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Corentin Dancette1 * Rémi Cadène1,2 *† Damien Teney3,4 Matthieu Cord1,5
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Abstract

We introduce an evaluation methodology for visual ques-
tion answering (VQA) to better diagnose cases of shortcut
learning. These cases happen when a model exploits spuri-
ous statistical regularities to produce correct answers but
does not actually deploy the desired behavior. There is
a need to identify possible shortcuts in a dataset and as-
sess their use before deploying a model in the real world.
The research community in VQA has focused exclusively
on question-based shortcuts, where a model might, for ex-
ample, answer “What is the color of the sky” with “blue”
by relying mostly on the question-conditional training prior
and give little weight to visual evidence. We go a step fur-
ther and consider multimodal shortcuts that involve both
questions and images. We first identify potential shortcuts
in the popular VQA v2 training set by mining trivial pre-
dictive rules such as co-occurrences of words and visual
elements. We then introduce VQA-CounterExamples (VQA-
CE), an evaluation protocol based on our subset of Coun-
terExamples i.e. image-question-answer triplets where our
rules lead to incorrect answers. We use this new eval-
uation in a large-scale study of existing approaches for
VQA. We demonstrate that even state-of-the-art models per-
form poorly and that existing techniques to reduce biases
are largely ineffective in this context. Our findings sug-
gest that past work on question-based biases in VQA has
only addressed one facet of a complex issue. The code
for our method is available at https://github.com/
cdancette/detect-shortcuts

1. Introduction

Visual Question Answering (VQA) is a popular task that
aims at developing models able to answer free-form ques-
tions about the contents of given images. The research com-

*Equal contribution †Work done before April 2021 and joining Tesla

munity introduced several datasets [5, 23, 26, 27] to study
various topics such as multimodal fusion [7] and visual rea-
soning [4, 22]. The popular VQA v2 dataset [21] is the
largest dataset of photographs of real scenes and human-
provided questions. Because of strong selection biases and
annotation artifacts, these datasets have served as a test-bed
for the study of dataset biases and shortcut learning [18] (we
will use the term “shortcut” exclusively in the rest of the pa-
per). These spurious correlations correspond to superficial
statistical patterns in the training data that allow predicting
correct answers without deploying the desirable behavior.
Issues of shortcut learning have become an increasing con-
cern for other tasks in vision and natural language process-
ing [18, 14]. In extreme cases, shortcuts in VQA may allow
guessing the answer without even looking at the image [1].
Some shortcuts can be more subtle and involve both textual
and visual elements. For instance, training questions con-
taining What sport are strongly associated with the answer
tennis when they co-occur with a racket in the image (see
Figure 1). However, some examples can be found in the
validation set, such as What sport field is in the background
?, that lead to a different answer (soccer) despite a racquet
being present in the image. Because of such exceptions,
a model that strongly relies on simple co-occurrences will
fail on unusual questions and scenes. Our work studies such
multimodal patterns and their impact on VQA models.

The presence of dataset biases in VQA datasets is well
known [1, 21, 23, 29], but existing evaluation protocols
are limited to text-based shortcuts. Our work introduces
VQA-CounterExamples (VQA-CE for short) which is an
evaluation protocol for multimodal shortcuts. It is easy
to reproduce and can be used on any model trained on
VQA v2, without requiring retraining. We first start with a
method to discover superficial statistical patterns in a given
VQA dataset that could be the cause of shortcut learning.
We discover a collection of co-occurrences of textual and
visual elements that are strongly predictive of certain an-
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Figure 1. Overview of this work. We first mine simple predictive rules in the training data such as: what + sport + racketV → tennis.
We then search for counterexamples in the validation set that identify some rules as undesirable statistical shortcuts. Finally, we use the
counterexamples as a new challenging test set and evaluate existing VQA models like UpDown [3] and VilBERT [31].

swers in the training data and often transfer to the valida-
tion set. For instance, we discover a rule that relies on the
appearance of the words “what”,“they”,“playing” together
with the object “controller” in the image to always predict
the correct answer “wii”. We consider this rule to be a short-
cut since it could fail on arbitrary images with other con-
trollers, as it happens in the real world. Thus, our method
can be used to reflect biases of the datasets that can poten-
tially be learned by VQA models.

We go one step further and identify counterexamples in
the validation set where the shortcuts produce an incorrect
answer. These counterexamples form a new challenging
evaluation set for our VQA-CE evaluation protocol. We
found that the accuracy of existing VQA models is signif-
icantly degraded on this data. More importantly, we found
that most current approaches for reducing biases and short-
cuts are ineffective in this context. They often reduce the
average accuracy over the full evaluation set without signif-
icant improvement on our set of counterexamples. Finally,
we identify shortcuts that VQA models may be exploiting.
We find several shortcuts giving predictions highly corre-
lated with existing models’ predictions. When they lead to
incorrect answers on some examples from the validation set,
VQA models also provide incorrect answers. This tends to
show that VQA models exploit these multimodal shortcuts.
In summary, the contributions of this paper are as follows.

1. We propose a method to discover shortcuts which rely
on the appearance of words in the question and visual
elements in the image to predict the correct answer. By
applying it to the widely-used VQA v2 training set, we
found a high number of multimodal shortcuts that are
predictive on the validation set.

2. We introduce the VQA-CE evaluation protocol to as-
sess the VQA models’ reliance on these shortcuts. By
running a large-scale evaluation of recent VQA ap-
proaches, we found that state-of-the-art models exploit
these shortcuts and that bias-reduction methods are inef-
fective in this context.

2. Related Work
We review existing approaches to discovering potential

statistical shortcuts and assess their use by learned models.

Detecting cases of shortcut learning A first type of ap-
proaches consists in detecting the use of shortcuts by lever-
aging explainability methods [16, 36, 40, 32]. However,
they require costly human interpretation, or additional an-
notations [15] to assess whether a particular explanation
reveals the use of a shortcut. A second type consists in
evaluating a model on artificial data or out-of-distribution
data. For instance, [19] artificially modify the texture of
natural images to show that convolutional networks trained
on ImageNet exploit features related to textures instead of
shapes. Also, [2] and [6] evaluate vision models on out-of-
distribution data to show that they cannot identify known
objects when their poses changed significantly. In this line
of works, [24] focus on evaluating models on adversarial ex-
amples and show links with statistical regularities or “non-
robust features” that models exploit. A third type of ap-
proaches use specific models with a known type of biases
to assess the amount of biases of this type directly in the
dataset. For instance, in computer vision, BagNet [9] ob-
tained high accuracy on ImageNet by using occurrences of
small local image features, without using the global spatial
context. This suggests that state-of-the-art ImageNet mod-
els are biased towards local image features. Similarly, our
approach leverages specific shallow models that are con-
structed to only exploit biases of a certain type.

This kind of approaches have been used in VQA. Pre-
vious works [1, 5, 21] used question-only and image-only
models to quantify the amount of unimodal shortcuts in a
dataset. Instead, our approach is not only able to quan-
tify the amount of shortcuts but also identify these short-
cuts. More importantly, our method can identify multi-
modal shortcuts that combine elements of the question and
the image. The closest approach to ours [32] uses the Apri-
ori algorithm to extract predictive rules that combine the
appearance of words and visual contents. However, these
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Figure 2. Pipeline of the proposed method to detect potential shortcuts in a VQA training set. We detect and label objects in images with
a Faster R-CNN model. We then summarize each VQA example with binary indicators representing words in the question, answer, and
labels of detected objects. Finally, a rule mining algorithm identifies frequent co-occurrences and extracts a set of simple predictive rules.

rules are specific to the attention maps and predictions of
the VQA model from [28]. More problematically, they are
extracted on the validation set and are mainly used for qual-
itative purposes. Our approach also relies on the Apriori
algorithm but extracts rules directly on the training set, in-
dependently of any model, and the predictive capacity of
the rules is evaluated on the validation set.

Evaluating VQA models’ reliance on shortcuts Once a
class of shortcuts has been identified, a first way to evaluate
model’s robustness is to build external out-of-distribution
evaluation datasets on which using these shortcuts leads to
a wrong prediction. In Visual Question Answering, the
VQA-Rephrasing [37] dataset contains multiple rephrased
but semantically-identical questions. The goal is to test
model’s sensitivity to small linguistic variations and will
penalize usage of a certain class of question-related short-
cuts. Similar datasets exist for natural language process-
ing [25, 33].

Another type of evaluation methods artificially injects
certain kind of shortcuts in the training set and evaluate
models on examples that do not possess these shortcuts. The
widely used VQA-CP [1] evaluation procedure consists in
resplitting the original VQA datasets so that the distribution
of answers per question type (“how many”, “what color is”,
etc.) is different between the training and evaluation set.
Models that rely on those artificial shortcuts are therefore
penalized. VQA-CP was used to develop methods that aim
at avoiding learning shortcuts from the question type on this
modified training set [10, 13, 17, 35, 20, 11, 17, 39, 41, 42,
43]. Similar approaches for VQA exists [13]. The down-
side of these approaches is that they focus on artificially
introduced shortcuts and only target text-related biases and
shortcuts. More importantly, models that have been trained
on original datasets, i.e. VQA v2, need to be retrained
on their modified versions, i.e. VQA-CP v2. Other con-
cerns have been raised in [43]. On the contrary, our pro-
posed evaluation method does not require additional data
collection or data generation, focuses on multimodal short-
cuts, and does not require retraining. We follow guidelines
from [14, 43] for a better evaluation of the use of shortcuts.

Finally, the GQA-OOD [29] dataset extracts from the
GQA[23] validation and testing set example with rare an-
swers, conditioned on the type of question. Thus, it targets
question-related shortcuts. It enables the evaluation of mod-
els without retraining on a separate training set.

3. Detecting multimodal shortcuts for VQA

3.1. Our shortcut detection method

We introduce our method to detect shortcuts relying on
textual and visual input. Our approach consists in building a
dataset of input-output variables and applying a rule mining
algorithm. The code for our method is available online *. In
Visual Question Answering (VQA), we consider a training
set Dtrain made of n triplets (vi, qi, ai)i∈[1,n] with vi ∈ V
an image, qi ∈ Q a question in natural language and ai ∈ A
an answer. VQA is usually casted as a problem of learning a
multimodal function f : V×Q → A that produces accurate
predictions on Dtest of unseen triplets.

Mining predictive rules on a training set Our goal is
to detect shortcuts that f might use to provide an answer
without deploying the desired behavior. To this end, we
limit ourselves to a class of shortcuts that we think is of-
ten leveraged by f . We display in Figure 2 our rule min-
ing process. These shortcuts are short predictive associ-
ation rules A → C that associate an antecedent A to a
consequent C. Our antecedents are composed of words
of the question and salient objects in the image (or image
patch), while our consequents are just answers. For in-
stance, the rule {what, color, plant} → {green} provides
the answer “green” when the question contains the words
“what”, “color” and “plant”. These shallow rules are by
construction shortcuts. They are predictive on the valida-
tion set but do not reflect the complex behavior that needs to
be learned to solve the VQA task. For instance, they do not
rely on the order of words, neither the position and relation-
ships of visual contents in the image. They lack the context
that is required to properly answer the question. Moreover,

*https://github.com/cdancette/detect-shortcuts
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Figure 3. Examples of shortcuts found in the VQA v2 dataset. The confidence is the accuracy obtained by applying the shortcut on all
examples matching by its antecedent. The support is the number of matching examples. More supporting examples and counterexamples
are shown in the supplementary material.

even rules that seem correct often have a few counterexam-
ples in the dataset, i.e. examples that are matched by the
antecedent but the consequent provides the wrong answer.
We later use these counterexamples in our evaluation pro-
cedure.

Binary dataset creation To detect these rules, we first
encode all question-image-answer triplets of Dtrain as bi-
nary vectors. Each dimension accounts for the presence or
absence of (a) a word in the question, (b) an objectV in
the image, represented by its textual detection label from
Faster R-CNN, (c) an answer. The number of dimensions
of each binary vector is the sum of the size of the dictio-
nary of words (e.g. ~13,000 words in VQA v2), the num-
ber of detection labels of distinct objects in all images (e.g.
1,600 object labels), and the number of possible answers in
the training set (e.g. 3,000 answers). We report results with
ground-truth instead of detected labels in the supplementary
materials.

Frequent itemset mining On our binary dataset, we ap-
ply the GMiner algorithm [12] to efficiently find frequent
itemsets. An itemset is a set of tokens I = {i1, .., in} that
appear very frequently together in the dataset. The support
of the itemset is its number of occurrences. For example, the
itemset {what, color, plant, green} might be very common
in the dataset and have a high support. GMiner takes one
parameter, the minimum support. We include an additional
parameter, which is the maximum length for an itemset. We
detail how we select parameters at the end of this section.

Rules extraction and filtering The next step is to extract
rules from the frequent itemsets. First, we filter out the

itemsets that do not contain an answer token, as they can-
not be converted to rules. For the others that do contain an
answer a, we remove it from the itemset to create the an-
tecedent X ( X = I \ a). The rule is then X ⇒ a. The
support s of the rule is the number of occurrences of X in
the dataset. The confidence c of the rule is the frequency of
correct answers among examples that have X .
We then proceed to filter rules. We apply the following three
steps: (a) we remove the rules with a confidence on the
training set lower than 30% (remove when c < 0.3) (b) if
some rules have the same antecedent but different answers,
then we keep the rule with the highest confidence and re-
move the others. For instance, given the rules {is, there}
⇒ yes and {is, there} ⇒ no with a respective confidence of
70% and 30%, we only keep the first one with the answer
yes. (c) if a rules r1’s antecedent is a superset of another
rule r2’s antecedent, if both have the same answer, and r1
has a lower confidence than r2, then we remove r1. For
instance, given the rules {is, there} ⇒ yes and {is, there,
cat} ⇒ yes with a respective confidence of 70% and 60%,
we only keep the first one without the word cat. We con-
sider the remaining rules as shortcuts. Note that rules with
a confidence of 100% could be considered correct and not
shortcuts, but these rules will not influence our evaluation
protocol, detailed in Section 4.

3.2. Analysis of shortcuts on natural data

We analyze the shortcuts that our approach can detect on
the widely used VQA v2 dataset [21] made of 1.1M image-
question-answer examples and based on 200K images from
the MS-COCO dataset [30]. We extract shortcuts with dif-
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ferent combinations of minimum support and confidence.
Each time, we aggregate them into a classifier that we eval-
uate on the validation set. We detail how to build this kind
of classifier in Section 4.2. We select the support and con-
fidence leading to the best overall accuracy. It corresponds
to a minimum support of 2.1 · 10−5 (about ∼8 examples
in training set), and a minimum confidence of 0.3. Once
these shortcuts have been detected, we assess their number
and type(purely textual, purely visual, or multimodal). We
also verify that they can be used to find counterexamples
that cannot be accurately answered using shortcuts. Finally,
we evaluate their confidence on the validation set. In the
next section, we leverage these counterexamples with our
VQA-CE evaluation protocol to assess model’s reliance on
shortcuts.

Words-only and objects-only shortcuts First, we show
that our approach is able to detect shortcuts that are purely
textual or visual. In the first row of Figure 3, we display
a shortcut detected on VQA v2 that only accounts for the
appearance of words in the question. It predicts the answer
“white” when the words “what”, “color”, “is”, “snow” ap-
pear at any position in the question. In the training set, these
words appear in 95 examples and 90.62% of them have the
“white” answer. This shortcut is highly predictive on the
validation set and gets 95.65% of correct answers over 92
examples. We also display an example on which exploit-
ing the shortcut leads to the correct answer, and a coun-
terexample on which the shortcut fails because the question
was about “the color of the snow suit” which is “pink”. In
the second row, we show a shortcut that only accounts for
the appearance of visual objects. It predicts “yes” when a
“frisbee”, a “tree”, a “hand” and a “cap” appear in the im-
age. However, this kind of shortcuts is usually less predic-
tive since they cannot exploit the question-type information
which is highly correlated with certain answers, i.e. “what
color” is usually answered by a color.

Multimodal shortcuts Then, we show that our approach
is able to detect multimodal shortcuts. They account for the
appearance of both words and visual objectsV . In the third
row of Figure 3, we display a multimodal shortcut that pre-
dicts “tennis” when the words what, sport and a racketV ap-
pear. It is a common shortcut with a confidence of 98.05%
based on a support of 667 examples in the training set. It
is also highly predictive on the validation set with 98.97%
confidence and 291 support. At first sight, it is counter-
intuitive that this simple rule is a shortcut but answering
complex questions is not about detecting frequent words
and objects in images that correlate with an answer. In fact,
this shortcut is associated to counterexamples where it fails
to answer accurately. Here, the sport that can be played in
the background is not tennis but soccer.

Number of shortcuts and statistics per type Here we
show that our approach can be used to detect a high number
of multimodal shortcuts. Overall, it detects ~1.12M short-
cuts on the VQA v2 training set. As illustrated in Figure 4,
since there are ~413K examples, it is often the case that sev-
eral shortcuts can be applied to the same example. This is
the main reason behind the high number of shortcuts For
instance, the antecedent {animals, what, giraffeV } over-
laps with {animals, these, what, giraffeV }. Among all the
shortcuts that our method can detect, only ~50k are textual,
~77k are visual and ~1M are multimodal. In other words,
~90% are multimodal. In addition to being more numer-
ous, they are also more predictive. For instance, the most
confident shortcut that matches an example, highlighted in
green in Figure 4, is multimodal 91.80% of the time. Fi-
nally, ~3K examples are not matched by any shortcut an-
tecedents. They have unusual question words or visual con-
tent. We later do not take them into account in our VQA-CE
evaluation protocol. We display some representative exam-
ples in the supplementary materials.

Figure 4. Multiple shortcuts can often be exploited to find the cor-
rect answer in any given example. The confidence is the percent-
age of accurate answers among examples that are matched by the
shortcut antecedent. The shortcut of highest confidence (in green)
is multimodal for ~92% of examples.

Confidence distribution on training and unseen data
In the supplementary materials, we display the confidence
distribution of these shortcuts. We observe that our short-
cuts are predictive on unseen data that follows the training
set distribution. The number of shortcuts that reach a con-
fidence between 0.9 and 1.0 is as high on the validation set
as it is than on the training set. This means that shortcuts
detected on the VQA v2 training set transfer to the valida-
tion set. Additionally, most shortcuts obtain a confidence
lower than 1.0, which allows finding examples that contra-
dict them by leading to the wrong answers. These coun-
terexamples are the core of our approach to assess the VQA
model’s reliance on shortcuts which is described next.

4. Assessing models’ reliance on shortcuts
The classic evaluation protocol in VQA consists in cal-

culating the average accuracy over all the examples. In-
stead, we introduce the VQA-CounterExamples evaluation
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protocol (VQA-CE) that additionally calculates the average
accuracy over a specific subset of the validation set. This
subset is made of counterexamples that cannot be answered
by exploiting shortcuts. Models that do exploit shortcuts
are expected to get a lower accuracy. It is how we assess the
use of shortcuts. Importantly, our protocol does not require
retraining as it was the case with the previous VQA-CP [1]
protocol. We first detail the subsets creation procedure at
the core of our VQA-CE protocol. Then we run extensive
experiments to assess the use of shortcuts on many VQA
models and bias-reduction methods. Finally, we identify
shortcuts that are often exploited by VQA models.

4.1. Our VQA-CE evaluation protocol

Subsets creation using shortcuts By leveraging the
shortcuts that we have detected before, we build the Coun-
terexamples subset of the VQA v2 validation set. This sub-
set is made of 63,298 examples on which all shortcuts pro-
vide the incorrect answer. As a consequence, VQA mod-
els that exploit these shortcuts to predict will not be able
to get accurate answers on this kind of examples. They
will be penalized and obtain a lower accuracy on this sub-
set. On the contrary, we build the non-overlapping Easy
subset. It is made of 147,681 examples on which at least
one shortcut provides the correct answer. On this subset,
VQA models that exploit shortcuts can reach high accuracy.
Finally, 3,375 examples are not matched by any shortcut’s
antecedent. Since these examples do not belong to any of
our two subsets, we do not consider them in our analysis.
We show in supplementary materials that they have unusual
questions and images.

Distribution of examples Here, we show how the split
between our two subsets Counterexamples and Easy affects
the distribution of examples. In Figure 5, we show that the
original distribution of answers is similar to the Easy distri-
bution but dissimilar to the Counterexamples distribution.
Highlighted in blue, we display the five most common an-
swers from the Easy distribution. They can be found at the
same positions in the original distribution, the two major
answers being “yes” and “no”. It is not the case in the
Counterexamples subset where these answers appear less
frequently. Nonetheless, they are still in the top 30 answers
which shows that our subsets creation is not a trivial split-
ting between frequent and rare answers. Similarly, the five
most common answers from the Counterexamples subset,
highlighted in orange, can be found in the Easy and All
subset. We report similar observations for the questions and
answer-type distributions in the supplementary materials.

4.2. Main results

In Table 1, we report results of some baselines, com-
mon VQA models, and latest bias-reduction methods fol-

Figure 5. Number of examples per answer (30 most frequent ones)
in the complete validation set, our Counterexamples subset, and
our Easy subset. Answers highlighted in blue and orange are the
top 5 answers for the Easy and Counterexamples subsets respec-
tively.

lowing our VQA-CE evaluation protocol. Models that ex-
ploit shortcuts are expected to get a lower accuracy on the
Counterexamples compared to their overall accuracy. All
models have been trained on the VQA v2 training set, and
evaluated on the VQA v2 validation set. We detail them
and discuss our findings in the next paragraphs. We report
additional results on VQA v1 and v2 in the supplementary
materials.

Baselines The Question-Only and Image-Only baselines
are deep models that only use one modality. They are of-
ten used to assess the amount of unimodal shortcuts that a
deep model can capture. We report extreme drops in accu-
racy on our Counterexamples subset compared to the over-
all accuracy, with a loss of 32.53 points and 22.12 points
respectively. This shows that most of the questions that are
easily answerable by only using the question, or the image,
are filtered out of our Counterexamples subset.

Aggregating shortcuts to create a classifier In order to
evaluate our shortcuts as a whole, we aggregate them to
build a VQA classifier. As shown in the preceding sec-
tion, each training example is associated with shortcuts that
can be used to find the correct answer. Among these cor-
rect shortcuts, we select the highest-confidence one for each
example. This leaves us with 115,718 unique shortcuts.
In order to predict an answer for an unseen example, we
take the most predicted answer for all its matching short-
cuts weighted by the confidence of the shortcuts. For the
examples that are not matched by any shortcut, we output
“yes”, the most common answer. Our shortcut-based clas-
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Approaches Overall Counterexamples (ours) Easy (ours)
Number of examples 214,354 63,298 147,681

B
as

el
in

es Shortcuts 42.26 (+0.00) 0.00 (+0.00) 61.13 (+0.00)

Image-Only 23.70 (+0.00) 1.58 (+0.00) 33.58 (+0.00)

Question-Only 44.12 (+0.00) 11.59 (+0.00) 58.61 (+0.00)

V
Q

A
m

od
el

s SAN [44] – grid features 55.61 (+0.00) 26.64 (+0.00) 68.45 (+0.00)

UpDown [3] 63.52 (+0.00) 33.91 (+0.00) 76.69 (+0.00)

BLOCK [8] 63.89 (+0.00) 32.91 (+0.00) 77.65 (+0.00)

VilBERT [31] – pretrained† 67.77 (+0.00) 39.24 (+0.00) 80.50 (+0.00)

B
ia

s-
re

du
ct

io
n

m
et

ho
ds

UpDown [3] is used as a base architecture for bias-reduction methods
RUBi [10] 61.88 (-1,64) 32.25 (-1,66) 75.03 (-1.66)

LMH + RMFE [17] 60.96 (-2.56) 33.14 (-0.77) 73.32 (-3.37)

ESR [39] 62.96 (-0.56) 33.26 (-0.65) 76.18 (-0.51)

LMH [13] 61.15 (-2.37) 34.26 (+0.35) 73.12 (-3.57)

LfF [34] 63.57 (+0.05) 34.27 (+0.36) 76.60 (-0.09)

LMH+CSS [11] 53.55 (-9.97) 34.36 (+0.45) 62.08 (-14.61)

RandImg [43] 63.34 (-0.18) 34.41 (+0.50) 76.21 (-0.48)

VQA-CP v2 [1]

22.64
19.31
15.95

24.96
39.74
38.69

—

44.23
54.55
48.50
52.05
39.49
58.95
55.37

Table 1. Results of our VQA-CE evaluation protocol. We report accuracies on VQA v2 full validation set and on our two subsets:
Counterexamples and Easy examples. We re-implemented all models and bias-reduction methods. †VilBERT is pretrained on Conceptual
Caption and fine-tuned on VQA v2 training set. Scores in (green) and (red) are relative to UpDown [3]. We also report accuracies on VQA-CP
v2 [1] which focus on question biases, and comes with a different training set and testing set. VilBERT was not evaluated for VQA-CP as
it was pretrained on balanced datasets.

sifier reaches an overall accuracy of 42.26%, close to the
44.12% of the deep question-only baseline. Interestingly,
both use a different class of shortcuts. Ours is mostly based
on shallow multimodal shortcuts, not just shortcuts from
the question. Since we use the same shortcuts to create
our subsets, the shortcut-based classifier reaches a score of
0% on the Counterexamples. On VQA-CP testing set, our
classifier reaches 22.44% accuracy. It highlights the differ-
ence with our counterexamples subset: VQA-CP does pe-
nalize some shortcuts, but there are still some that can be
exploited.

VQA models learn shortcuts We compare different
types of VQA models: SAN [44] represents the image as a
grid of smaller patches and uses a stacked attention mecha-
nism over these patches, instead UpDown [3] represents the
image as a set of objects detected with Faster-RCNN and
uses a simpler attention mechanism over them, BLOCK [8]
also relies on the object representations but uses a more
complex attention mechanism based on a bilinear fusion,
VilBERT [31] also relies on the object representations but
uses a transformer-based model that has been pretrained
on the Conceptual Caption dataset [38]. First, they suffer
from a loss of ~29 accuracy points on the counterexamples
compared to their overall accuracy. This suggests that, de-
spite their differences in modeling, they all exploit short-
cuts. Note that comparable losses are reported on VQA-
CP v2 [1] which especially focuses on shortcuts based on
question-types. Second, our evaluation protocol can be used
to compare two models that get similar overall accuracies:

UpDown and BLOCK which gets +0.37 points over Up-
Down. We can explain that this gain is due to a superior
accuracy on the Easy subset with +0.96 and report a loss of
-1.00 points on the Counterexamples. These results suggest
that the bilinear fusion of BLOCK better captures shortcuts.
On the contrary, VilBERT gets a better accuracy on our both
subsets. It might be explained by the advantages of pretrain-
ing on external data.

Bias-reduction methods do not work well on natural
multimodal shortcuts Our evaluation protocol can also
be used to assess the efficiency of common bias-reduction
methods. We use publicly available codebases when avail-
able, or our own implementation. All methods have been
developed on the VQA-CP v2 dataset. It introduces new
training and evaluation splits of VQA v2 that follow dif-
ferent distributions conditioned on the question-type. All
the studied methods have been applied to UpDown and
reached gains ranging from +5 to +20 accuracy points on
the VQA-CP testing set. We evaluate them in the more re-
alistic context of the original VQA v2 dataset. We show
that their effect on our Counterexamples subset is very
small. More specifically, some methods such as RUBi [10],
LMH+RMFE [17], and ESR [39] have a negative effect
on all subsets. Some methods such as LMH [13] and
LMH+CSS [11] slightly improve the accuracy on coun-
terexamples but strongly decrease the accuracy on the Easy
subset, and consequently decrease the overall accuracy. As
reported in [43], most of those methods rely on knowledge
about the VQA-CP testing distribution (inversion of the an-
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Train Val Correlations (Val)

Rule (antecedent → consequent) Conf. (Sup.) Conf. (Sup.) UpDown VilBERT Question-Only

doing + manV + surfboardV + handV → surfing 86.6 (115) 87.3 (55) 100.0 100.0 23.6
sport + this + what + skateboardV → skateboarding 98.2 (53) 87.1 (31) 100.0 100.0 0.0

holding + this + what + racketV → tennis racket 75.0 (26) 33.3 (3) 100.0 100.0 33.3
played + shortsV + racketV + legV → tennis 100.0 (29) 80.0 (5) 100.0 100.0 40.0

playing + they + what + controllerV → wii 100.0 (30) 88.9 (9) 100.0 100.0 66.7
picture + where + beachV + peopleV → beach 100.0 (21) 90.0 (10) 100.0 100.0 90.0

taken + where + toiletV → bathroom 85.2 (22) 80.0 (5) 100.0 100.0 20.0
eating + what + pizzaV + armV → pizza 81.5 (21) 66.7 (6) 100.0 100.0 66.7

carrying + is + what + kiteV → kite 66.7 (21) 60.0 (5) 100.0 100.0 0.0
gender + of + what + headV → male 64.1 (24) 66.7 (6) 100.0 100.0 66.7

position + helmetV + batV + dirtV → batter 61.8 (20) 71.4 (7) 100.0 100.0 0.0

Table 2. Instances of shortcuts that are highly correlated with VQA models’ predictions. We display their antecedent made of words from
the question and objectsV from the image, and their answer. Their support, i.e. number of examples matched by the antecedent, and
confidence, i.e. percentage of correct answers among them, have been calculated on the VQA v2 training and validation sets. We report the
correlation coefficients of their predictions with those of three VQA models: UpDown [3] that uses an object detector, VilBERT [31] that
has been pretrained on a large dataset, and Q-only [21] that only uses the question. We show some counterexamples in the supplementary
material.

swer distribution conditioned on the question), which no
longer applies in our VQA v2 evaluation setting. Finally,
we found two methods, LfF [34] and RandImg [43] that
slightly improve the accuracy on the Counterexamples sub-
set with gains of +0.36 and +0.50, while having a very small
impact on the overall accuracy, even reaching small gains
in the best case of LfF. It should be noted that LfF is more
general than others since it was not designed for the VQA-
CP context. Overall, all effects are much smaller compared
to their effectiveness on VQA-CP. This suggests that those
bias-reduction methods might exploit the distribution shift
between VQA-CP training and evaluation splits. They are
efficient in this setting but do not work as well to reduce
naturally-occurring shortcuts in VQA.

4.3. Identifying most exploited shortcuts

We introduce a method to identify shortcuts that may be
exploited by a given model. On the validation set, we cal-
culate for each shortcut a correlation coefficient between
its answer and the predictions of the studied model. Im-
portantly, a 100% correlation coefficient indicates that the
model may exploit the shortcut: both always provide the
same answers, even on counterexamples on which using the
shortcuts leads to the wrong answer.

In Table 2, we report shortcuts that obtain the highest
correlation coefficient with UpDown [3] and VilBERT [31].
Overall, these shortcuts have a high confidence and sup-
port, which means that they are common in the dataset and
predictive. Most importantly, they are multimodal. As a
consequence, these shortcuts obtain low correlations with
Question-Only [21]. On the contrary, they obtain a 100%
correlation coefficient with VilBERT and UpDown. For
instance, the second shortcut provides the answer skate-

boarding for the appearance of sport, this, what in the ques-
tion and a skateboardV in the image. It is a common short-
cut with a support of 31 examples in the validation set. It
gets a correlation of 0% because Question-Only mostly an-
swer baseball for these examples. Its confidence of 87.1%
indicates that 4 counterexamples can be found where the
shortcut provides the wrong answer. To be correctly an-
swered, they require more than a simple prediction based on
the appearance of words and salient visual contents. These
results once again confirm that VQA models tend to exploit
multimodal shortcuts. It shows the importance of taking
them into account in an evaluation protocol for VQA.

5. Conclusion
We introduced a method that discovers multimodal

shortcuts in VQA datasets. It gives novel insights on the
nature of shortcuts in VQA: they are not only related to the
question but are also multimodal. We introduced an eval-
uation protocol to assess whether a given models exploits
multimodal shortcuts. We found that most state-of-the-art
VQA models suffer from a significant loss of accuracy in
this setting. We also evaluated existing bias-reduction meth-
ods. Even the most general-purpose of these methods do not
significantly reduce the use of multimodal shortcuts. We
hope this new evaluation protocol will stimulate the design
of better techniques to learn robust VQA models.
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