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Abstract

Video objection detection is a challenging task because
isolated video frames may encounter appearance deterio-
ration, which introduces great confusion for detection. One
of the popular solutions is to exploit the temporal informa-
tion and enhance per-frame representation through aggre-
gating features from neighboring frames. Despite achiev-
ing improvements in detection, existing methods focus on
the selection of higher-level video frames for aggregation
rather than modeling lower-level temporal relations to in-
crease the feature representation. To address this lim-
itation, we propose a novel solution named TF-Blender,
which includes three modules: 1) Temporal relation mod-
els the relations between the current frame and its neigh-
boring frames to preserve spatial information. 2). Fea-
ture adjustment enriches the representation of every neigh-
boring feature map; 3) Feature blender combines out-
puts from the first two modules and produces stronger fea-
tures for the later detection tasks. For its simplicity, TF-
Blender can be effortlessly plugged into any detection net-
work to improve detection behavior. Extensive evalua-
tions on ImageNet VID and YouTube-VIS benchmarks in-
dicate the performance guarantees of using TF-Blender
on recent state-of-the-art methods. Code is available at
https://github.com/goodproj13/TF-Blender.

1. Introduction
With the progress of learning-based computer vision, re-

cent research efforts have been extended from image tasks
to the more challenging video domains. Video tasks, such
as object detection [11], video instance segmentation [40],
and multi-object tracking and segmentation [33], hold valu-
able potentials for real-world applications [24, 33, 25, 26]

*Equal contributions.
†Corresponding author.

(a) Visualization of feature aggregation process

(b) Current aggregation
methods

(c) Our aggregation meth-
ods

Figure 1. Comparison of feature aggregation methods. (a) Features
from the neighboring frames are weighted equally during aggrega-
tion. (b) The current aggregation methods only reason the relations
between the current frame and neighboring frames. (c) Our pro-
posed method computes every pair of frames in the neighborhood
in the aggregation process.

(i.e., autonomous driving or video surveillance ).
A primary challenge of video object detection is to tackle

the feature degradation on video frames caused by cam-
era jitter or fast motion. Under the circumstance, detec-
tion algorithms for still images are ill-posed for video tasks.
Nonetheless, the video has rich temporal information, on
which the same object may appear in multiple frames for
a certain time span. The value of such temporal informa-
tion is explored in prior studies using the post-processing
paradigm [16, 19, 19, 21]. These methods firstly perform
still-image detection on single frames and then assemble the
detection results across temporal dimensions using a dis-
joint post-processing step (i.e., motion estimation and ob-
ject tracking). None of the above methods, therefore, oper-
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ate in an end-to-end fashion. Moreover, if detection on sin-
gle frames produces weak predictions, the assembling ap-
proach cannot improve the detection results.

Alternatively, there have been several attempts to boost
the performance of video detection using feature aggrega-
tion. [25, 33, 43] leverage optical flow to model the feature
movement across frames and propagate temporal features
to increase the feature representation for detection. With
stronger features, the detection results are significantly im-
proved. However, such temporal features are exploited by
an intuitive lumping operation, which is oversimplified.

In terms of how to organize features in aggregation,
we recognize two important predecessors, FGFA [42] and
SELSA [36]. Compared to the lumping solution [25, 33,
43], both methods use similarity scores to select more help-
ful features for aggregation. The aggregated feature is or-
ganized by an adaptive weight at every spatial location for
their representations (as shown in Figure 1(a)). Albeit being
superior over the prior efforts, FGFA [42] and SELSA [36]
encounter several obstacles from achieving optimal perfor-
mance: 1) They focus on modeling the global relation for
every neighboring frame while ignoring the preservation
of the local spatial information for aggregation; 2) They
primarily consider the global feature relations to the cur-
rent frames, while having no constraint in feature learning
among the neighboring frames (see Figure 1(b)); 3) They
take a fixed number of neighboring frames for the feature
aggregation, which is heuristic than general.

In this work, we attempt to take a deeper look at video
object detection and improve the performance guarantees
by organizing temporal information in a more rigorous prin-
ciple. Inspired by [42, 36, 7], we propose TF-Blender to or-
ganically model features consistently and correspondingly
in two ranges. Specifically, we reinforce local similarity in
feature space on sequential video frames to depict the con-
tinuous and coherence of visual patterns, while identifying
semantic correspondence across frames, which makes the
temporal representations robust to appearance variations,
shape deformations, and local occlusions. In this design,
TF-Blender is able to generalize feature aggregation by en-
couraging the video representation and capturing helpful vi-
sual content to improve detection performance. Concretely,
we are able to achieve the following contributions:

• We propose a framework called TF-Blender, which de-
picts the temporal feature relations and blends valuable
neighboring features to increase the temporal-spatial
feature representation across frames.

• In TF-Blender, we devise a temporal relation module
to manage temporal information and a feature adjust-
ment module to add constraints in feature learning to
preserve spatial information during feature aggrega-
tion. We, therefore, organize the feature learning be-

tween every pair of frames and aggregate features in
the whole neighborhood (see Figure 1(c))

• Our method is general and flexible, which can be
crafted on any detection network. With our novel fea-
ture enhancement strategy, we can obtain an absolute
gain of more than 0.7% in mAP on the ImageNet VID
benchmark and 1.5% in mAP on YouTube-VIS bench-
mark for recent state-of-the-arts methods.

2. Related Works
2.1. Video Object Detection

Video object detection. Different from image object de-
tection, video object detection faces challenging cases (i.e.,
motion blur, occlusion, and defocus) which rarely occur in
images [8, 15, 44]. To handle the challenges in video do-
mains, several works [20, 19, 16] use post-processing tech-
niques on top of still image detectors. For instance, Seq-
NMS [16] links bounding boxes across frames with IoU
threshold and re-rank the linked bounding boxes; TCN [20]
introduces tubelet modules and applies a temporal convolu-
tional network to embed temporal information to improve
the detection across frames; T-CNN [19] applies image ob-
ject detectors to generate results and then uses optical flow
to associate the detected results. Although achieving im-
provements, none of them are trained end-to-end and their
performances are still sub-optimal.

Another focus of the recent works [43, 42, 36, 12, 7, 41,
38] is to aggregate temporal features to improve the feature
representation for detection. These methods can be divided
into three categories: local aggregation, global aggregation,
and combination aggregation. Local aggregation methods
[42, 34, 12, 25, 41, 38, 13, 3] usually focus on propagating
features in a short range on video sequences. Among them,
FGFA [42] and MANet [34] are representatives which use
optical flow [18, 14] to calibrate and aggregate features
across local frames. On the contrary, global aggregation
methods [36, 32, 10] rely on long-range semantic informa-
tion. One seminal work is from SELSA [36], who com-
putes the semantic similarity between the current frame and
its neighbours across the whole video in order to perform
temporal feature aggregation. Different from the methods
which exploit features locally or globally, MEGA [7] in-
troduces a memory module to use both local and global
features to enhance the visual representation of the current
frame. The aggregation methods achieve further perfor-
mance gain over the post-processing methods, but they gen-
erally focus on higher-level video frame selection instead of
exploring lower-level temporal features exploitation.

Video instance segmentation. Similar to video ob-
ject detection, MaskTrack R-CNN [40] extends instance
segmentation [4, 5] from image domain to video do-
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Figure 2. Our TF-Blender framework includes three key modules: a) Temporal relation module: Feature relation function g (fi, fj) is
used as input to learn adaptive weights W (fi, fj) used for feature blender. 2) Feature adjustment module: Every neighboring frame
feature fj is aggregated with other neighboring features to generated feature representative F (fi, fj). 3) Feature blender module: The
results of W (fi, fj) and F (fi, fj) are combined to aggregate the feature of the current frame with dynamic number of neighboring
frames.

mains which requires segmenting and tracking instances
across frames. However, most of the current methods like
MaskProp [2], EnsembleVIS [30] focus on how to track
instances across frames rather than how to generate high-
quality features for detection, segmentation, and tracking.
In this work, we, therefore, propose a more principled so-
lution, which effectively transforms and exploits valuable
temporal features for the video object detection task.

2.2. Relation Learning

Relation learning is widely used for different tasks (i.e.,
point cloud analysis [29, 9] and image understanding [28,
39]) to describe the relationship between the current feature
and its neighbors. RS-CNN [29] extends regular grid CNN
to capture local point cloud features using geometric topol-
ogy constraints among points. Similarly, PointConv [37]
models the feature relation by computing both the local co-
ordinates and point cloud density. Both methods capture lo-
cal features in geometric space. On the contrary, DGCNN
[35] defines EdgeConv which captures local point relation
in high-dimensional feature space and updates the neigh-
borhood for the kernel dynamically at each layer.

Similarly, some recent works attempt to leverage rela-
tion learning for object detection. Inspired by [17] which
proposes an object relation module for still image object de-
tection, RDN [12] introduces a relation distillation network
to aggregate features based on object relation to improving
the features for video object detection. MEGA [7] extends
the relation learning from RDN and proposes a memory-
enhanced global-local aggregation network, which organi-
cally manages long-range (global) features and short-range
(local) features for aggregation in order to increase the fea-
ture representation of current time for detection. However,
the focuses of the above methods [17, 12, 7] are the se-
lection of higher-level video frames for aggregation rather
than modeling lower-level temporal relation to increasing
the feature representation.

Different from these methods, we propose a more gen-
eral approach for relation learning in feature aggregation.
Our TF-Blender can robustly depict the salient correspon-
dences between the feature of the current frame and neigh-
boring frames and exploit only valuable features for a
stronger detection.

3. TF-Blender
3.1. Preliminary and Overall Pipeline

The conventional feature aggregation methods [42, 36,
25, 34] generally work in a constrained fashion. Given
a set of neighboring frames Fj of the current frame
Fi,∀Fj ∈ N (Fi), their corresponding features fj are
weighted equally based on the feature similarity to Fi in
order to aggregate the temporal feature ∆fi:

∆fi =
∑

Fj∈N (Fi)

(wij × fj). (1)

The principal problem of feature aggregation, therefore, is
to calculate weights wij and select representative neighbor-
ing feature fj . Different from the above simple paradigm,
we exploit the temporal features from a general perspec-
tive. To achieve this goal, our TF-Blender crafts on three
novel architectural modules, temporal relation module, fea-
ture adjustment module, and feature blender module, to
boot the detection performances (see Figure 2).

3.2. Temporal Relation

Our temporal relation models the correspondences be-
tween the keyframe and its neighbors. To achieve this goal,
existing methods use W (fi, fj) to compute a global weight
on every pixel in the feature map. This approach ignores lo-
cal spatial information of the feature map during the process
of aggregation, which causes the issue of severe outliers
in the feature map. As shown in Figure 3(a), two neigh-
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(a) Input frames

(b) Feature maps of input frames

(c) Results of temporal relation

Figure 3. An example of the problem of feature aggregation with
global weights: a) shows two neighboring frames where the mov-
ing car (the green rectangles) is smaller than the traffic cone (the
red rectangles). b) visualizes the feature maps of the two frames
where the traffic cone also has a high response besides the car.
With global weights, the high response feature of the traffic cone
(the red rectangles) cannot be suppressed unless the global weights
have very small values. c) shows the results of our proposed tem-
poral relation module which assigns every pixel in the feature map
with an adaptive weight and can suppress the irrelevant features.

boring frames have a car with a fast speed and a still traf-
fic cone marked with green and red rectangles respectively.
The feature maps of the input frames are visualized as Fig-
ure 3(b) and the features of the traffic cone are outliers for
the car detection. For global weights, if the weights be-
tween the paired frames are none-zero, irrelevant features
cannot be removed during aggregation (see Figure 3(b)).
This problem occurs frequently when dealing with occlu-
sions or small-scale objects.

To address this issue, our temporal relation module gen-
erates adaptive weights W (fi, fj) for every pixel on the
feature map in replace of the global weights W (fi, fj). We
modelW (fi, fj) as a tensor with the same size as the fea-
ture representatives for aggregation. For every neighboring
frame Fj of the current frame Fi, we use temporal relation
module to calculate adaptive weightsW (fi, fj) (see Figure
2). The process is formulated as:

W (fi, fj) =M (g (fi, fj)) , (2)

where g is a feature relation function to describe the tempo-
ral relation between fi and fj andM is a masking function

Figure 4. Visualization of temporal relation module. The input
feature of fi and fj are visualized as blue and red cuboids respec-
tively. Feature relation function g models the temporal relation
between fi and fj (the gray cuboids). In the mini-network, con-
volution layers (the yellow cubes) are applied to generate the final
results (the purple cuboids). The results of the mid-layers are vi-
sualized as brown cuboids.

to calculate the adaptive weight based on g. As shown in
Figure 3(c), our temporal relation can enhance the feature
representations from the region of interest and suppress the
irrelevant features.

More concretely, we computeM in Eq. 2 using a mini-
network (see Figure 4). Compared with the CoefNet in
LMP [44], our feature adjustment module is built on a
lighter architecture, which makes our TF-Blender compu-
tationally efficient. The input of the module is fi and fj ,
marked as red and blue cuboids respectively. Feature rela-
tion function g describes the relation between fi and fj and
generates the input (the gray cuboid) of the mini-network
M. Afterward, we apply three convolution layers (the yel-
low cubes) to generate the final adaptive weightsW (fi, fj)
(the purple cuboid). The selection of the feature relation
function g will be discussed in 4.1.

3.3. Feature Adjustment

Our feature adjustment module aims to represent the fea-
ture consistency and salience of the neighboring frames for
feature aggregation. A simple solution [42, 36, 7] is to di-
rectly use feature fj from frame Fj as the follow:

F (fi, fj) = fj→i. (3)

However, fj cannot be guaranteed to be valuable for ag-
gregation as there is no constraints between these neigh-
boring features. Therefore, we aggregate every neighboring
frame feature fj before aggregating the current frame fea-
ture fi. We get feature representative F (fi, fj) by aggre-
gating fj with the other neighboring features fm,∀Fm ∈
N (Fi) ,Fm 6= Fj (see Figure 2). During feature adjust-
ment, we use the temporal relation module to generate adap-
tive weights for neighbouring feature aggregation and the
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process can be expressed as:

F (fi, fj) =
∑

Fm∈N (Fi)
Fm 6=Fj

W (fj , fm)⊗ fj (4)

where ⊗ is element-wise multiplication, fm is the feature
of the neighboring frame except itself, and W (fj , fm) is
Eq 2, which can be expressed here as:

W (fj , fm) =M (g (fj , fm))

∀Fm ∈ N (Fi) ,Fm 6= Fj

(5)

3.4. Feature Blender

In our feature blender module, we first enhance the re-
sults of the temporal relation module with the non-linear
function ReLU so that the contrast between the area of inter-
ests and background can be captured (see the blender mod-
ule in Figure 2). We formulate this process as:

Ŵ (fi, fj) = ReLU (W (fi, fj)) . (6)

Meanwhile, we normalize the results of the feature adjust-
ment module with the softmax function over all the chan-
nels to improve the generalization of our model. On the
top of the feature blender module in Figure 2, blue dots are
normalized to green dots by the softmax function with the
guidance of purple double arrows. The process can be ex-
pressed as:

F̂ (fi, fj) = softmax (F (fi, fj)) . (7)

In our feature blender module, we force Ŵ (fi, fj) to be
0 if the adjusted neighboring feature is very similar to the
feature of the current frame, shown as dashed purple double
arrows in the feature blender module part of Figure 2. We
use the cosine distance to describe the similarity between
F̂ (fi, fj) and fi. If the cosine distance is bigger than δ,
Ŵ (fi, fj) is force to be 0. We define this process as:

Ŵ (fi, fj) = 0, if
F̂ (fi, fj) · fi
|F̂ (fi, fj) ||fi|

> δ. (8)

We have this design because most of the current feature
aggregation-based methods [7, 36, 12, 42] have a fixed
number of neighboring frames in aggregation. However, for
neighboring frames which include issues of severe motion
blur or defocus, aggregating them are irrelevant and redun-
dant, which may cause unwanted ambiguity.

Finally, we use element-wise multiplication to combine
the results of from Eq. 7 and Eq. 8 to perform the feature
aggregation:

∆fi =
∑

Fj∈N (Fi)

(
Ŵ (fi, fj)⊗ F̂ (fi, fj)

)
(9)

Methods mAP(%) Runtime(FPS)

FGFA[42] 77.8 7.3
SELSA[36] 81.5 10.6
RDN[12] 81.7 -
MEGA[7] 82.9 5.3

FGFA(Ours) 79.3↑1.5 6.9
SELSA(Ours) 82.5↑1.0 10.1
RDN(Ours) 82.4↑0.7 -

MEGA(Ours) 83.8↑0.9 4.9
Table 1. Performance comparison with the recent state-of-the-art
video object detection models on ImageNet VID validation set.
The backbone is ResNet-101 and runtime is tested on a single RTX
2080Ti GPU.

4. Experiments
4.1. Implementation Details

Evaluation metrics. Following [43, 42], we report all
results on using the mean average precision (mAP).

Video object detection setup. We evaluate our meth-
ods with MEGA [7], SELSA [36],FGFA [42], and RDN
[12], the three state-of-the-art systems. We perform our
training and evaluation on the ImageNet VID benchmark
[31], which contains 3,862 videos for training and 555
videos for validation. Following the widely used protocols
in [42, 7, 36], we train our model on a combination of Im-
ageNet VID and DET datasets. We implement our method
mainly based on the source code of the original method.
The whole network is trained on 8 RTX 2080Ti GPUs with
SGD. During the training and inference process, each GPU
holds on one set of images or frames. During the training
process, the encoder parameters are frozen and an NMS of
0.5 IoU is adopted to suppress detection redundancy.

Video instance segmentation setup. We also evalu-
ate our proposed method with state-of-the-art MaskTrack
R-CNN [22] and SipMask [6]. We perform our training
and evaluation on the YouTube-VIS benchmark [40], where
there are 3,471 videos for training and 507 videos for val-
idation. During the training process, we use weights pre-
trained on MS-COCO [23] and use 8 RTX 6000 GPUs with
SGD. In both training and evaluation, the original frame
sizes are resized to 640× 360.

Parameters. For mini-network M in Eq. (2), a three-
layer CNNs is introduced to adapt the channels for feature
aggregation. Feature relation function g is defined as a con-
catenated tensor of fi, fj , fi − fj , fj − fi and the δ in Eq.
(8) is set to 0.7.

4.2. Main Results

Results on ImageNet VID benchmarks. We compare
state-of-the-art systems crafted on our method with their
original implementations. For a fair comparison, we used
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Figure 5. Quantitative examples of comparison between methods without and with our TF-Blender integrated on ImageNet VID and
YouTube-VIS benchmarks.

the codes provided by the original papers and re-implement
them with our proposed method. The results are demon-
strated in Table 1. Based on the results, our proposed meth-
ods substantially improve the performance of every com-
pared method listed in the table with the same backbone.

For head-to-head comparisons, all the methods with the
same backbone can leverage our proposed methods to im-
prove their performances on detection results around 0.7%-
1.5% on accuracy. Among them, FGFA with our proposed
method has the highest improvement compared with other
methods. Among them, local aggregation and global aggre-
gation methods like FGFA [42] and SELSA [36] can have
a better improvement with our proposed methods compared
with combination aggregation methods like RDN [12] and
MEGA [7]. We argue that the limited performance gains
come from the combination aggregation methods, which
consider both local and global features and make detection
more robust to issues like motion blur in videos.

Figure 5 shows some examples of detection results with
our methods integrated. Based on the examples, we can
see that our proposed method can help solve the problem of
weak detection with rare pose and part occlusion situations.

Experiments on YouTube-VIS benchmark. We also
evaluate our proposed method on YouTube-VIS dataset [40]
and report our results on the validation as [40, 6, 1]. Most of
the current video instance segmentation methods focus on
how to generate high-quality masks and link the same ob-
jects across frames with features extracted by the backbones

like ResNet while only a few of them pay attention to im-
prove the features for mask generation and object tracking.
We add our proposed methods to these video instance seg-
mentation methods to evaluate the effectiveness of our TF-
Blender on issues like motion blur and defocus in videos.
The results with ResNet-50 as backbones are shown in Ta-
ble 2. From Table 2, our proposed methods achieve com-
petitive results under all evaluation metrics. With our pro-
posed methods, MaskTrack R-CNN and SipMask can be
improved by more than 1.6% on the AP metric. The bottom
part of Figure 5 shows an example of detection and segmen-
tation results with our integrated.

4.3. Ablation Study

We carry out extensive ablation studies to discover the
optimal settings related to different settings of our system
using FGFA [42].

Analysis of contributing components. We first con-
duct experiments on the effect of every component in our
proposed method and the results are shown in Table 3. The
baseline model a is the original FGFA. Every component
of our proposed method (temporal relation, feature adjust-
ment, and feature blender) contributes towards improving
the overall performance in detection accuracy. By introduc-
ing the temporal relation module, the performance of model
b can be improved by 0.7%. Model c adds our feature ad-
justment module to the baseline and gets an improvement of
0.3% compared with the baseline model a. We add our fea-
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Methods Category AP AP50 AP75 AR1 AR10 FPS

Stem-Seg [1]

One-stage

30.6 50.7 33.5 31.6 37.1 12.1
Stem-Seg(Ours) 31.3 51.5 34.1 32.1 37.9 11.3

SipMask [6] 33.7 54.1 35.8 35.4 40.1 28.0
SipMask(Ours) 35.1 55.5 36.9 36.1 41.3 26.6

SG-Net [27] 34.8 56.1 36.8 35.8 40.8 22.9
SG-Net(Ours) 35.7 57.1 37.6 36.6 42.0 21.3

MaskTrack R-CNN [22] Two-stage 30.3 51.1 32.6 31.0 35.5 10.0
MaskTrack R-CNN(Ours) 31.4 52.3 33.5 31.9 36.5 9.4

Table 2. Performance comparison with the recent state-of-the-art video instance segmentation models on YouTube-VIS validation set. The
backbone is ResNet-50-FPN and the models are pretrained on MS-COCO. The runtime is tested on a single RTX TITAN GPU.

Method TR FA FB mAP(%)

a 77.8
b X 78.5
c X 78.1
d X 78.3
e X X 78.6
f X X 78.8
g X X 78.5
h X X X 79.3

Table 3. Impact of integrating every functional module into the
baseline to the accuracy. TR, FA, and FB stand for temporal rela-
tion module, feature adjustment module, and feature blender mod-
ule respectively.

ture blender module to model a to generate dynamic num-
bers of neighboring frames for feature aggregation and get
model d, which is 0.5% better than the original model on
mAP metric. Model e, f, and g come from the combination
of models a, b and c. As can be shown in Table 3, by com-
bining every two of our proposed methods, the video object
detection performance can be further improved. Compared
with the baseline model a, our full model h can obtain an
absolute gain of 1.5% in accuracy of video object detection.

Analysis of temporal relation. We conduct ablation
studies on the choice of g in Eq. (2). During these ex-
periments, all the other experimental settings are kept the
same. We first try different combinations of fi and fj for
g on FGFA [42] as Table 4. A naive idea is to use just fi
and fj as input and there is 0.5% improvement on FGFA.
We think that the performance is limited because only in-
dividual frame features are taken into account which is not
enough to describe the relationship between the fi and fj .
Thus, we introduce the difference between fi and fj to g
and get an improvement of 0.8% for FGFA. We then use
the summation of fi and fj as g to generateW (fi, fj) but
there is only 0.1% improvement. We also make a combina-
tion between fi+fj with the other choices mentioned above
(like fi, fj , and fi − fj), but the results of the combination

g mAP(%)

fi, fj 78.3
fi − fj 78.6
fi + fj 77.9

fi, fj , fi + fj 78.1
fi − fj , fi + fj 78.5
fi, fj , fi − fj 78.9

fi, fj , fi − fj , fj − fi 79.3
Table 4. Results of different designs on feature relation function g.

are worse than those of the original. We think the reason
why fi +fj is not suitable to describe the relations between
fi and fj is fi +fj works like an average filter which mixes
the pixels with higher responses and those with lower re-
sponses in the feature map. Besides the experiments men-
tioned above, we also try fi, fj , fi−fj and get an improve-
ment of 1.1%. Finally, we choose fi, fj , fi − fj , fj − fi
as our feature relation function g, which has the highest de-
tection accuracy. Since fi and fj denote the current and
adjacent features respectively. Frame Fj could be a frame
before or after the current frame Fi. Thus, it is imperative
to calculate both fi − fj and fj − fi, as they model the
different temporal correspondence and consistency.

Experiments onM. We conduct experiments on the de-
sign ofM for the temporal relation module, especially on
the number of layers ofM for the mini-network. Model a
is the simplest design where there is only one convolution
layer with kernel size 1 × 1. By keeping the kernel size
fixed and adding one more convolution layer, model b can
increase the mAP by 0.2%. When there are three convolu-
tion layers with kernel size 1×1, the detection accuracy can
obtain 79.2% as model c. However, when adding more con-
volution layers, as in model d, the detection accuracy begins
to decrease. We argue that the increasing number of con-
volution layers introduces arduous parameters in the mini-
network which cause overfitting. In model e, we change the
kernel size from 1 × 1 to 3 × 3 and get an improvement of
detection accuracy by 0.1%.
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model # of layers mAP(%)

a 1 78.8
b 2 79.0
c 3 79.2
d 4 79.1
e 3 79.3

Table 5. Impact of the number of layers for M.

(a) Motion speed (b) Object sizes

Figure 6. Improvement of performance with different motion
speeds and object sizes.

Analysis of object sizes and motion speeds. We also
investigate the effect of our TF-Blender on the object sizes
and motion speeds of the objects. We use the same defi-
nition as MS-COCO [23] and FGFA [42] for object sizes
and motion speeds respectively. We use mAP as evaluation
metrics and visualize the improvement of performance on
objects with different sizes and motion speeds as Figure 6.
We notice that our method has different improvements on
objects with various motion speeds. As shown in Figure
6 (a), there is a higher improvement for objects with slow
motion speeds compared with those with fast and medium
speeds. We think that there may be two reasons. One is that
even though our proposed method can help improve the de-
tection accuracy for objects with fast motion speeds, it’s still
a challenge to have accurate enough detection results for all
the objects with fast-motion speed. Another reason is that
objects with slow-motion account for 37.9% in ImageNet
VID benchmark while those with medium and fast motion
speeds are 35.9% and 26.2% respectively.

Another critical observation from our experiment that
our method can offer the highest improvement for detec-
tion on large objects, as shown in Figure 6(b). This res-
onates with the assumption of our proposed method: since
large objects have larger feature map sizes, the correspond-
ing pixel can benefit more from an individual weight for
fine-grained feature encoding. For small objects, since their
feature maps are small, the weights for aggregation have
less contribution to feature representation improvement.

Speed-accuracy tradeoff. The computational loads for
convectional methods (i.e., FGFA [47] and SELSA [41])

stem from two major sources: 1. feature extraction (encod-
ing) network Nex; 2. task network Ntk. Thus, the runtime
complexity for the above methods is:

O
(
Nex

)
+O

(
Ntk

)
(10)

While the proposed TF-Blender approach is adopted, the
computational cost can be defined as:

O
(
Nex

)
+ i · O

(
Ntf

)
+O

(
Ntk

)
(11)

where Ntf is the cost for the TF-Blender module and i is
the number of aggregated frames. Typically, O

(
Ntk

)
�

O
(
Nex

)
and O

(
Ntf

)
� O

(
Nex

)
. Thus, the cost ratio r

can be expressed as:

r = 1 +
i · O

(
Ntf

)
O
(
Nex

)
+O

(
Ntk

) (12)

This increasing computational cost is affordable because the
impact of i · O

(
Ntf

)
is negligible.

We visualize the speed-accuracy tradeoff of FGFA [47]
as an example (cf. Figure 7). With the increasing number
of input frames, FGFA with TF-Blender achieves significant
improvement in accuracy while the runtime increase keeps
in an affordable range.

Figure 7. Demonstration of a speed-accuracy tradeoff with and
without TF-Blender on FGFA with ResNet-50.

5. Conclusion
In this paper, we discuss the problems of video object

detection and introduce a framework named TF-Blender
which contains temporal relation, feature adjustment, and
feature blender modules to solve the problem of feature de-
grading in the video frames. Our method is flexible and
general, which can be adopted by any learning-based de-
tection network to achieve improved performance. Ex-
tensive experiments demonstrate that, with the integration
of our proposed method, the current state-of-the-art meth-
ods can improve video object detection accuracy on Ima-
geNet VID and YouTube-VIS benchmarks by a large mar-
gin. We believe that our TF-Blender can be a valuable ad-
dition to the existing methods for temporal feature aggre-
gation for video detection and TF-Blender can be extended
to other video analysis tasks like video instance segmenta-
tion.
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