
Video Annotation for Visual Tracking via Selection and Refinement

Kenan Dai1, Jie Zhao1, Lijun Wang1*, Dong Wang1, Jianhua Li1, Huchuan Lu1,2, Xuesheng Qian3,
Xiaoyun Yang4

1Dalian University of Technology, China, 2Peng Cheng Lab, 3CSA Intellicloud Ltd, 4Remark Holdings
dkn10088@gmail.com, zj982853200@mail.dlut.edu.cn, {ljwang,wdice,jianhual,lhchuan}@dlut.edu.cn, xuesheng.qian@intellicloud.ai,

xyang@remarkholdings.com

Abstract

Deep learning based visual trackers entail offline pre-
training on large volumes of video datasets with accu-
rate bounding box annotations that are labor-expensive to
achieve. We present a new framework to facilitate bounding
box annotations for video sequences, which investigates a
selection-and-refinement strategy to automatically improve
the preliminary annotations generated by tracking algo-
rithms. A temporal assessment network (T-Assess Net) is
proposed which is able to capture the temporal coherence
of target locations and select reliable tracking results by
measuring their quality. Meanwhile, a visual-geometry re-
finement network (VG-Refine Net) is also designed to fur-
ther enhance the selected tracking results by considering
both target appearance and temporal geometry constraints,
allowing inaccurate tracking results to be corrected. The
combination of the above two networks provides a princi-
pled approach to ensure the quality of automatic video an-
notation. Experiments on large scale tracking benchmarks
demonstrate that our method can deliver highly accurate
bounding box annotations and significantly reduce human
labor by 94.0%, yielding an effective means to further boost
tracking performance with augmented training data.

1. Introduction
Visual tracking aims to address the challenging prob-

lem of video target localization based on target appearance
models. Recent studies [1, 34, 32, 13, 33] propose to per-
form tracking with offline pre-trained deep features, yield-
ing record-breaking results on most benchmarks. Their suc-
cess is highly reliant on the availability of large-scale video
datasets [10, 20, 7, 18] with accurate annotations. How-
ever, manually annotating target bounding boxes is tedious
and labor-intensive. Therefore, labeled datasets for training
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trackers are still rare and expensive to achieve, which re-
stricts the potential performance boost of existing trackers.

To mitigate the above issue, some recent works [18, 25,
24, 15] explore machine learning techniques to facilitate
video annotation. The basic principle is to ask human anno-
tators to label ground truth bounding boxes for only a sparse
set of frames, while the reset annotations are automatically
produced using either temporal interpolation or state-of-
the-art tracking algorithms. Significant progress has been
achieved by recent studies along this line which effectively
reduce human labors required by video annotation.

One major concern of the above solutions lies on the re-
liability of the adopted tracking algorithms for label gener-
ation. The cutting-edge visual trackers are still not robust
enough and may easily suffer from drift or other tracking
failures under challenging scenarios. However, many ex-
isting methods [18] directly adopt the tracking results as
the generated annotation, leading to unreliable video an-
notation. For one thing, these approaches mostly fail to
select reliable tracking results by measuring their quality.
For another, there does not exist an effective mechanism
to automatically refine or correct the inaccurate tracking
results. Compared to tracking algorithms based on visual
content, temporal interpolation with box geometry model-
ing across frames are often more robust against severe oc-
clusion and target appearance variations. Some recent at-
tempts [12] have also been made to combine visual track-
ers with temporal interpolation based on heuristics for more
accurate bounding box annotation. Nevertheless, how to
jointly model appearance and temporal geometry in a prin-
cipled manner is still an open question in the video annota-
tion community.

Based on the above observation, we propose Video
Annotation by Selection-and-Refinement (VASR), a new
framework for video annotation with target bounding boxes.
Following prior works, we first run an existing tracker ini-
tialized by sparse manual annotations to obtain preliminary
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Figure 1. Visualization of our intermediate results. (a) Initial frame
with manual annotations. (b) A subsequent frame with prelimi-
nary forward (yellow) and backward (pink) tracking results, and
the predicted quality scores. (c) Results of target region inference
and the generated annotations.

tracking results (Fig. 1 (b)). Our core idea is to select
high-quality tracking results from the preliminary ones and
produce reliable annotations through additional bounding
box refinement. To this end, we design a temporal assess-
ment network (T-Assess Net) which predicts a quality score
(Fig. 1 (b)) for tracking results by modeling their temporal
dependencies across frames, providing a criteria for track-
ing results selection. To correct the potential mistakes of
the selected tracking results, we further develop a visual-
geometry refinement network (VG-Refine Net), which is
able to infer target regions (Fig. 1 (c)) by considering both
target appearance and temporal relationship of bounding
box geometry.

Both T-Assess Net and VG-Refine Net are learned in a
data-driven manner, acting as a principled way to facilitate
video annotation. Compared to prior works, our method
mainly operates in an offline manner and does not require
heavy human interaction. Therefore, we can better focus
on improving the accuracy and reliability of the generated
annotation at a more flexible complexity budget.

In summary, the contribution of our method is threefold.

• We propose a new framework to assist video annota-
tion through bounding box selection and refinement,
which not only reduces the human labor but also sig-
nificantly improves the quality of annotations.

Figure 2. Comparison of TrackingNet[18] annotations generated
using a tracking algorithms[17] (Red) and produced by our VASR
(Blue) after selection and refinement. Green contours denotes the
target region inferred by the proposed VG-Refine Net.

• We present new architecture designs to implement the
above idea, where the T-Assess Net measures the qual-
ity of tracking results through temporal correlation
modeling and the VG-Refine Net is able to further im-
prove tracking accuracy by integrating both appear-
ance and temporal geometry cues.

• We empirically show that our method can reduce the
amount of manual labels by 94.0% and that track-
ing algorithms trained with our generated annotations
compares on-par with and even more robust than their
counterparts using manual annotations.

Extensive evaluation results verify that our method can
serve as an effective tool to further push the state-of-
the-art tracking performance by augmenting training data
with high-quality annotations (See Fig. 2) at a manageable
cost. Our project is available on the website: https:
//github.com/Daikenan/VASR.

2. Related Work
Tracking datasets. With the rapid development of the
tracking task, many large-scale tracking datasets have
appeared, such as LaSOT [7], TrackingNet [18], GOT-
10k [10] and OxUva [23]. Among them, LaSOT has 1400
sequences with 70 categories. There are more than 3.5M
frames in total where bounding boxes of targets are all an-
notated manually. GOT-10k is also a purely manually la-
beled dataset, which contains over 10000 video segments
with 1.5M annotations. Although this manual annotating
manner can guarantee the quality of labels, it is labor in-
tensive and expensive. To increase the efficiency of label-
ing, some datasets choose to annotate labels sparsely, such
as TrackingNet and OxUva. TrackingNet has more than
30,000 sequences and the total length of the dataset exceeds
14M frames. It labels one bounding box every 30 frames,
while other unlabeled frames obtain their labels automati-
cally by an interpolation method where STAPLECA [17] is
used for tracking. However, this way will affect the quality
of annotations. The labels of the target in the intermediate
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Figure 3. Pipeline of our VASR method.

frames are not precise enough, and the confidence informa-
tion is lacking. Existing large-scale datasets all have prob-
lems that it is difficult to trade-off the efficiency and quality
when generating annotations.
Single object tracking. This task has made a lot of progress
in recent years, especially for the methods based on deep
learning. In terms of whether the model is fine-tuned on-
line, existing trackers can be divided into offline training
methods [1, 14, 34, 13, 28, 9, 4] and online update meth-
ods [19, 5, 6, 2]. SiamFC [1] proposes a fully convolu-
tional Siamese network, where the cross-correlation layer
is used to calculate the similarity between the template and
search region. SiamRPN [14] applies the region proposal
network into the Siamese-based tracker and proposes the
classification and regression branches, which improves both
accuracy and speed. To make the tracker adapt to deep net-
works and improve performance further, SiamRPN++ [13]
proposes a sampling strategy to break the spatial invariance
restriction. For online update trackers, ATOM [5] proposes
a tracking architecture consisting of dedicated target esti-
mation and classification components. To improve the dis-
criminative ability, DiMP [2] introduces a discriminative
learning loss, which significantly improves the tracking per-
formance. These trackers have performed quite well when
dealing with short sequences.
One-shot learning segmentation. This task also develops
rapidly, including [26, 30]. Given the template in the ini-
tial frame, methods need to segment target areas in subse-
quent frames. [11] constructs a spatial-temporal graph from
video sequence using supervoxels and optical flow. While
[27] proposes a video object segmentation method based on
super-trajectory, which is an efficient video representation
and can capture the potential space-temporal structure in-
formation. These types of algorithms are often used as a
good scale estimator in single object tracking.
Trajectory annotation tasks. In order to reduce the cost
of labor, some methods that generate annotations automat-
ically for large-scale video datasets have been proposed. A
common practice is to label few key frames sparsely by an-
notators, and use linear interpolation to calculate the bound-

ing boxes of other unlabeled frames between key frames,
such as VIPER-GT [16] and LabelMe [31]. These methods
cannot handle complex situations, e.g. targets moving non-
linearly. To deal with difficult videos better, VATIC [25]
learns a discriminative classifier which is implemented by
a fast linear SVM. It gives high scores on positive bound-
ing boxes and low scores for negatives, where the feature
of one bounding box consists of HOG and color histogram
features. Besides, [24] implements a constrained tracker
and dynamic programming algorithms to determine which
frames need to be labeled manually. The problem is cast as
active learning to obtain highly accurate tracks. In [15], the
manual annotation manner is replaced by path supervision
for fast annotation. That is, the annotator collects a path
annotation with the cursor, which is approximate and does
not provide the scale of the object. Given path annotations
and object detections as inputs, PathTrack [15] firstly labels
each detection with a provisional trajectory and generates
detection clusters. Then in the second step, the most prob-
able trajectory is computed via ST shortest paths for each
cluster in a detection linkage step. To further reduce the
burden of annotators, ScribbleBox [3] introduces an inter-
active annotation framework where the annotator does not
need to watch the full video, and only inspects the auto-
matically determined key frames. It outputs two types of
annotations including tracked boxes and masks inside these
tracks. For tracking, a parametric curve with few control
points is used to annotate bounding boxes by approximating
the trajectory, where the annotator can interactively correct.
For segmentation, scribbles are exploited as a form of hu-
man input and a scribble propagation network is proposed
to correct the segmentation masks.

3. Annotation with VASR

The core of our VASR method is the proposed T-Assess
Net and VG-Refine Net which measure the quality of pre-
liminary bounding box labels and perform further label re-
finement, leading to more accurate automatic labeling. In
the following, we first overview our video annotation frame-
work in Sec 3.1. In Sec 3.2, the detailed architecture designs
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Figure 4. Architecture of our proposed VASR method.

are provided. Finally, Sec 3.3 discusses how to train and
apply our approach to achieve high-quality bounding box
labels.

3.1. Overview

Fig. 3 overviews the pipeline of the proposed VASR
method. Given a video sequence, we first ask human an-
notators to label a sparse set of frames (e.g., label one frame
for every 30 frames). We then adopt an off-the-shelf visual
tracker [2] to generate tracking results for each frame as pre-
liminary annotations. To alleviate tracking failures, we split
each video at the manually labeled frames into short-term
snippets, where the first and last frames of each snippet con-
tain manually labeled bounding boxes. For each snippet, we
perform forward and backward tracking use the manual an-
notation in the first the last frame, respectively, to initialize
the tracker which predicts a response map, a target bound-
ing box and its tracking score for each frame. By merging
the tracking results of all the snippets, we obtain the forward
and backward tracking results for the entire video.

The preliminary tracking results may inevitably contain
failure cases. Therefore, we measure the quality of the
tracking results and select the more reliable tracking result
from forward and backward tracking for each frame. We
then perform a bounding box refinement scheme to further
improve the quality of the selected tracking results, giving
rise to the output annotations. For frames whose forward
and backward tracking qualities are both under a prede-
fined threshold, we label them as tracking failures, and re-

sort to additional human annotations. The above process is
learned and conducted by the proposed T-Assess Net and
VG-Refine Net.

3.2. Architecture Design

T-Assess Net. The input to T-Assess Net contains the
initial tracking results

{
bdi , o

d
i ,R

d
i |i = 1, 2, . . . , L, d ∈

{F ,B}
}

of L consecutive frames, where bdi , odi , and Rd
i

represent the bounding box position, tracker confidence,
and response map, respectively, for the i-th frame produced
by [2], and d indicates whether the result is generated by
forward (d = F) or backward (d = B) tracking. The T-
Assess Net consists of a feature extractor and a sequential
confidence predictor. The feature extractor aims to encode
the appearance information of the response map Rd

i with
a convolutional network, producing a c-dimensional feature
vector for each input response map. The feature vector is
then concatenated with its corresponding bounding box co-
ordinates and tracker confidence, leading to a c+ 5 dimen-
sional compact representation of each tracking result.

The above feature mainly characterizes the spatial, ap-
pearance, and confidence information of individual track-
ing result. To capture the correlation and variation patterns
of tracking results in the temporal domain, we design the
sequential predictor using three Long Short-Term Memory
(LSTM) [8] layers with L time steps followed by a fully
connected layer. It processes the feature vectors of the L
input frames in a sequential manner and predicts a quality
score gdi for each frame. We use two separate sequential
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predictors (F-Net and B-Net in Fig. 4) with the same ar-
chitecture to handle forward and backward tracking results,
respectively, which is shown to deliver more superior per-
formance than using a single sequential predictor in our ex-
periments. See Fig. 4 for an illustration of the architecture.

VG-Refine Net. The T-Assess Net provides an important
cue for selecting high-quality tracking results. To further
improve the accuracy of the selected results, we design the
VG-Refine Net which learns to perform bounding box re-
finement by jointly considering both visual and geometric
information. To encode visual appearance, we adopt the
pretrained MaskNet proposed in [29] to predict an initial
target segmentation map. Specifically, we crop search re-
gions in the i-th frame centered at the two bounding boxes
bFi and bBi generated by forward and backward tracking, re-
spectively, with twice the size of the bound boxes. Based
on the search regions and the initial target template, the
MaskNet predicts two initial target segmentation masks
S̃di ∈ RP×Q corresponding to forward (d = F) and back-
ward (d = B) tracking.

As shown in our experiments, refinement by consider-
ing visual information alone is still not reliable. Therefore,
we adopt geometric information to further ensure tracking
accuracy. Rather than using a handcrafted geometric inter-
polation model as in [12] we propose a trainable geometric
module (G-Module) which can learn to capture the geomet-
ric relationships of target locations in the temporal domain.
Inspired by the success of T-Assess Net in sequential mod-
eling, We extract sequential features from the initial track-
ing results of the L consecutive frames using a similar ar-
chitecture as T-Asses Net, which also contains the feature
extractor and a sequential predictor based on LSTMs. The
G-Module fuses the extracted sequential features, learns
to encode their geometric variations, and predicts a set of
Gaussian weight parameters θdi = {µ1, µ2, σ1, σ2, α} cor-
responding to each of the target segmentation mask S̃di . We
then generate the geometric weight map W d

i ∈ RP×Q ac-
cording to the predicted parameters as follows:

W d
i (x, y) = exp

(
−α

(
(x− µ1)

2

σ2
1

+
(y − µ2)

2

σ2
2

))
,

(1)
where W d

i (x, y) denotes the weight value located at coor-
dinate (x, y). The final segmentation mask Sdi is achieved
by an element-wise multiplication between the initial mask
and weight map Sdi = S̃di �W d

i . See Fig. 4 for an illustra-
tion of the architecture.

3.3. Training and Inference

Training. The proposed T-Assess and VG-Refine Net can
be learned using video sequences with ground truth anno-
tations. For each training video, we first split it into video
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Figure 5. The non-linear function (2) used to compute quality
scores. Red and yellow bounding boxes indicate manually anno-
tated ground truth and tracking results, respectively. The quality
score can better measure the tracking reliability than IoU.

snippets of 30 frames to collect the forward and backward
tracking results according to the procedure described in
Sec 3.1. We then densely select short-term snippets with a
fixed length of 20 frames from all the training videos, which
together with the corresponding tracking results serve as in-
put training samples to our method.

The quality of each tracking result is measured according
to its Intersection over Union (IoU) with the ground truth.
We empirically find that tracking results with IoU > 0.5
are mostly reliable, while IoU < 0.5 mainly corresponds
to low-quality results. Therefore, we convert the IoU of
each tracking result to a quality score ĝ using a non-linear
function f(·) as follows:

ĝ = f(IoU) =
β
√
α(IoU− 0.5)

β
√

1 + α(IoU− 0.5)β
, (2)

where the hyper parameters α and β are empirically set
to 50 and 2, respectively. As shown in Fig. 5, the qual-
ity score can effectively measure the reliability of track-
ing results and is treated as the ground truth of our T-
Assess Net. The T-Assess Net takes the tracking re-
sults of a snippet as input, predicts their quality scores{
gbi |i = 1, 2, . . . , 20; b ∈ {F ,B}

}
, and is trained by mini-

mizing their differences to the ground truth:

Lconf =
∑
i

∑
b

‖gbi − ĝbi ‖22. (3)

Although the ground truth bounding box is unable to pre-
cisely delineate the target contour, it provides an important
cue that each row and column going through the box region
also has overlap with the target region. In light of the above
observation, we propose to train VG-Refine Net using box-
level supervision under a multiple instance learning setting.
To this end, we first generate a binary box maskMi for each
frame according to the ground truth bounding box. The box
mask has the same spatial size of P×Q as the segmentation
mask Sdi , withMi(x, y) = 1 indicating the pixel located at
(x, y) belonging to the ground truth bounding box regions,
andMi(x, y) = 0 otherwise. Both the predicted segmenta-
tion and the ground truth box mask can then be aggregated
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along the vertical and horizontal direction as follows.

sd,hi = Ah(Sdi ),

mh
i = Ah(Mh

i ),
(4)

where Ah denotes the horizontal aggregation operator
which map each row of the input mask into a scalar. sd,hi ∈
RP and mh

i ∈ RP denote the aggregated results for seg-
mentation mask and box mask, respectively. The vertically
aggregated results sd,vi ∈ RQ and mv

i ∈ RQ can be ob-
tained in a similar manner through aggregation along the
vertical direction. The VG-Refine Net can then be trained
by minimizing the aggregated results of the predicted seg-
mentation mask and ground truth box mask:

Lreg =
∑
i

∑
d

‖sd,vi −m
v
i ‖22 + ‖s

d,h
i −mh

i ‖22. (5)

There are many aggregation operators including one-
dimensional max pooling, average pooling, summation, etc.
We design the following rectified accumulation operator
which achieves the best performance in our experiments:

Ah(M) = max

(
1,

Q∑
x=1

(M(x, ·))

)
, (6)

where the summation is independently conducted along
each row of the input mask. The vertical aggregation op-
erator Av is defined in a similar manner by replacing the
row summation with the column summation.

It should be noted that a similar multiple instance learn-
ing idea has been explored in a concurrent work [22]. How-
ever, [22] adopts max pooling for aggregation and focuses
on instance segmentation, while our ultimate goal is to infer
an accurate bounding box from the predicted mask rather
than a precise target segmentation.

Inference. During inference, we feed a snippet of 20
frames and their corresponding forward/backward tracking
results into our method. The T-Assess and VG-Refine Net
predict the quality score gdi and the target segmentation
mask Sdi ∈ RP×Q, respectively, for each tracking result,
with frame index i = 1, 2, . . . , 20 and direction indica-
tor d ∈ {F ,B}. To infer a refined bounding box from
the segmentation mask Sdi , we first aggregate the predicted
mask along the vertical and horizontal directions using the
rectified accumulation operator, producing the aggregated
results sd,vi ∈ RQ and sd,hi ∈ RP , respectively. We
then select two sets of coordinates {x|sd,vi (x) > τ} and
{y|sd,hi (y) > τ} according to the aggregated results. The
minimum and maximum coordinates of the above two sets
forms the corner coordinates of the refined bounding box
denoted as b̃di = (xmin, ymin, xmax, ymax). Given the pre-
dicted quality scores gdi and the refined bounding boxes b̃di

for forward and backward tracking at the i-th frame, we re-
gard the refined bounding box with higher quality score as
the output box annotation if its score is higher than a pre-
defined threshold (0), otherwise, we mark the i-th frame as a
failure frame which requires additional manual annotations.

4. Experiments
4.1. Implementation

The LaSOT dataset is one of the few large-scale track-
ing datasets whose ground truth are all manually annotated.
Therefore, our proposed video annotation method is trained
on the LaSOT training set, and then applied to the training
set of both LaSOT and TrackingNet to produce bounding
box annotations. To annotate the TrackingNet dataset, we
use all the training videos of LaSOT dataset to train our an-
notation method. To annotate the LaSOT dataset, we adopt
a cross-validation manner by first splitting the 1120 train-
ing sequences of LaSOT into two subsets1, and then use the
method trained on one subset to annotate the other one until
annotations for all the 1120 sequences are generated. We
use 3.3% of all the ground truth as manual annotations to
initialize our method. Finally, there are 2.7% and 1.7% of
video frames in the LaSOT and TrackingNet training set,
respectively, being labeled as failure frames by our method,
which are further annotated using ground truth. We imple-
ment this work using Tensorflow on a PC machine with 8
NVIDIA GTX2080Ti GPU. Data preparation and training
for the entire network on LaSOT will take approximately 2
weeks and inference speed is 30 FPS on a single GPU .

To verify the effectiveness of our method, we train
5 state-of-the-art trackers, including SiamRPN++ [13],
SiamFC++ [28], ATOM [5], DiMP [2] and PrDiMP [6], on
the training set of LaSOT and TrackingNet using the orig-
inal and our generated bounding box annotations, respec-
tively. The trained trackers are compared on the test set of
LaSOT, TrackingNet, UAV, and GOT10K.

4.2. Comparison Results

Tab. 1 and Tab. 7 reports the comparison results of all
the trackers trained on LaSOT and TrackingNet using the
original and our generated annotations. From Tab. 1, it can
be observed that the compared trackers trained using our
generated annotations perform on par with their counter-
parts trained using the original ground truth on the LaSOT
dataset. When training on the TrackingNet datasets (Tab. 7),
our generated annotations can even yield more superior per-
formance than the original ground truth annotations. The
reason might be attributed to the fact that the LaSOT train-

1The LaSOT dataset contains 1120 training sequences belonging to 70
categories with each category containing 16 sequences. We uniformly split
the training set into two subsets such that each subset contains 8 sequences
of each category.
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LaSOT annotations (Ours) and manual LaSOT annotations (GT).
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Figure 7. Tracking performance on LaSOT dataset by using our
(Ours) and manual TrackingNet annotations (GT).

ing set are fully annotated by human annotators, while over
96% of the annotations provided by the TrackingNet train
set are produced using tracking algorithms. As shown in
Fig. 2, the evaluation results justify the effectiveness our
annotation method and the quality of our generated annota-
tions. The results in Tab. 7 also confirm that our method can
well generalize across different datasets.

4.3. Ablation Study

To have an in-depth understanding of the contributions
brought by each component of our method, we perform ad-
ditional ablation study on the LaSOT dataset. We train dif-
ferent variants of our method and apply them to generate
annotations for the training set of LaSOT as described in
Sec. 4.1. We adopt three metrics to measure the accuracy
of the generated annotations, including mIoU, Acc@0.5,
and Acc@0.7. mIoU denotes the mean IoU of all the
generated annotations over ground truth bounding boxes.
Acc@threshold indicates the percentage of generated an-
notations whose IoU are above the threshold.
Impact of Tracking Result Selection. Based on the qual-
ity scores predicted by our T-Assess Net, our annotation
method is able to select the reliable tracking result from for-
ward and backward tracking, and determine whether track-
ing fails on the current frame. To measure the impact of
tracking result selection on the final generated annotations,
we compare 4 variants of our method. We denote Fwd and
Bwd as two variants which do not perform selection and use
the all tracking results from forward and backward tracking,
respectively. Sel denotes the variant that selects the more re-
liable tracking results generated by forward and backward

tracking, while Sel-fail adds additional failure detection to
Sel. Tab. 2 demonstrates the annotation accuracy by the 4
variants on the LaSOT training set. Sel yields higher accu-
racy than both Fwd and Bwd, indicating the effectiveness
of tracking result selection. 2.7% of all the 1120 frames are
labeled as tracking failure by Sel-fail, which require addi-
tional manual annotation and are not included for accuracy
computation. However, the accuracy gain by filtering out
the 30 frames is considerable.
Impact of Tracking Result Refinement. Our VG-Refine
Net combines target appearance and temporal geometry in-
formation through a learning based method to improve the
accuracy of the generated annotations. To analyze its im-
pact, we compare 4 variants our method. Among others,
w/o-Refine does not perform any refinement and directly
using the selected tracking results as the generated annota-
tions. V-Refine performs bounding box refinement based
on target region inference considering only the visual ap-
pearance information. VI-Refine combines target region in-
ference with geometric interpolation, where geometric in-
terpolation is performed in a handcrafted manner following
[12] rather than a learning based approach. VG-Refine de-
notes our proposed method. Tab. 3 shows their annotation
accuracy on the LaSOT training set. Fig. 8 visualizes the
comparison between our VG-Refine Net and V-Refine. By
only considering the appearance information, the annota-
tion accuracy of V-Refine is even worse than the original
tracking results. By further enforcing a handcrafted ge-
ometric interpolation scheme, VI-Refine can slightly im-
prove the annotation accuracy. In comparison, the proposed
VG-Refine integrates target appearance and temporal geom-
etry in a learning based manner, which deliver more supe-
rior performance than both V-Refine and VI-Refine.

To further demonstrate the advantages of our learning
based geometry model, we compare our method with [12]
which blends the tracking output with a geometric interpo-
lation result. Tab. 5 compares the annotation accuracy on
the GOT10K dataset, where we use the results reported by
[12] for fair comparison. Our method performs favorably
against [12] in terms of Acc@0.7.
Effectiveness of Temporal Modeling. Both T-Select and
VG-Refine Net adopts LSTM architectures to model tem-
poral consistency of the tracking results. To verify its ef-
fectiveness, we compare our method with its variant that
replaces LSTM layers with fully connected ones. As shown
in Tab. 4, the annotation accuracy is significantly improved
by using LSTM layers, suggesting the importance of tem-
poral modeling during video annotation.
Impact of Annotation Amount. Due to the high cost of
manual annotations, only a few existing large-scale tracking
benchmarks [10, 7, 21] perform exhaustive manual annota-
tions, while others only provide manual annotations for a
subset of frames. To analyze its impact on the tracking per-
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Table 1. Tracking performance on different dataset by using ours LaSOT annotations (Ours) and manual LaSOT annotations (GT).The red
results indicate that our annotations achieve the same or better results than the manual ones.

SiamRPN++ SiamFC++ ATOM DiMP PrDiMP
Succ Pre Succ Pre Succ Pre Succ Pre Succ Pre

GT 0.615 0.594 0.697 0.625 0.704 0.641 0.717 0.650 0.684 0.609TrackingNet Ours 0.631 0.601 0.698 0.634 0.702 0.634 0.715 0.652 0.688 0.619
GT 0.552 0.750 0.573 0.769 0.625 0.831 0.629 0.833 0.604 0.793UAV123 Ours 0.557 0.745 0.577 0.770 0.625 0.842 0.634 0.846 0.598 0.790

AO SR0.75 AO SR0.75 AO SR0.75 AO SR0.75 AO SR0.75

GT 0.438 0.230 0.535 0.367 0..562 0.409 0.593 0.444 0.554 0.416GOT10K Ours 0.439 0.260 0.549 0.391 0.563 0.416 0.596 0.460 0.570 0.444

Predict bbox GT Predict mask

V-Refine

VG-Refine(Ours)

Figure 8. This figure visualizes the comparison between our VG-
Refine Net and V-Refine.

Table 2. The effect of results selection.
mIoU Acc@0.5 Acc@0.7

Fwd 0.834 96.3% 90.7%
Bwd 0.833 96.3% 90.7%
Sel 0.845 96.6% 87.6%

Sel-fail 0.851 97.0% 91.1%

Table 3. The effect of results refinement.
mIoU Acc@0.5 Acc@0.7

w/o-Refine 0.851 97.0% 91.1%
V-Refine 0.845 96.4% 86.9%
VI-Refine 0.853 97.1% 91.1%
VG-Refine 0.865 97.3% 91.3%

Table 4. The effect of learning sequential information.
Miou Acc@0.5 Acc@0.7 Err Rate

FC 0.859 96.8% 90.8% 0.34%
LSTM 0.865 97.3% 91.3% 0.25%

formance, we collect 3 subsets of the LaSOT training set
containing 100%, 3.33%, and 1.67% of all the manual an-
notations, respectively. More detailed descriptions can be
found in the supplementary material.

Table 5. The table shows our performance on GOT10K validation
set compared to VI[12].

Acc@0.5 Acc@0.7 mIoU
VI[12] - 0.75 -GOT10K Ours 0.96 0.90 0.83

Table 6. Tracking performance on TrackingNet test set by using
ours TrackingNet annotations (Ours) and original TrackingNet an-
notations (GT) for training.

SiamFC++ DiMP PrDiMP
Succ Pre Succ Pre Succ Pre

GT 0.754 0.705 0.717 0.661 0.736 0.683
Ours 0.770 0.722 0.741 0.682 0.762 0.706

Table 7. Tracking performance on GOT10K test set by using ours
TrackingNet annotations (Ours) and original TrackingNet annota-
tions (GT) for training.

SiamFC++ DiMP PrDiMP
AO SR0.75 AO SR0.75 AO SR0.75

GT 0.533 0.363 0.546 0.349 0.576 0.436
Ours 0.569 0.442 0.570 0.441 0.589 0.488

5. Conclusion
This paper presents a video annotation method through

a selection-and-refinement scheme implemented by a T-
Assess Net and a VG-Refine Net. The T-Select Net aims se-
lect reliable preliminary annotations generated by tracking
algorithms by modeling their temporal coherence. The VG-
Refine Net integrates both target appearance and temporal
geometry through a learning based approach to further im-
prove the annotation accuracy. Experiments on large-scale
tracking benchmarks show that our method can effectively
reduce the human labors by 94.0% by delivering high qual-
ity video annotations in an automatic manner, which signif-
icantly pushes the state-of-the-art tracking performance.
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