases.

future, depending heavily on the interactions between ac-
tors (e.g., at a merge, either actor A yields to actor B or
vice versa). While most works predict each actor’s future
independently [11, 10, 29, 8, 4], recent approaches model
actor interactions and can produce samples that explain the
full scene in a consistent manner [2, 33, 38, 5]. How-
ever, they require prohibitively large numbers of samples
to cover the long-tails of the distribution. This is problem-
atic since these long tails are critical for safety, as failing to
take them into account might result in an accident (e.g., an
impaired driver running a red traffic light perpendicularly
to the SDV’s intended trajectory). Thus, there is a need to
develop prediction systems that can efficiently sample the
diverse set of possible futures. Unfortunately, existing ap-
proaches [46, 47] are not sample efficient as they trivially
encourage diversity in euclidean space, thus utilizing sam-
ples to cover irrelevant actors or actions that do not impact
the SDV’s behavior.

Furthermore, existing motion planners cannot take ad-
vantage of prediction systems that produce scene-consistent
samples [53, 13, 1, 36]. Instead, they optimize the expected
cost by sampling the marginal distribution of each actor in-
dependently, thus ignoring the fact that some of these fu-
tures cannot happen at the same time (e.g., either the hor-
izontal or vertical traffic can flow at a 4-way stop, but not
both). These planners also assume that the SDV must com-
mit to a single long-term trajectory, when in practice it can
execute a short-term action and re-plan as newer sensor ob-
servations become available. As a consequence, they result
in suboptimal and overly conservative trajectories [50, 39],
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e.g., the SDV braking prematurely to react to an unlikely
future instead of maintaining its speed as long as it is able
to stop safely and comfortably later.

In this paper we propose LOOKOUT, a full end-to-end
autonomy system that detects actors in the scene, predicts a
diverse set of consistent futures with high sample efficiency,
and plans an action that behaves defensively to potential
hazards while not overreacting to low probability dangers
far into the future. In particular, to address the sample in-
efficiency and limited mode coverage in motion forecasting
we formulate this task as a diverse set prediction problem,
where each element in the set reflects one possible future
at the scene level. To enable this set to cover the future
modes that matter for our decision making, we directly op-
timize the diversity of the downstream ego-vehicle motion
plans. Then, a scenario scoring module estimates the prob-
ability of each future in the set, enabling our planner to ac-
count for unlikely but safety-critical scenarios without be-
ing overly conservative. Finally, we propose a novel con-
tingency planner that is able to leverage multiple consis-
tent futures by planning separate long-term responses for
each future, while sharing an initial short-term action that
behaves non-conservatively with respect to the futures and
avoids immediate collision. Fig. 1 shows an example of
two diverse futures and the corresponding shared action and
contingent plans.

We demonstrate the effectiveness of our approach in
large-scale open-loop and closed-loop experiments that
comprise a wide variety of complex scenarios. Our exten-
sive experiments show that LOOKOUT’s driving is signifi-
cantly safer as well as less conservative than previous state-
of-the-art approaches. Furthermore, there exists a trade-off
between diversity and reconstruction quality of the fore-
casts; our approach can produce much better reconstruction
than other methods with similar diversity and higher diver-
sity with similar reconstruction capability.

2. Related Work
The autonomy pipeline composed of cascading detec-

tion, motion forecasting, and motion planning modules of-
fers great advantages over black-box end-to-end models
[30, 3, 9, 20, 26] such as safety, interpretability, error trac-
ing, and data efficiency. Moreover, [23, 6, 48, 35, 49, 7, 40]
have recently shown that learning this interpretable pipeline
end-to-end is beneficial. Because of this, we focus our lit-
erature review on interpretable approaches. For object de-
tection, we simply leverage recent advances in 3D voxel-
based object detection from LiDAR point clouds [22, 12,
44, 52, 43], which have been shown to achieve great speed-
accuracy tradeoffs. In the following paragraphs, we dive
deep into recent advances in motion forecasting and motion
planning, given that the main contributions of our work re-
side on these modules.

Motion Forecasting: A common approach for actor mod-
eling has been to independently predict the trajectory of
each actor [32, 11, 4, 8, 19, 29, 51]. These predictions can
be represented as closed-form gaussian distributions [11, 4,
8], a classification or energy over a discrete grid/graph/set
structure [19, 51, 29, 49], or trajectory samples of a stochas-
tic model [32, 17]. One approach to tractably model the
traffic multimodality jointly across actors is to stochasti-
cally sample one possible future scenario at a time, by sam-
pling latent variables that encode the joint scene dynamics,
and then decode the future trajectories [33, 38, 5]. These
are mainly divided into autoregressive models [33, 38], and
implicit latent variable models [5]. However, these meth-
ods require a high number of samples to characterize the
scene. In contrast, work in diverse motion forecasting has
focused on achieving high sample-efficiency to cover the
main modes of the distribution. This is especially important
in self-driving as SDVs need to be able to anticipate rare
or dangerous behavior by other actors on the road in order
to plan safe responses. Recent work [46, 47] has explored
how to encourage more diverse predictions from pretrained
variational inference models [37]. They train new encoders
that output a fixed number of jointly diverse samples of la-
tent variables. The formulation in [46] directly outputs the
set of latent codes, and evaluates their diversity based on
determinantal point processes (DPP). In the work of [47], a
set of multivariate gaussian distributions are sampled jointly
via reparameterization trick with a shared noise, and a di-
versity loss based on the L2-distance between motion fore-
cast samples is used to increase diversity in the predictions.
Alternatively, [18] trains a conditional GAN to output di-
verse samples using Farthest Point Sampling on the latent
space to spread out over more modes of the latent space. Fi-
nally, [28] trains their trajectory samples to stay within the
drivable area, allowing for greater diversity while retaining
admissibility. While these works achieve greater diversity
and accuracy in motion prediction, it is unclear how these
improvements translate into better motion planning for au-
tonomous agents.

Planning: In motion planning the goal is to generate a
trajectory for the self-driving vehicle to drive safely, com-
fortably, and progressing toward the goal [27]. A popular
approach to achieve this task is to design a cost function
that encodes all the objectives above and find a minimum-
cost trajectory. Such optimizations have been solved using
continuous-optimization [53], sampling [36, 35], or search
[1]. These methods achieve safety by including a collision
cost in the objective function which is computed with re-
spect to the predicted trajectories of actors in the scene.
However, in probabilistic settings where the predictions
take the form of trajectory distributions, the above meth-
ods compute the collision cost in expectation, minimizing
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Figure 2. LOOKOUT inference. For the learnable components, the colors denote different training stages. The backbone CNN, actor CNN
and prediction decoder are first trained (Section 3.1), the diverse sampler next (Section 3.2), and lastly the scenario scorer (Section 3.3)

the expected cost over all future predicted scenarios with a
single plan. Given a set of joint diverse predictions, it is pos-
sible that the SDV will need to plan for a greater number of
unlikely, but safety-critical future scenarios that will require
it drive defensively (e.g. yield, change lanes). However, it
is undesirable to always brake preemptively for such rare
scenarios, or ignore them altogether. Work in optimization-
based motion planning [45, 15, 50, 39, 31] plan for such
rare scenarios by picking trajectory plans that ensure it can
react to them safely, while also optimizing for objectives
such as progress and comfort. [15] splits the planned tra-
jectory into an initial shared section, and a set of branched
plans that could be taken from the end of the shared section.
[50, 39] predict the probability that a defensive maneuver
will be necessary in the near future, and decide whether to
postpone the decision to the future (where more information
will be available). The concurrent work of [31] learns an
autoregressive contingency planner that branches flexibly,
and models the surrounding agents as reactive. However,
the online policy optimization could converge to an unsafe,
local optima.

3. Diverse Prediction and Planning
In this section, we break down the autonomy problem

of mapping sensor data to an executable action into several
modules which provide interpretability of the SDV decision
making. Towards this goal, we first learn a joint percep-
tion and future prediction model that detects relevant ob-
jects and estimates the joint distribution over all actors’ fu-
ture trajectories with an implicit latent variable model [5]
(Section 3.1). Despite its sample inefficiency, such genera-
tive model allows us to learn a very powerful and efficient
trajectory decoder from latent samples. Next, we leverage
this decoder to learn a diverse latent sampler that achieves
high sample efficiency from the planner’s perspective (Sec-
tion 3.2). Then, we estimate the probability of each future
realization in the set (Section 3.3). Finally, we design a
novel contingency planner that plans a safe trajectory for
each possible future without being overly cautious (Sec-
tion 3.4). Fig. 2 depicts an overview of our approach.
3.1. Joint Perception and Motion Forecasting

In order to extract features useful for both detection and
motion forecasting, we employ a convolutional backbone
network inspired by [44, 6], which takes as input a history
of voxelized LiDAR sweeps and a raster HD map, both in

bird’s eye view (BEV) centered around the SDV. We then
perform multi-class object detection with a shallow convo-
lutional header to recognize the presence, BEV pose and
dimensions of vehicles, pedestrians and bicyclists, and ap-
ply rotated RoI align [24] to extract small feature crops
from the scene context around each actor’s location. Fi-
nally, an actor CNN with max-pooling reduces the feature
map of each actor n into a feature vector, xlocaln . Since
this local context lacks global information about the ac-
tor’s pose with respect to the rest of the scene, we in-
clude the BEV centroid and rotation relative to the SDV
xglobaln = {cx,n, cy,n, an} as additional features, obtaining
the final actor context xn = [xlocaln , xglobaln ] ∈ RD, where
[·, ·] denotes channel-wise concatenation. We refer to the set
of all the detected actors’ contexts asX = {x1, x2, ..., xN}.
The details about the LiDAR and map parameterization as
well as the backbone network, object detector header, and
actor CNN are left for the supplementary materials as they
are not the focus of our work and are highly inspired by
previous literature [23, 6, 4].

We parameterize the trajectory of each actor with a tem-
poral series of the actor centroid in 2D Euclidean space, i.e.,
yn ∈ R2T , where each trajectory is predicted in the actor’s
relative coordinate frame in Bird’s Eye View (BEV) defined
by its centroid and heading. Our latent variable model then
characterizes the joint distribution over actors’ trajectories
as follows:

p(Y |X) =

∫
Z

p(Y |X,Z)p(Z|X)dZ, (1)

where Z = {z1, z2, ..., zN} is a set of continuous la-
tent variables that capture latent scene dynamics, and Y=
{y1, y2, ..., yN} is the future trajectories of all actors. We
assume a fixed prior p(Z|X) ≈ p(Z) =

∏N
n=1 p(zn),

where zn ∼ N (0, I) ∈ RL. Following [5], we adopt an
implicit1 decoder Y = fθ(X,Z), where fθ is a determinis-
tic function parameterized by a spatially-aware Graph Neu-
ral Network (GNN) [4]. Since from observational data we
only obtain (X,Y ) pairs, a posterior or encoder function
qφ is introduced to approximate the true posterior distribu-
tion p(Z|X,Y ) during training [37], also parameterized by
a GNN. This encoder function helps this model learn a pow-
erful decoder, since given only X there could be many fea-
sible Y due to the inherent multimodality and uncertainty
of the future.

1“Implicit” means p(Y |X,Z) does not have analytical form.
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Figure 3. ObtainingK latent samples from an implicit latent vari-
able model (ILVM) implies samplingK times independently from
the prior. In contrast, our diverse sampler exploits a GNN mapping
to predict K latent samples from a single noise (in parallel).

The backbone network, detection header, actor CNN, en-
coder, and decoder are trained jointly for the tasks of ob-
ject detection and motion forecasting. We use binary cross-
entropy with hard negative mining per class for the presence
of an actor, and Huber loss for the regression targets (i.e.,
pose and dimension) [44]. See the supplementary materials
for more details. We use the CVAE framework [37] for the
latent variable model, which optimizes the evidence lower
bound (ELBO) of the log-likelihood log p(Y |X). Because
the deterministic decoder leads to an implicit distribution
over Y , we use Huber loss `δ as the reconstruction loss [5],
and reweight the KL term with β as proposed by [16]:

Lforecast =
1

NT

N∑
n

T∑
t

`δ(y
t
n − ytn,GT )

+ β · KL (qφ (Z|X,Y = YGT ) ‖p (Z)) , (2)

where the first term minimizes the reconstruction error be-
tween the trajectory samples Y = {ytn|∀n, t} = fθ(X,Z),
Z ∼ qφ (Z|X,Y = YGT ) and their corresponding ground-
truth YGT , and the second term brings the privileged poste-
rior qφ(Z|X,Y = YGT ) and the prior p(Z) closer.

So far we have learned a powerful model of the future
from which we can generate scene consistent samples for
all actors in the scene, largely similar to [5]. In particular,
inference in this model works as follows: First, we encode
the sensor data into actor contexts X . Then, we sample K
times from the prior {Zk ∼ p(Z)|∀k}, and decode the scene
latent samples deterministically in parallel to obtain each of
the K futures {Yk = fθ(X,Zk)|∀k}. Despite the high ex-
pressivity of this model and its attractive parallel sampling,
it has two major drawbacks: (i) sample inefficiency, and (ii)
no closed-form likelihood; respectively causing increased
reaction times and lack of downstream probabilistic risk as-
sessment. In the following, we address (i) by learning to
sample jointly a diverse set of latent codes that map into a
covering distribution over trajectories and, (ii) by learning a
categorical distribution over the diverse futures in the set.
3.2. Planning-Centric Diverse Sampler

The goal here is to remediate the sample inefficiency of
the scene-level generative model presented in Section 3.1
while exploiting its expressivity. To do so, we learn a di-
verse sampling functionM : X 7→ Z that maps the actor
contexts X coming from sensor data around each actor into
a compact set of scene latent samples Z = {Z1, ..., ZK}

whose decoded trajectories Y achieve good coverage. This
sampler will then replace the Monte Carlo sampling from
the prior p(Z) during inference, as illustrated in Fig. 3.

To leverage the decoder trained in Sec. 3.1, which was
trained to decode samples from a Gaussian approximate
posterior, the distribution over the set of latents induced
by the diverse sampler should also be Gaussian to reduce
the distributional shift [47]. Thus, we assume p(Z|X) =∏K
k=1 p(Zk|X) where p(Zk|X) = N (µk,Σk), µk ∈ RNL,

and Σk ∈ RNL×NL. To sample a set of latents Z that are
distinct enough from each other such that they will be de-
coded into a set of diverse futures, we use the reparameteri-
zation trick [21] to map a shared noise ε ∼ N (0, I) ∈ RNL
across K latent mappings {Mηk |k ∈ 1 . . .K}:

Zk =Mηk (X, ε) = bηk (X) +Aηk (X)ε, (3)

where η = {ηk|∀k} is the set of learnable parameters, µk =
bηk(X), and Σk = Aηk(X)Aηk(X)T .

To handle the fact that the input X ∈ RND can vary
in size (i.e. the number of actors N varies from scene
to scene), we parameterize M with a pair of GNNs: one
to generate the means and another to generate the co-
variances. Both GNNs assume a fully connected graph
where each node is anchored to an actor, and initialize the
node states as {xn}. Then, we perform message pass-
ing to aggregate information over the whole scene at each
node. Finally, each node in the first GNN predicts an ∈
RKL via an MLP. Then, we can easily extract Aηk(X) =

diag([a
kL:(k+1)L
1 , . . . , a

kL:(k+1)L
N ]). Similarly, each node in

the second GNN predicts bn ∈ RKL via another MLP, and
bηk(X) = [b

kL:(k+1)L
1 , . . . , b

kL:(k+1)L
N ].

The diverse latent codes Z can then be deterministically
decoded via Yk = fθ(X,Zk) with the decoder learned in
Section 3.1. Through sampling and decoding, we obtain a
set of K future trajectory realizations of all actors in the
scene Y = {Y1, ..., YK}. This process is parallel since it
is performed by leveraging a pair of GNNs that perform
all K latent mapping in a single round of message passing
Z ∼M(X, ε; η). Then, we can batch the K latent samples
to decode them in parallel Y = fθ(Z, X).

The objective of this diverse sampler is to be able to gen-
erate a set of futures Y that are diverse while recovering
well the ground-truth observations Ygt, which we can ex-
press through an energyE(Y, Ygt). Moreover, to encourage
minimal distribution shift to the inputs of the pretrained de-
coder fθ, we also minimize the KL divergence between all
the diverse latent distributions p(Z = Zk|X) and the prior
distribution p(Z). In practice, this term makes the learning
much more stable. To find the right balance between these
two objectives, we add a hyperparameter β. Overall, the
minimization can be formulated as:

min
η

E(Y, Ygt) + β

K∑
k=1

KL (p(Zk|X)‖p(Z)) , (4)
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where Y = {Y1, ..., YK}, Yk = fθ(X,Zk), Zk =
Mηk(X, ε) and the minimization is with respect to learn-
able parameters of the pair of GNNs η. Note that the de-
coder is fixed, i.e., θ is not optimized. Note that learning the
decoder jointly would compromise the realism to maximize
planning diversity (e.g., by having agents suddenly appear
in front of the SDV in the future, forcing it to change its
plan). Our energy function is composed of a few terms that
promote the diversity while preserving data reconstruction:

E(Y, Ygt) = Er(Y, Ygt) + Ep(Y) + Ed(Y). (5)

We now define the energy terms in more details.

Reconstruction Energy: This term encourages that what
happened in reality at the time the log was recorded to be
captured by at least one sample:

Er(Y) = min
k

`2(Yk − Ygt). (6)

Planning Diversity Energy: Increased prediction diver-
sity helps anticipate distinct future scenarios that require
different SDV plans (e.g., a vehicle cuts in front of the SDV
vs. keeps driving on its original lane). Thus, we promote
diverse samples that matter for the downstream task of mo-
tion planning by maximizing the following reward function:

R(Y) =
1

K

K∑
i=1

K∑
j 6=i

`2(τi − τj), (7)

where τi = τ(Yi) refers to the SDV trajectory planned
for predicted scene sample Yi by our contingency motion
planner outlined in Section 3.4. Since the optimal planned
trajectory for each scene τi is not differentiable with respect
to Yi, we leverage the REINFORCE gradient estimator to
express the energy Ep as a function of the log-likelihood
under the diverse sampler
Ep(Y) = −EY[R(Y)] ≈ − log p(Z|X)R(Y) (8)

=
1

K(K − 1)

K∑
i=1

K∑
j 6=i

− log p(Zi, Zj)`2(τi − τj),

where log p(Zi, Zj) = log p(Zj) + log p(Zi). The ap-
proximation comes from a Monte Carlo estimation of the
marginalization over Z.

General Diversity Energy: Since the signal from the
planning-based diversity can be sparse for scenes that do
not have any actors interacting with the SDV, we addition-
ally encourage diversity in the behaviors of all actors:

Ed(Y) =
1

K(K − 1)

K∑
i=1

K∑
j 6=i

exp(− `2(Yi − Yj)
σd

). (9)

With our proposed diverse sampler, each Y induced by a
different noise ε efficiently covers well the distribution over
futures. Thus, during inference we can simply take the set
induced by the mode ε = 0 to eliminate all randomness. We
note that determinism is important in self-driving for safety,
verification, and reproducibility.

3.3. Scenario Probability Estimation
The diverse set of K future realizations Y =

{Y1, ..., YK} provides the coverage needed for safe mo-
tion planning. However, for accurate risk assessment we
need to estimate the probability distribution over each fu-
ture realization in the set. To achieve this goal, we augment
our model to also output a score for all future realizations
l = sψ(X,Y), where sψ is a GNN that takes as input the
actor features and all K sample future scenarios. We can
then easily recover a distribution over such scores by re-
normalization. Thus, the probability of each sample is

pψ(Yk|X) =
exp(lk)∑
k′ exp(lk′)

. (10)

Since we only have access to a single ground truth realiza-
tion (i.e., the one that occur in the training log), we train
the scoring function sψ to match the approximate categor-
ical distribution over future scenarios q(Yk|X) under the
KL(pψ‖q) divergence. We define this approximate distri-
bution as follows:

q(Yk|X) =
exp(−α`2(Yk − YGT ))∑
k′ exp(−α`2(Y ′k − YGT ))

, (11)

where α = 10 is a temperature hyperparameter we chose
empirically. The research of better distance functions that
can capture the relevance of each actor with respect to the
SDV are left as future work.

3.4. Contingency Planner
The goal of the motion planning module is to generate

safe, comfortable and not overly conservative trajectories
for the SDV to execute. We achieve this through Model
Predictive Control, where a trajectory is planned consider-
ing a finite horizon, and is executed until a new trajectory is
replanned upon availability of a new LiDAR sweep. Most
planning frameworks in the literature [27, 14, 1, 36] take an
optimization-based approach where the trajectory that min-
imizes the expected cost is selected for execution:

τ∗0:T = argmin
τ0:T∈T0:T (x0)

E
p(Y )

c(τ0:T , Y ), (12)

where T0:T (x0) denotes the set of possible trajectories start-
ing from SDV state x0 up to the horizon T , and c denotes
the planner cost function. Note that the expectation is over
the distribution of possible future realizations of all actors
P (Y ). However, the above formulation does not exploit the
fact that only one of the predicted scenarios will happen in
the future and is conversely optimizing for a single trajec-
tory that is ”good” in expectation. Note that if we change
the expectation in Eq. 12 to the max operator, the planner
will optimize for the worst-case scenario regardless of its
likelihood. Consequently the planner will become over-
conservative, e.g., it will apply a hard-break for a very low
probability scenario where a vehicle crosses SDV lane, as
shown in [50, 39].
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Figure 4. Contingency planning paradigm. The cost-to-go of a
short term ego-action is captured by the ability to react to the K
diverse predicted futures with theK most suitable ego-trajectories.

In this paper, we take a different approach where instead
of finding a single motion plan for multiple futures, we
generate a single common immediate action, followed by
a set of future trajectories, one for each future realization
of the scene, as shown in Fig. 4. This contingency plan-
ning paradigm finds an immediate action τ0:t that is safe
with respect to all the possible realizations in Y and com-
fortably bridges into a set of contingent trajectories, where
each is specifically planned for a single future realization.
Such decision-postponing avoids over-conservative behav-
iors while staying safe until more information is obtained.
Importantly, this is only possible if the set of predicted fu-
ture scenarios is diverse, and covers possible realizations,
including low likelihood events.

Specifically, we plan a short-term trajectory that is safe
with respect to all possible futures and allows a proper con-
tingent plan for each future realization:

τ∗0:t = argmin
τ0:t∈T0:t(x0)

( action cost︷ ︸︸ ︷
max
Y

c(τ0:t, Y )+

cost-to-go︷ ︸︸ ︷∑
Yi∈Y

p(Yi)g(xt, Yi)
)
(13)

where g(x, Y ) = minτt:T∈Tt:T (x) c(τt:T , Y ) represents the
minimum cost trajectory from time t to T starting from the
state x and assuming a single future realization Y .

Cost Function: The planner cost function c(·) =∑
i wisi(·) is a linear combination of various carefully

crafted subcosts si that encode different aspects of driv-
ing including safety, comfort, traffic-rules and the route.
Here, w = {wi|∀i} is a set of learnable parameters. How-
ever, learning these parameters in the contingency planning
paradigm (Eq. 13) is an open problem since we only have
expert demonstrations for the future that occured at the time
of the log. Thus, we leave this for future work, and lever-
age the weights learned through Eq. 12 by [36]. Regarding
the subcosts, collision and safety-distance subcosts penalize
SDV trajectories that overlap with the predicted trajectories
of other actors or have high speed in close distance to them.
Similarly, trajectories that violate a headway buffer to the
lead vehicle are penalized. Other subcosts promote driving
within the lane and road boundaries, and penalize trajecto-
ries that go above speed-limit or violate a red-traffic light.
Finally, motion jerk, high forward acceleration, decelera-
tion, and lateral acceleration of the trajectories are penal-
ized to promote comfortable maneuvers. The details of all
the subcosts can be found in the supplementary materials.

Inference: We take a sampling approach to solve the min-
imization in Eq. 13. Specifically, we generate a set of pairs
{(τ0:t, Tt:T (τt))}, which include possible short-term trajec-
tories τ0:t and their possible subsequent set of trajectories
Tt:T (τt)). It is important to consider a dense set of initial
actions such that the final executed trajectory is smooth and
comfortable. Similarly, a dense set of long-term trajectories
enables the planner to find a proper contingent plan for the
future and thus obtain a more accurate cost-to-go for the ini-
tial action. In order to manage the complexity of the search
space above, we take the following sampling strategy: (i)
first a set of (spatial) paths are generated, (ii) for each path,
a set of initial velocity profiles are sampled, creating the set
of short-term trajectories, (iii) conditioned on the end state
of these initial trajectories, another set of velocity profiles
are sampled for the rest of the planning horizon assuming
the SDV follows the same path. In total, the sample set
contains ≈ 240 actions and for each action there are ≈ 260
long-term trajectories. The above path and velocity genera-
tion are done in Frenet-frame of the desired lane center line,
by sampling lateral and longitudinal profiles [42, 36]. For
more details see the supplementary materials.

4. Experiments
In this section, we present empirical results to validate

the hypotheses that our diverse sampler improves the diver-
sity/reconstruction tradeoff in the motion forecasts, and that
when tied with the contingency planner it can drive more
safely and less conservatively than prior art.

4.1. Experimental Setup
Dataset: ATG4D is composed of over one million frames
of LiDAR, HD maps with very accurate object tracks. It
was collected with careful expert drivers in several North
American cities. All models are trained to predict 5-second
trajectories, given 1 second of LiDAR history. We evaluate
motion forecasting in the test set of this dataset.

Closed-loop simulator: We use a simulated LiDAR en-
vironment [25] for closed-loop experiments where we eval-
uate the quality of our end-to-end driving model, recreated
from real static environments and actors. These scenarios
are curated from real driving logs to be particularly chal-
lenging, and they do not overlap with those in ATG4D in
order to evaluate generalization. When replaying the sce-
nario, the actors switch to reactive actors [41] if the sce-
nario diverges from the original one due to SDV actions.
The simulation is unrolled for ∼18 seconds at intervals of
100 milliseconds, which is the same time it takes to acquire
a new LiDAR sweep in the data collection vehicle. We note
that all training happens on real offline data, but it transfers
well to the simulated environment due to its high realism.
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Model CR(%) Progress
collision

(m) Progress(m) Jerk(m
s3
) Lat.Acc.(m

s2
) Acc(m

s2
) Decel(m

s2
)

CVAE-DPP[46] 17.07 123.97 21.17 11.99 0.06 1.11 0.80
CVAE-DLow[47] 14.63 377.07 55.18 5.22 0.15 0.84 0.54
MultiPath[8] 12.20 394.37 48.09 12.92 0.13 1.24 0.80
CVAE[37] 8.54 655.22 55.93 7.22 0.15 0.96 0.62
ESP[33] 11.59 464.44 53.81 6.52 0.15 0.89 0.57
ILVM[5] 10.98 553.96 60.80 5.50 0.16 0.86 0.56

LOOKOUT 7.93 790.37 62.65 4.69 0.37 0.79 0.53
Table 1. End-to-end driving results in closed-loop simulation. All motion forecasting baselines use the PLT planner [36] (Eq. 12) as
they don’t propose a motion planner. Please see our supplementary materials for results when they are paired with our planner (Eq. 13).

Figure 5. Planning quality and prediction reconstruction as a function of diversity. More diversity is not always better. We do not
include CVAE-DPP in these visualizations for clarity, as it has much lower performance than other models and would be off-the-charts.

Baselines: For motion forecasting, we use state-of-the-art
baselines in multimodal and diverse prediction, all of them
trained end-to-end with the same backbone network and ob-
ject detector architectures for a fair comparison, following
the experimental setup in [4, 5]. MultiPath [8], CVAE [37],
CVAE-DPP [46] and CVAE-DLow [47] model the distri-
bution over each actor’s future trajectories independently.
Thus, to construct a scene sample for these baselines we
sample a random trajectory for each actor, following [5].
For approaches that model the joint distribution over all
actors’ future trajectories, we benchmark against ESP [33]
and ILVM [5], which performed the best when compared in
[5]. To compare LOOKOUT’s driving to the baselines, we
use the state-of-the-art PLT planner [36] (Eq. 12) for those
motion forecasting models that did not propose a planner.

End-to-end driving metrics (closed-loop): We measure
the collision rate (CR) to reflect the driving safety. This
is the percentage of simulations in which there is at least
1 collision between the SDV and another actor. We also
evaluate the progress made by the SDV on its desired route
throughout the simulation horizon, measured in meters from
the starting location, as well as the progress per collision,
giving an idea of the ratio between non-conservativeness
and safety. Finally, we measure the mean jerk and accel-
eration applied as a metric of the driving comfort. As the
autonomy unrolls its own actions for long time periods, po-
tentially diverging from the path the expert-driver executed,
these metrics capture the quality of the end-to-end system,
including its robustness to distributional shift [34].

Sub-system level metrics (open-loop): In the open-loop
evaluations, our model is evaluated on real data from the
logs in the ATG4D dataset (i.e., the scenes visited by the

expert driver), as opposed to closed-loop evaluations where
we unroll our own plans. To evaluate the object detection
quality we measure the standard mean-average precision
(mAP), but defer the results to the supplementary because
all the models share the same perception backbone archi-
tecture, and it is not the focus of this paper. To measure the
reconstruction capability and the diversity of the scene-level
motion forecasts, we use K = 15 scene samples, meaning
that there are 15 distinct future scenarios predicted, each
with 1 trajectory per actor. The minimum scene average
displacement error (minSADE) measures how well we re-
call the ground-truth trajectory, while the mean scene av-
erage displacement error (meanSADE) measures the pre-
cision of the predicted distribution as proposed in [5]. To
evaluate how the diversity of these predictions impact the
subsequent contingent plans, we measure the pairwise plan
average self-distance (meanPlanASD), i.e., the average dis-
tance between the contingent plans for 2 distinct futures.
Finally, the scene average self-distance (meanSASD) com-
putes the average pairwise distance among scene samples as
a way to measure general diversity as proposed by [46, 47].
Details are available in the supplementary.

4.2. Comparison against state-of-the-art
Planning benchmark: The closed-loop experiment re-
sults for motion planning are shown in Table 1. LOOKOUT
outperforms the baselines in almost all metrics. In particu-
lar, we see a 21% increase in progress per collision to the
next best baseline for this metric, CVAE + PLT. This is a
combination of having 8% fewer collisions in addition to
12% greater progress, showing our model is able to avoid
dangerous scenarios on the road without slowing down (i.e.,
it provides additional safety while being less conservative).
For completeness, the results of the baselines paired with
our contingency planner are available in the supplementary.
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ID Mη Ep sψ Planner CR(%) Progress
collision

(m) Progress(m) Jerk(m
s3
) Lat.Acc.(m

s2
) Acc(m

s2
) Decel(m

s2
)

LOOKOUT 3 3 3 Conting. 7.93 790.37 62.65 4.69 0.37 0.79 0.53

M1 7 N/A 7 Conting. 9.15 709.60 64.90 4.40 0.38 0.77 0.52
M2 3 7 3 Conting. 10.98 626.79 68.79 8.77 0.20 1.09 0.73
M3 3 3 7 Conting. 9.15 658.58 60.24 4.96 0.35 0.79 0.53
M4 3 3 3 PLT 12.80 436.29 55.87 6.26 0.16 0.90 0.59

Table 2. Ablation study on the effect of the diverse samplerMη , planning diversity energy Ep, scenario scorer sψ and motion planner
towards the end-to-end driving capability (evaluated in closed-loop simulations).

Scenario 1 Scenario 2 Scenario 3

Figure 6. Diverse multi-future predictions and plans in closed-loop, zoomed in. Object detections and motion forecasts are blue for
vehicles and pink for pedestrians. The green bounding box is the SDV, its immediate action (1s) is shown in black (starting from its rear
axle), and its contingent trajectories planned for each possible future scenario are shown in distinct colors. LiDAR points are not visualized.

Diversity tradeoffs: LOOKOUT achieves the safest driv-
ing (Fig. 5a) and makes the most progress (Fig. 5b), while
attaining a very high diversity among its contingent plans.
In contrast, we see how more diversity often makes driv-
ing more unsafe for the baselines, while diminishing their
progress. As seen in Fig. 5c and Fig. 5d, more diversity
typically results in less precise and covering motion fore-
casts when evaluated at a constant budget of samples. Our
method escapes this diversity curse by focusing on forecast-
ing the future scenarios that matter for the downstream task
of driving. This allows our model to make cautious, safe
plans without the shortcomings of too much irrelevant or ex-
cessively variant predictions. We include the results of the
baselines paired with the contingency planner in the supple-
mentary materials.
4.3. Ablation Study

Table 2 shows the impact of our main contributions, pro-
viding insights into what makes LOOKOUT’s driving safer
and less conservative.

Diverse sampler vs. Monte Carlo sampling: M1 sam-
ples independently from the the prior p(Z). When compar-
ing this to LOOKOUT, we see that the full diverse sampler
(including the scenario scoring and planning diversity en-
ergy) is crucial to anticipate and avoid far more collisions,
while attaining almost the same comfort and progress.

Planning diversity energy: M2 shows that removing the
planning diversity energy from the diverse sampler objec-
tive increases the collision rate by 36%. We also observe
contrary fluctuations in jerk and lateral acceleration. We
hypothesize that this energy term favors early and preven-
tive lateral displacements instead of late hard brakes from
the planner. Further investigation is left for future work.

Scenario scoring vs. uniform probabilities: M3 re-
moves the scenario scoring, assigning each diverse scenario
an equal probability as input to the planner. We can see that
scenario scoring improves safety and progress, showing us
that it prevents the SDV from unnecessary premature brak-
ing to avoid low-probability risks.

Contingency planner vs. PLT: The ablation M4 demon-
strates the importance of the contingency planner as it im-
proves almost every metric when compared to the PLT plan-
ner, notably reducing collisions by 38%.

4.4. Qualitative results

Figure 6 shows three challenging scenarios the SDV en-
countered while driving in closed-loop simulation. We can
see in each scenario that the SDV plans multiple contingent
trajectories that each respond safely to one of the predicted
futures. Thus, the SDV can take a non-conservative imme-
diate action and still find a safe future trajectory if any of
the on-coming or turning cars block its path.

5. Conclusion
We have proposed a prediction and planning model that

generates more diverse motion forecasts and safer trajec-
tories for the SDV. Our prediction model learns to gener-
ate multimodal trajectory samples from a joint distribution
over actor trajectories. Unlike previous diverse forecasting
approaches, we directly optimize for predicting rare behav-
ior that could impact the SDV, and estimate the probability
distribution over these samples for more accurate risk as-
sessment. Our contingency planner improves the decision
making over these diverse samples. All in all, LOOKOUT
achieves safer and less conservative driving than previous
state-of-the-art models.
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