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Figure 1. The proposed GRAVICAP approach captures 3D human motions and 3D object trajectories from monocular RGB videos. (Left:)
Thanks to the physics-based constraints, we can disambiguate the scene’s scale in the monocular setting and recover 3D human poses and
the trajectories in meters. (Right:) We evaluate our method on a new real multi-view dataset with several subjects and activities.

Abstract

This paper proposes GraviCap, i.e., a new approach
for joint markerless 3D human motion capture and ob-
ject trajectory estimation from monocular RGB videos. We
focus on scenes with objects partially observed during a
free flight. In contrast to existing monocular methods, we
can recover scale, object trajectories as well as human
bone lengths in meters and the ground plane’s orienta-
tion, thanks to the awareness of the gravity constraining
object motions. Our objective function is parametrised by
the object’s initial velocity and position, gravity direction
and focal length, and jointly optimised for one or several
free flight episodes. The proposed human-object interac-
tion constraints ensure geometric consistency of the 3D re-
constructions and improved physical plausibility of human
poses compared to the unconstrained case. We evaluate
GraviCap on a new dataset with ground-truth annotations
for persons and different objects undergoing free flights. In
the experiments, our approach achieves state-of-the-art ac-
curacy in 3D human motion capture on various metrics. We
urge the reader to watch our supplementary video. Both
the source code and the dataset are released; see http:
//4dqv.mpi-inf.mpg.de/GraviCap/.

1. Introduction

Markerless 3D human motion capture from a single
monocular RGB camera has many open challenges. Al-
though state-of-the-art methods have seen great progress
[21, 24, 33, 14, 39], they still hardly work for scenes show-
ing non-trivial interactions of humans with the environment
as most of them do not model environmental constraints or
physical laws. Further, 3D reconstruction of humans in-
teracting with objects from monocular imagery is scarcely
explored, and only a few works were proposed to date
[19, 50]. Most existing methods that consider interaction
with the environment impose geometric constraints to avoid
incorrect interpenetrations [49, 15, 50]. They often exhibit
strong jitter, implausible posture with unnatural body lean-
ing and depth instabilities. Recent physics-based methods
for monocular 3D human pose estimation [34, 39] showed
that explicit modelling of gravity and ground reaction forces
(or friction) enables monocular reconstruction of humans
of much higher biomechanical plausibility. However, these
methods do not model object interactions, and without a pri-
ori information about the human body, they cannot estimate
posture and scene dimensions in absolute metric scale.

In this paper, we make the following observation: Ex-
plicitly modelling physics and actively encouraging a spe-
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cific form of human-object interaction in the scene enables
improved 3D human and 3D object trajectory reconstruc-
tion in a metrically accurate way from a single monocular
video. We consider scenarios when up to two persons are in-
teracting with an object and bringing it to a free flight (e.g.,
throwing or tossing). Such scenarios are often observed in
real everyday life while practising sports or playing outdoor
games. We show that physics-based constraints allow us
to obtain 3D estimates in the absolute units, which, other-
wise, remains inaccessible for a monocular setting when no
strong prior assumptions about the scene can be made, such
as known bone lengths.

Our core findings are that 1) Projectile motion con-
straints are sufficient to recover the 3D trajectory of an
object undergoing free flight from 2D object coordinates,
assuming known camera frame rate and gravity vector; 2)
Knowing the magnitude of the gravity and the focal length
is sufficient to resolve the scale of the observed scene in
meters and orientation of the ground plane, assuming that
the direction of the gravity vector is opposite to the ground
plane normal; 3) Localising humans with respect to the re-
covered 3D object trajectory leads to improved 3D human
motion capture.

See Fig. 1 for an overview of our framework. The in-
puts are 2D coordinates of the object’s geometric centre
and 2D human joint locations, along with initial uncon-
strained kinematic 3D human poses. After that, we then
minimise the proposed objective globally over multiple in-
put frames and obtain 3D object trajectory over one or sev-
eral free-flight episodes and improved 3D human poses.
Summarised, the contributions of this work are as follows:

• GRAVICAP, i.e., the new approach for joint 3D capture
of human motions and trajectories of objects undergoing
free flights (Sec. 3);

• New types of human-object interaction constraints im-
proving the accuracy and physical plausibility of 3D
human poses (Sec. 3.2.2). For the first time, these
constraints allow recovering camera-relative distances of
moving and interacting objects, including humans, in me-
ters from a single monocular RGB camera;

• A new dataset of human-object interactions for experi-
mental evaluation, with ground-truth annotations of 3D
human poses and object trajectories (Sec. 4).

We achieve state-of-the-art accuracy for global 3D hu-
man motion capture using different metrics in extensive ex-
periments with the new dataset (Sec. 5). Our estimates look
more physically plausible and temporally consistent com-
pared to results without human-trajectory localisation con-
straints. Moreover, the proposed constraints significantly
improve absolute root translations. The source code of
GRAVICAP and the dataset are publicly available at http:
//4dqv.mpi-inf.mpg.de/GraviCap/.

2. Related Work
Kinematic 3D Human Pose Estimation. The accuracy
of monocular 3D human pose estimation significantly pro-
gressed during recent years. Most methods employ neu-
ral networks and can be classified into several categories.
Some methods first estimate 2D poses in the input views
and then lift them in the 3D space [6, 21, 41, 27, 11, 8],
whereas several others estimate 3D joints directly from the
images [40, 22, 35]. Several lifting algorithms build upon
the principles of non-rigid structure from motion and rely
on classical optimisation for the lifting step [51, 45, 18].
At the same time, weakly-supervised methods gain more
and more attention, due to improved generalisability beyond
the training datasets [9, 46, 7, 30]. Many other approaches
combine regression of 2D joint locations or 3D joint depths
[29, 24, 31, 14]. Parametric body models provide strong pri-
ors on plausible shapes and poses, which can be leveraged
for accurate human pose estimation [4, 16, 32, 17]. Even a
stronger prior is a human mesh, and several recent methods
show how to use it for tracking a single actor [13, 12, 48].
In contrast to all approaches discussed so far, several other
techniques generalise to scenarios with multiple subjects
[8, 36, 26, 23]. Several purely kinematic methods attempt to
estimate 3D human poses with absolute depths in the cam-
era coordinate space [26, 37, 23]. All approaches reviewed
so far consider geometric fidelity of the reconstructed mo-
tions and do not impose environmental constraints.
3D Human Pose Estimation with Environmental Priors.
Hassan et al. [15] use 3D environmental scans to detect
human-object collisions and improve kinematic 3D pose
regression. Environmental constraints such as a common
ground plane and volume occupancy exclusions are effec-
tively applied in Zanfir et al. [49] for 3D human pose and
shape estimation. Zhang et al. [50] jointly reconstruct hu-
mans and objects relying on geometric shape priors, both
for humans and objects, as well as interactional vicinity.
iMapper of Monszpart and colleagues [25] jointly recovers
schematic 3D scene arrangements and human motions in
a data-driven manner, relying on a database of 3D human-
object interactions for training. The authors show that mo-
tion patterns provide a strong cue about scene compositions,
which, in turn, serve as priors for possible human motions.
Similarly, we find in this paper that the physics-based cues
associated with the object’s motion caused by the gravita-
tion can better constrain human poses.

Vondrak et al. [44] capture 3D human motions by recov-
ering 3D bipedal controllers that simulate motions observed
in the videos. Li et al. [19] simultaneously estimate 3D tra-
jectories of human skeletal joints and an instrument (used
by the person), as well as forces at contact positions (i.e.,
foot-floor and hand-object contacts). They observe that the
instrument provides a reconstruction cue for hands in 3D
(i.e., for their relative positioning in depth), and the hand
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positions provide a cue for the instrument’s 3D position. In
contrast, we focus on objects that can be released and move
freely under gravity along a ballistic trajectory. Three re-
cent methods constrain human motions with bio-physical
plausibility constraints [34, 39, 38]. This allows signif-
icantly reducing unnatural body leaning, foot-floor pene-
tration and jitter. We formulate physics-based constraints
for objects and not directly humans. In contrast to all re-
viewed methods using environmental priors, we can disam-
biguate the scale of the scene and calculate the distances
(e.g., bone lengths and 3D object trajectories) in meters.
Moreover, 3D human poses estimated this way are more
physically-plausible compared to the initial kinematic esti-
mates, thanks to our human-object localisation constraints.
Other Related Problems. As a side effect, our GRAVICAP
can extract absolute bone lengths from monocular videos.
Several methods extract anthropometric measurements us-
ing 3D registration techniques and assume 3D human body
scans as inputs [42, 47], whereas we rely on 2D video inputs
only. Bieler et al. [3] use equations of classical mechanics
for estimation of human height from videos of jumping peo-
ple. We can estimate human height as a by-product of scale
disambiguation and due to the reconstructed object motion.

Bhat et al. [2] show how to estimate rigid body’s motion
in free flight with a simulation that agrees with the image
observations. Assuming a known shape of a small order of
rotational symmetry allows estimating the initial position
and velocity of the object, gravity direction and extrinsic
parameters of the object relative to the camera. In contrast,
we assume that 1) The target objects have infinite order of
rotational symmetry (i.e., they are spherical) and 2) Their
diameter is unknown. We show that these assumptions are
sufficient to disambiguate the scene’s scale.

3. Approach
We now describe our GRAVICAP approach for jointly

recovering the object and human trajectories in the camera’s
frame of reference; see Fig. 1 for an overview.

3.1. Recovering the 3D Object Trajectory

First, we assume known camera focal length f and
a set of 2D observations of an object’s ballistic trajec-
tory b = {b1, b2, . . . bN} extracted from images I =
{I1, I2, . . . , IN}, where bi = (xi, yi) is the object’s po-
sition in image i ∈ {1, . . . , N}. Our goal is to recover
the object’s 3D trajectory B = {B1, B2, . . . BN}, where
Bi = (Xi, Yi, Zi) represents the object’s position in the
camera-relative 3D space. We call episode one free flight
event observed in a monocular video. We assume that once
released, the only force influencing the motion of the object
is gravity (there is no air resistance). This assumption al-
lows us to parameterise B using three parameters: The ini-
tial velocity −→u = (ux, uy, uz), the object’s initial position

B0 and the gravity vector −→g = (gx, gy, gz) as viewed in the
camera’s frame of reference. Given frame rate r, B can be
expressed using the equations of Newtonian dynamics as

Bi = B0 +
−→u t+

1

2
−→g t2, (1)

where t = i/r is the time stamp in seconds corresponding
to the frame i from the beginning of the free flight.

Next, assuming intrinsic camera parameters (focal length
f and principal point c = (cx, cy)) and gravity vector −→g
are known, it is possible to reconstruct the 3D trajectory B
of the object from 2D observations b. Under the pinhole
camera model, the observed object’s trajectory in the video
can be explained as follows:

xi = f
Xi

Zi
+ cx, yi = f

Yi

Zi
+ cy, ∀i,

s. t.
√
g2x + g2y + g2z = 9.81m/s2,

(2)

where


Xi = X0 + uxt+

1
2gxt

2,

Yi = Y0 + uyt+
1
2gyt

2, and
Zi = Z0 + uzt+

1
2gzt

2.

(3)

The equation system (2) has 3N unknowns. Using the
parametrisation with the ballistic trajectories (3), it reduces
to six, i.e., three for the initial position B0 = (X0, Y0, Z0)
and three for −→u . Thus, (2) has a unique solution when N>2
(for N=3, it has a closed-form solution).

We next consider two cases, i.e., when the direction of
−→g is 1) known and when it is 2) unknown in (2). In the
first case, we assume that the direction of −→g is parallel to
the y-axis and coincides with the flipped floor normal in the
world coordinate system. This is highly relevant in practice,
especially in artificial environments. In the second case, the
orientation of the ground plane with respect to the camera
remains unknown. Consequently, (2) contains three more
unknowns and has a solution if N>4.

At the same time, in both cases we assume that the mag-
nitude of −→g is known and equals 9.81m/s2, which is a rea-
sonable assumption. Even though −→g differs depending on
the location on Earth, the differences are insignificant and
lie beyond the values which can improve the attainable pre-
cision in the 3D trajectory estimation from monocular im-
ages in our setting1. If both f and −→g are unknown, (2) has
ten unknowns which can be recovered with N>5, subject to
proper initialisation (see comments on the ‘f/Z’ ambiguity
in Sec. 6). In practice, we use and recommend N>10 to
obtain a better determined system (compared to N=5). A
solution to such a system is less sensitive to noise in the 2D
measurements and quantisation effects. Table 1 summarises

1
∥∥−→g ∥∥ = 9.81m/s2 is close to the mean value of

∥∥−→g ∥∥ on the surface
of Earth, and

∥∥−→g ∥∥ differs not more than by ≈0.7% across locations.
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mode / recovery of . . . inputs unknowns
3D object coordinates,
scene scale (6 DoF)

b,−→g , f −→u , B0

+gravity direction (9 DoF) b, ∥−→g ∥, f −→u , B0, −→g
+focal length (10 DoF) b, ∥−→g ∥ −→u , B0, f , −→g
6 DoF + f (7 DoF) b, −→g −→u , B0, f

Table 1. Different operational modes of GRAVICAP for the 3D
object trajectory recovery, with the summary of inputs and un-
knowns. Knowing −→u , B0, f and −→g allows us to reconstruct Bi.

the operational modes of GRAVICAP and the corresponding
sets of unknowns for the object’s trajectory reconstruction.

We solve (2) for B0, −→u and, optionally, f and −→g by min-
imising the objective Eb = Eb(B0,

−→u , f,−→g ) in ℓ2-norm:

arg min
B0,

−→u ,f,−→g

∑
i

∥∥∥∥∥
[
xi

yi

]
−

[
f Xi

Zi
+ cx

f Yi

Zi
+ cy

]∥∥∥∥∥
2

2

, (4)

with Xi, Yi and Zi parameterised as in (3). Note that the
recovered B0 and −→u are in absolute units, i.e., m and m/s,
since ∥−→g ∥ is expressed in m/s2 and f (if known) and t are
expressed in meters and seconds, respectively.
Remark. From (2), we see that if there is no motion along
x- (camera is observing a free fall and the free fall plane
is parallel to the image plane) or z- (the free flight plane
is parallel to the camera plane) axes, we can still recover
the distances in absolute units, since gravity is affecting the
y-component of the object’s trajectory only.

While the above formulation (4) is sufficient to recover
the object’s trajectory in ideal settings, the accuracy of the
estimated trajectory is sensitive to and is often compromised
by the observation noise. The sources of this noise can
be multiple, including the missing and erroneous centre of
gravity detections. We next show how the object’s trajec-
tory and human pose estimation can improve each other.

3.2. Joint 3D Human-Object Reconstruction

Associating the object’s trajectory with the human’s po-
sition provides additional constraints while also allowing us
to estimate anthropometric information about one or multi-
ple persons in the scene, thanks to the trajectory estimate
in the absolute distance units. We first recover uncon-
strained kinematic estimates of 3D human skeleton P kin =
{P kin

1 , P kin
2 , . . . , P kin

N }, where P kin
i ∈ RK×3 and K=16 is

the number of joints. We denote individual 3D x-, y- and
z-components of each joint, indexed by k ∈ {1, . . . ,K},
using P kin

i,k,x, P kin
i,k,y and P kin

i,k,z , respectively. P kin can be ei-
ther root-relative or also include an initial estimate of the
root translation. In both cases, P kin is estimated separately
from the object’s 3D trajectory and, hence, is not provided
in absolute coordinates and can be physically implausible.

We use an off-the-shelf 2D pose estimator RMPE
(AlphaPose) [10] to extract 2D poses of the person p =
{p1, p2, . . . pN}, where pi ∈ RK×2, observed in the in-
put images I. The root-relative 3D poses P kin of the same
person can then be retrieved using an off-the-shelf human
pose estimation method like [24, 26, 9]. Those are either
lifting methods (i.e., they operate on p) or direct regres-
sion approaches operating on Ii. Since these techniques are
monocular (RGB-based), they either predict 3D poses with
a canonical skeleton or lack generalisability across different
people (body variations).

Our goal is thus to recover the bone lengths, l =
{l1, l2, . . . , lK−1} of the subject, such that the correspond-
ing root-relative 3D poses s(P kin, l) are in the true met-
ric space and agree with the anatomical lengths. The op-
erator s(·, ·) resolves the scale of P kin by rectifying the
bone-lengths of P kin with the estimated bone-lengths l,
such that the bone direction vectors are preserved. Fur-
thermore, we also estimate the corrective root translations
tcorr = {tcorr

1 , tcorr
2 , . . . , tcorr

N } of the person from the camera
centre, where tcorr

i = (tcorr
i,x , t

corr
i,y , t

corr
i,z ). Once the latter are

available, the absolute (global) camera-relative pose of the
person can be recovered as P = s(P kin, l) + tcorr.

We next assume that in the considered free flight episode,
we know when the person is holding the object and when
the free flight starts. This allows disambiguating the per-
son’s scale using the recovered trajectory B in the absolute
coordinates. Knowing that the object is in contact with the
human is necessary. At the moment of contact, the human
scale is the same as the trajectory scale (recall that under
scale, we mean the factor relating the relative and absolute
distance units). If there is no contact, the usual ambiguity
of the monocular setting along the depth axis still applies to
the human and other parts of the scene.

We recover the subject’s poses with respect to the camera
by minimising Ep = Ep(l, t

corr
i ) in ℓ2-norm:

argmin
l,tcorr

∑
i,k

∥∥∥∥∥∥
[
pxi,k
pyi,k

]
−

f s(P kin
i,k,l)[x]+tcorr

i,x

s(P kin
i,k,l)[z]+tcorr

i,z
+ cx

f
s(P kin

i,k,l)[y]+tcorr
i,y

s(P kin
i,k,l)[z]+tcorr

i,z
+ cy

∥∥∥∥∥∥
2

2

, (5)

with operator ·[•] extracting x-, y- or z-component of a vec-
tor (alternative notation). In (5), we have 2NK equations
and (3N+K) unknowns for root translations P r (3N un-
knowns), bone lengths l (K−1 unknowns) and the focal
length f . However, the system of equations (5), if consid-
ered independently from Eb (4), suffers from scale ambigu-
ity because the bone lengths and root translations counteract
each other. Furthermore, pose estimates, both 2D and 3D,
are prone to errors due to model inaccuracies; especially, in
the case of occlusions. Hence, the estimated object trajec-
tory and the human pose are not guaranteed to be in agree-
ment. It is thus natural to expect reconstructions where the
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Figure 2. Independently optimising human root translation and
object’s trajectory can result in incoherence between the two (mid-
dle). We rectify these artefacts by binding human and object posi-
tions with contact and mutual localisation constraints.

object’s release position is far away from the point of con-
tact like hands or feet, see Fig. 2. We mitigate these issues
in two ways. Firstly, we use a prior on the human bone
lengths and impose a symmetry constraint. Secondly, we
bind the person’s absolute pose with the object’s trajectory
using two additional constraints discussed next.

3.2.1 Constraints on Human Skeleton

The first constraint on the bone lengths Ebl(l) ensures that
the estimated bone lengths are close the average human
bone lengths l̄ = {l̄k}. For this, we use the average bone
lengths collected from the MPI-INF-3DHP [22] dataset:

argmin
l

Ebl(l) = argmin
l

K−1∑
k

∥∥lk − l̄k
∥∥2
2
. (6)

Additionally, we ensure that the recovered l are left-right
symmetric using the symmetry constraint Es(l):

argmin
l

Es(l) = argmin
l

∑
i,j∈S

∥li − lj∥22 , (7)

where S is the set of indices of symmetric bones; Es

corrects asymmetries observed in the initialisations P kin
i ,

thereby improving the plausibility and accuracy of P kin
i .

3.2.2 Human Contact and Localisation Constraints

The contact term Ec(P ) expresses the prior assumption that
the object is thrown or caught by the person, i.e., it ensures
that the 3D positions of the object and the corresponding
body joints at the moment of contact are close to each other:

arg min−→u ,−→g ,B0

Ec(P ) = arg min−→u ,−→g ,B0

∑
(c,t)∈C

∥P c
t −Bt∥22 , (8)

where C denotes the set of joints in contact with the object
at time t, and P c

t are the 3D coordinates of these joints.
Although (8) binds the object’s trajectory with the hu-

man’s absolute position at the points of contact, it does not

explicitly associate the two for the rest of the frames. Also,
it does not generalise well to settings where the object is not
close to the body at the contact points (e.g., when hitting a
ball with a tennis racket).

To address this, we add a mutual human-object localisa-
tion term Em to the objective, which ensures that the 3D
vectors between the object’s position at frame i and the per-
son’s torso joints—when projected to the image—produce
the corresponding observed vectors in the image plane be-
tween the object and human joints. This is possible and
results in improved 3D human motion capture because the
3D object’s trajectory is smooth and can be estimated highly
accurately; we can reliably localise the human with respect
to it. For Em = Em(B0,

−→u , f,−→g , l, tcorr), we choose the
torso joints (pelvis, spine, neck, shoulders), because of their
stable nature with respect to the camera-relative translation:

arg min
B0,

−→u ,f,−→g ,l,tcorr

∑
i

∑
j∈T

M∑
m

∥∥∥d2D
i,j,m −Πf (d

3D
i,j,m)

∥∥∥2

2
, (9)

where d2Di,j,m = pi,j +
m(bi,j − pi,j)

M
, and

d3Di,j,m = Pi,j +
m(Bi,j − Pi,j)

M
.

(10)

where T is the set of torso joints and d2D
i,j,m and d3D

i,j are
the vectors between object and torso joint j at frame i in
2D and 3D, respectively. Note that we optimise for 3D vec-
tors guided by their reprojections in the image plane. Such
optimisation also influences (in most cases, improves the
accuracy of) the corresponding joints j. In practice, we uni-
formly sample M points in d2D

i,j and d3D
i,j , and penalise the

projection error. See Fig. 3 for illustration of this principle.

3.2.3 Multi-Episodes and Multi-Person Settings

So far, we have been focusing on a single person and a sin-
gle episode, i.e., the case of a single ballistic trajectory. We
also propose a variant of our method that can handle multi-
episodes with consecutive ballistic trajectories and the same
person. We assume that f , −→g and the human bone lengths l
are constant over the multi-episodes, whereas B0 and −→u are
individual for every episode. To stitch the multiple trajec-
tories coherently, we propose an additional constraint Eco,
that penalises the differences between the initial object’s po-
sition in the current episode and its last position in the pre-
vious episode using ℓ2-norm.

Furthermore, our method allows for two-person (multi-)
episodes (e.g., two persons throwing an object at each other)
with minimal changes. To that end, we modify Ep (5) and
Em (9) to account for the projection losses with both per-
sons in the scene. Likewise, the contact loss Ec (8) is altered
to account for contacts with different persons at different
time instants; see the supplementary material for details.
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Figure 3. Illustration of the principle behind the human-object
localisation term Em for the neck joint and the second frame of
the free flight episode. Em ensures that the points along the vec-
tor connecting the object and the neck joint in 3D (d3D

neck) must
project to the corresponding points in the 2D projection of the line
(d2D

neck) under perspective projection. In addition to the neck joint,
we also use hips, spine and shoulders to compute Em.

S1 S2 S3 S4 S5 S6 S7 S8 S9∗
∑

Ball R PP PP V V T V T V -
L, sec. 8 19 26 14 21 31 21 28 21 193∑

ME 9 3 6 9 9 12 6 6 3 63∑
E 12 21 45 18 54 30 30 24 18 252

Table 2. Our dataset contains eight sequences with single subjects
(S1–S8) and one sequence with two subjects (S9∗). Contents row-
wise: (1) Object type, either rubber (R), ping pong (PP), volley-
(V) or tennis (T) ball; (2) duration L in seconds; (3) number of
multi-episodes (ME); (4) number of episodes (E).

3.3. Joint Energy Optimisation

The joint objective term of GRAVICAP can now be ex-
pressed as a sum of seven energy terms:

E = Ep + λbEb + λcEc + λmEm + λsEs + λcoEco + λblEbl,
(11)

with weights λb, λc, λm, λs, λbl and λco balancing the in-
dividual terms. As mentioned in Sec. 3.1, GRAVICAP can
work in four modes with 6 DoF (−→u , B0), 7 DoF (−→u , B0,
f ) 9 DoF (−→u , B0, −→g ) and 10 DoF (−→u , B0, −→g , f ) for the
object’s trajectory.

The total number of unknowns in (11) is 3N+K+9
for one person and one episode. At the end of this op-
timisation, our method can reconstruct the object’s ab-
solute 3D trajectory along with the human’s absolute
root positions for all the time steps. We solve for
the unknowns in (11) using Levenberg-Marquardt [28]
with λb=1.0, λp=1.0, λc=0.1, λm=0.5, λco=0.1, λbl=0.1
and λs=0.01. The values of balancing terms are chosen
empirically using a hyper-parameter sweep. Note that opti-
mising first (4) disjointly from (11) produced worse results.

3.4. Implementation Details

For every input video, we follow a three-step approach:
Retrieving the kinematic human poses P kin, tracking the 2D
object’s trajectory b, and finally, minimising (11).
Estimating Human Poses. We estimate the initial 3D po-
sitions of human skeleton joints using the real-time VNect
method [24] for the single-person case and XNect [23] for
the multi-person setting. These methods provide absolute
3D positions in camera coordinates which serve as a rea-
sonable initialisation for GRAVICAP. For 2D joint posi-
tions, we use AlphaPose [10]. To accommodate a differing
number of joints across methods, we consider the skeleton
structure of MPII 2D pose dataset [1] with K=16 joints.
Object Tracking Method. The object tracklets are re-
trieved using OpenCV’s off-the-shelf CSR Tracker [20].
For initialising the tracker, we localise the object in the first
frame by performing template matching with a reference
image. If an object detector exists for the target object (e.g.,
basketball), we recommend using it for the localisation. For
the multi-episode setting, we detect the switch of episodes
based on the sudden change of the object’s 2D velocity di-
rection. Since this change also happens during the move-
ment along the ballistic trajectory (though much slower),
we use a threshold on the velocity direction to distinguish
the episodes (cf. our supplement).

4. Dataset for 3D Human-Object Recovery
To evaluate the performance of our approach and estab-

lish an evaluation benchmark for future works, we record a
new dataset with four subjects performing a variety of ac-
tivities with four ball types. The dataset includes eight se-
quences with a single person and one additional sequence
with two persons. For each sequence, we provide three syn-
chronised videos of the scene, ground-truth intrinsic and ex-
trinsic camera parameters, ground-truth human poses (both
2D, for each view, and 3D) and ground-truth object trajec-
tories (both 2D, for each view, and 3D). For tracking 3D hu-
man joints, we use multi-view a markerless motion capture
system [5] with 101 camera views. Ground-truth object tra-
jectories are recovered using triangulation. Each sequence
contains several multi-episodes, i.e., consecutive sets of ob-
served free flights. See Table 2 for the summary.

5. Experiments
To demonstrate the quality of the estimated 3D motions,

we compare our results with existing state-of-the-art meth-
ods that estimate human poses in camera-relative space:
VNect [24], MotioNet [37] and PhysCap [39]. Addition-
ally, we include a recent method VIBE [17] for root-relative
pose estimation, which currently achieves state-of-the-art
accuracy in this category. Note that VIBE is not a compet-
ing method since it cannot estimate global root translations.
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S1 S2 S3 S4 S5 S6 S7 S8 Avg

global root positions,
MPE [mm] ↓

PhysCap [39] 431.1 225.6 232.3 239.2 223.1 446.5 358.8 420.28 309.7
VNect [24] 413.3 136.6 239.8 175.0 153.9 354.4 324.0 438.0 262.0
Ours (10 DoF) 219.7 111.3 234.8 166.9 157.4 332.1 187.7 377.4 224.5
Ours (9 DoF) 411.9 132.3 232.7 118.9 157.6 149.9 135.7 352.4 191.3

root-relative poses,
MPJPE [mm] ↓

PhysCap [39] 126.3 128.6 94.8 129.1 116.9 138.4 148.8 131.9 125.2
VIBE [17] 126.4 114 104.81 99.3 105.3 126.9 132.05 105.3 113.2
VNect [24] 127.7 131.0 125.33 150.2 128.6 134.4 143.8 140.8 134.0
Ours (10 DoF) 120.7 119.6 109.9 130.8 120.03 126.3 140.4 134.6 124.4
Ours (9 DoF) 119.2 127.6 108.9 144.7 113.1 125.8 130.7 131.2 122.8

bone lengths (l),
MAE [mm] ↓

VNect[24] 71.4 63 83.7 79.0 79.9 80.3 76.3 83.8 78.4
Ours (10 DoF) 64.0 52.6 62.2 60.7 61.8 58.5 84.4 64.6 63.3
Ours (9 DoF) 64.3 48.3 65.1 64.8 59.5 65.8 60.2 65.1 61.1

3D object positions
(Bi), MPE [mm] ↓

10 DoF 451.0 309.0 760.3 304.0 476.8 372.3 280.6 470.7 445.5
9 DoF 396.4 509.0 749.3 310.9 509.3 463.7 229.1 493.6 482.9

gravity direction (−→g ),
cosine similarity ↑

10 DoF 0.927 0.977 0.954 0.949 0.99 0.99 0.951 0.975 0.972
9 DoF 0.923 0.959 0.956 0.972 0.984 0.985 0.977 0.970 0.972

Table 3. Comparisons of various 3D errors on the new dataset (Sec. 4) with human-object interactions. Note that VIBE [17] outputs root-
relative poses only and, hence, cannot compete in global estimations. The bold/italicised bold font denotes the best/second-best number.
The last column provides the frame-weighted averages per sequence. ‘↓’(‘↑’) stands for ‘the lower (the higher) the better’.

The pre-trained models that the authors provide are used for
the comparisons. We report the root-relative Mean Per Joint
Position Error (MPJPE), the Mean Position Error (MPE) of
the camera-relative root translation, as well as smoothness
error of the estimated 3D poses [39]. We also evaluate the
accuracy of the ground plane orientation estimation and re-
port the cosine similarity between the ground-truth and esti-
mated gravity direction vectors. Since GRAVICAP also esti-
mates bone lengths, we report Mean Absolute Error (MAE),
i.e., mean of the per-bone absolute differences between the
ground-truth and predicted lengths. We also report the esti-
mated heights of subjects from the new dataset. Finally, we
evaluate the accuracy of the object’s trajectory using MPE.

All experiments are performed on a system with 32GB
RAM and AMD Ryzen ThreadRipper CPU, under operat-
ing system Ubuntu 18.04. The method is implemented in
SciPy [43]. The runtime of the optimisation depends on the
number of episodes in the sequence and ranges from three
seconds for a single episode to roughly five minutes for a
multi-episode with twelve trajectories.

5.1. Quantitative Results

Table 3 summarises the comparisons of 3D human mo-
tion capture. 9 DoF refers to the setting in which B0,

−→u
and −→g are unknown. In the experiments with 10 DoF, focal
length f is also unknown (however, VNect uses the ground-
truth f ), cf. Table 1 with the summary of operational modes.
We observe significant improvements in global root transla-
tion estimation over VNect [24] and PhysCap [39], i.e., we
outperform both methods in seven cases out of eight. Note
that MotioNet [37] is not able to produce reasonable esti-
mates, and we do not include it in Table 3. All tested algo-

rithms show MPJPE for root-relative 3D joint positions in
the comparable ranges. While VIBE [17] shows the lowest
error for the root-relative poses overall, it cannot estimate
global root translations. Note that only our method addi-
tionally estimates the floor normal, whereas other methods
either require it as input or are agnostic to it. Fig. 4 provides
a few visualisations of the results obtained by GRAVICAP.

In bone length estimation, GRAVICAP outperforms
VNect in all cases. Note that VNect and PhysCap implic-
itly assume a known average human height of a pre-defined
skeleton. The second-lowest row block of Table 3 sum-
marises the accuracy of the 3D object’s trajectories estima-
tion (only our method can estimate those; the numbers are
provided for future reference). GRAVICAP can also esti-
mate gravity directions. This is advantageous since we can
obtain the floor normal, assuming that the gravity vector is
perpendicular to the ground plane. We report cosine sim-
ilarity between the ground-truth gravity direction and the
estimated one in Table 3 (the lowest row block). As can be
seen, our algorithm estimates highly accurate gravity direc-
tion given only a monocular video.

3D MPJPE considered in isolation can hide artefacts in
the reconstructed motions such as jitters, which has been re-
cently demonstrated [39]. Smoothness in motions is thus an
important criterion of physical plausibility. Therefore, we
report smoothness error esmooth proposed in [39] in Table
4. Our algorithm outperforms VNect and VIBE on this met-
ric, thanks to mutual localisation term (9) and stable bone
length estimation. PhysCap performs best because of the
explicit physics model and the assumption of known body
mass distribution and subject’s height, unlike our method.
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Figure 4. 3D human-object reconstructions of GRAVICAP (from left to right: S2, S4 and S9). In each image set out of three, we show the
input view (top-left) and our reconstructions from three arbitrary views in 3D. See the supplementary video for the dynamic visualisations.

Human Height Estimation. We recover the subjects’
heights from the estimated scale and root translations. We
first calculate the head-toe distance hpx in the image with
the subject in the upright pose using AlphaPose [10, 3].
Since AlphaPose estimates only the head centre and an-
kles instead of head-top and feet/heels, we scale up the esti-
mated height with a factor of 1.17, as suggested in Bieler et
al. [3]. Finally, we compute the actual height of the person
as h3d =

tcorrz

f hpx. We observe an average height error of
6.75 cm across all four subjects of the new dataset.

Ours VNect [24] VIBE [17] PhysCap∗ [39]
esmooth 10.74 11.35 11.32 7.72

Table 4. Comparisons using esmooth. We reduce the jitter com-
pared to VNect owing to the mutual-direction constraint and more
accurate bone-length estimation. ‘∗’ indicates the assumption of
known body mass distribution and ground plane orientation.

5.2. In-the-Wild Experiments

In addition to the quantitative analysis on the new
dataset, we test our method on in-the-wild settings (e.g.,
practising basketball and shot put); see our supplement.

6. Discussion and Limitations
Joint 3D human motion capture and 3D trajectory recon-

struction of objects in free flights is a new problem in com-
puter vision. Our core method addresses it without rely-
ing on 3D training data; a learning-based approach is used
only to initialise human poses. Yet, GRAVICAP performs
close to the state-of-the-art learning-based methods for root-
relative human pose estimation [17], when compared in the
accuracy of root-relative poses. Regarding absolute poses,
we significantly outperform 3D motion capture methods es-
timating camera-relative root translations [24, 39, 26]. At
the same time, our estimates of absolute bone lengths are

the most accurate among all methods (if we assume aver-
age human height to convert normalised outputs to metric
values for the competing techniques).

Note that we use VNect for the initialisation, which is
not state-of-the-art. This shows that the final superior ac-
curacy is reached thanks to the proposed energy terms and
awareness of the law of gravitation. In the absence of cam-
era intrinsics, we either need well-initialised absolute root
translations, or we can only estimate the scene’s scale in
most cases, due to the ‘f/Z’ ambiguity in (2). Although
the system is largely automatic, our framework strongly re-
lies on the object’s bounding box in the first frame and the
hand-object contact joint detections, which can be difficult
to obtain without specialised methods (see Sec. 3.4).

To be applied on the Moon or Mars, GRAVICAP would
require the corresponding local ∥−→g ∥. Our method assumes,
per default, that humans hold objects in their hands. If this
assumption is not fulfilled, it requires a prior on the type
of the used instrument which propagates forces exerted by
the human. Furthermore, since GRAVICAP is a lifting ap-
proach, its accuracy depends on 2D human poses and 2D
object detections, similar to several other monocular 3D hu-
man motion capture methods [24, 39].

7. Conclusion
We introduced GRAVICAP and showed experimentally

that given only a monocular video, in which humans inter-
act with objects and bring them to free flights, it is possible
to recover distances in meters (bone lengths and camera’s
focal length), the orientation of the ground plane relative to
the camera, as well as significantly improve the initial kine-
matic human pose estimates reaching state-of-the-art accu-
racy. This changes the way how we think about the young
subfield of joint 3D human-object reconstruction and opens
up many avenues for future research.
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[41] Denis Tomè, Chris Russell, and Lourdes Agapito. Lifting
from the deep: Convolutional 3d pose estimation from a
single image. In Computer Vision and Pattern Recognition
(CVPR), 2017.

[42] Aggeliki Tsoli, Matthew Loper, and Michael J. Black.
Model-based anthropometry: Predicting measurements from
3d human scans in multiple poses. In Winter Conference on
Applications of Computer Vision (WACV), 2014.

[43] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
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