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Abstract

Document unwarping attempts to undo physical de-
formations of the paper and recover a ’flatbed’ scanned
document-image for downstream tasks such as OCR. Cur-
rent state-of-the-art relies on global unwarping of the doc-
ument which is not robust to local deformation changes.
Moreover, a global unwarping often produces spurious
warping artifacts in less warped regions to compensate for
severe warps present in other parts of the document. In this
paper, we propose the first end-to-end trainable piece-wise
unwarping1 method that predicts local deformation fields
and stitches them together with global information to ob-
tain an improved unwarping. The proposed piece-wise for-
mulation results in 4% improvement in terms of multi-scale
structural similarity (MS-SSIM) and shows better perfor-
mance in terms of OCR metrics, character error rate (CER)
and word error rate (WER) compared to the state-of-the-art.

1. Introduction

Document images captured using mobile devices often
contain artifacts due to the physical shape of the paper, cam-
era pose or complex lighting conditions. Therefore, unlike
images captured with high fidelity using flatbed scanners,
mobile captured documents are ill-suited for digitization.

To improve the image quality for downstream tasks, such
as OCR, document unwarping is used to minimize the vis-
ible distortion between a captured document image and its
flatbed-scanned version. With multiple sources of distor-
tion due to camera viewpoint, paper shape and illumina-
tion, the task of unwarping document images in-the-wild is
inherently challenging and a long-standing research prob-
lem in the domain of document analysis. Most solutions
to date, first estimate the deformed 3D shape, and then un-
warp the image to make it planar. There is a large body of
work in 3D shape-based unwarping, some relying on spe-

1Project page: https://sagniklp.github.io/PiecewiseUnwarp/
This project was initiated when Sagnik Das was an intern at AWS.
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Figure 1. Comparison to state of the art with the proposed

piece-wise approach: (a) Our method (left) show local improve-
ments, text-lines are more aligned (highlighted with dashed green-
line) and leads to better unwarping on the edges compared to [7] on
the right. (b) Original image (left), result of the proposed approach
(center) and that of global unwarping [7] (right) shows that global
unwarping introduces additional warping (highlighted in box). (c)
Artifacts due to the absence of stitching reconstruction loss in [14],
columns 1, & 3 show our results without such artifacts.

cific hardware such as stereo [33, 28] and structured light
[3, 23], or using 2D images to estimate 3D using shape-
from-shading [30, 35] or multi-view images [27, 34]. With
respect to image based document unwarping, traditional ap-
proaches detect the boundary of a document [4], or explic-
itly predict text-lines [26, 21]. Generally, these traditional
approaches are not very accurate, e.g. textline based meth-
ods work as expected only if there exist enough textlines in
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the image. With the progress of deep learning, most of the
recent methods have become end-to-end and data-driven.

End-to-end deep learning based document unwarping
approaches such as DocUNet [19], DewarpNet [7] and
CREASE [20] directly predict the global unwarping map.
However, these approaches mainly focus on global infor-
mation and tend to overlook local information. This of-
ten results in (1) less robust local unwarping, (2) unex-
pected warping as shown in Fig. 1 (a) (b). There are few
approaches that successfully apply local unwarping be it
through using patches [14] or 2D segments [8]. Notably,
none of these piece-wise methods are end-to-end trainable,
and therefore have difficulty in generalizing well to ar-
bitrary scenarios such as large deformation of the paper.
Moreover, optimization based patch stitching used in [14, 8]
often lead to undesired stitching artifacts in the output un-
warped images (see figure 1c).

Inspired by these facts, in this paper, we propose the first
end-to-end trainable piece-wise unwarping approach made
possible by a novel fully-differentiable feature-level stitch-
ing module for the local unwarping maps. Our goal is to
leverage local information for better document unwarping.
Specifically, we argue that learning local and global defor-
mation separately through the use of patches, as well as
learning the appropriate patch stitching will better utilize
local shape deformations. A local approach is also moti-
vated by the fact that a complexly folded/warped document
is a combination of multiple simpler deformations which
are easier to be approximated locally.

Our approach consists of three trainable modules: (a)
shape network (SNet), (b) piece-wise unwarping network
(PUNet) and, (c) global stitching network (GSNet). The
SNet takes the image as input and outputs a 3D shape of
the paper. The PUNet takes 3D shape patches as input and
regresses local unwarping maps. The GSNet takes the lo-
cal patches as input and outputs a global unwarping map
to unwarp the input image. All three networks are trained
end-to-end with losses on local and global unwarping map
regression, and final unwarped image reconstruction. The
main contributions of our paper are:

First, a novel end-to-end trainable framework that esti-
mates document unwarping in a piece-wise manner, focus-
ing on unwarping the local deformations.

Second, a fully differentiable stitching network that takes
the per-patch unwarping map as input and produces a global
unwarping map. This stitching module is end-to-end train-
able, and generates artifact free unwarped images, which
improves upon prior stitching-based works [14].

Third, we show significant improvement in local un-
warping quality, with the proposed piece-wise approach.
We improve the prior state-of-the-art in terms of the image
similarity metric, MS-SSIM and show more stable perfor-
mance in terms of OCR error metrics.

2. Related Work

2.1. Non Deep Learning Based Approaches

Parametric model based methods assume the deforma-
tion of the document can be represented by low dimensional
parametric surface models such as Cylindrical surface [9],
Coon’s patch [11]. These models are either designed us-
ing visual cues such as text lines [21], content-driven vec-
tor field [22], boundaries [5, 8] or structured lights [23].
Besides surface models, spline curves are used to model a
deformed paper, such as NURBS [33], spline [10], Natural
Cubic Splines (NCS) [27].

These low dimension parametric models cannot model
very complex surface deformation with multiple folds. This
drawback limits their usage to only certain cases, like curls
or perspective distortion. However, these models are still
useful when the a complex shape can be systematically di-
vided into simpler deformations [8].

Mesh based methods use discrete surface representa-
tion for document shape and mainly work in two steps -
first estimate a shape then estimate the unwarping. They di-
rectly estimate the position of each vertex of the mesh and
employ different 3D estimation approaches such as stereo
vision [28], point cloud fitting [3], laser scanner [36], shape
from texture [17, 29, 26], multiview imaging [34].

Estimating the deformed mesh of the documents relies
on well-calibrated and expensive setup of hardware or sig-
nificant assumptions on document content or multi-view
images. With all of these assumptions, the application of
the unwarping method becomes limited in realistic scenes.

2.2. Deep Learning Approaches

End-to-end unwarping approaches do not make as-
sumptions about the image texture and do not require any
calibrated hardware setup. They are easy to deploy and
generalize well on real images. The first deep learn-
ing based approach was DocUNet [19], which directly re-
gresses the forward mapping from the deformed document
image. However, this method was trained on synthetic im-
ages created using random 2D deformations and is there-
fore unable to exploit the 3D geometric properties of the
paper warping and often generates unrealistic results in test-
ing. The successor to this work, DewarpNet [7], regresses
the unwarping map using an intermediate 3D shape su-
pervision which improves the generalization in testing due
to the disentangled 3D shape representation. A different
deep learning based approach, CREASE [20], proposes ad-
ditional content based loss functions for DewarpNet train-
ing. Recently, AGUN [18] proposed a generative adversar-
ial learning based approach for unwarping.

Non end-to-end approaches utilize CNNs to recover
the document deformation first and then employ a compu-
tational step for unwarping [8, 14]. These methods gener-
ally work in a piece-wise fashion. Das et al. [8] utilizes
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Figure 2. Proposed Architecture: The SNet takes an image and produces a 3D shape map, the proposed PUNet takes shape patches
as input, and regresses the local backward maps. The global BM is regressed by stitching the local BMs using a novel feature pyramid
stitching module, GSNet. An additional global branch is used to guide the stitching network with global alignment and scale information.
The triangles denote the loss functions. Test time unwarping step is shown using dashed arrow. Final bilinear sampling step (denoted by
‘Sample’ block) includes a resize operation and implemented using PyTorch grid sample function.

semantic segmentation to detect the fold lines and divide
the document in multiple parts. The unwarping for each
part is estimated using Coon’s Patch [11]. DocProj [14] es-
timates a per patch vector flow field for unwarping using
a deep network then employs a graph-cut based stitching
approach. The graph-cut optimization objective is not dif-
ferentiable and hence not end-to-end trainable. In contrast
to [14], our framework is guided by the reconstruction loss
on the unwarped image which automatically imposes global
constraints during stitching. Additionally, the reconstruc-
tion loss reduces stitching artifacts in the unwarped images
(see figure 1c).

3. Piece-wise Unwarping

The proposed piece-wise unwarping network is com-
posed of three sub-networks that are designed for 3D shape
regression, piece-wise unwarping backward map (BM) re-
gression and stitching of the regressed warping fields. The
schematic overview of the proposed approach is shown in
figure 2. These networks are accordingly named as the (1)
Shape Network (SNet), (2) Piece-wise Unwarping Network
(PUNet) and (3) Global Stitching Network (GSNet).

3.1. Shape Network

The goal of the SNet is to transform an input image I to
a per pixel 3D coordinate map, C 2 Rw⇥h⇥3, where each
pixel value (X,Y, Z) corresponds to the 3D coordinates of
the document shape. This representation encodes the 3D
shape of the paper and also implicitly encodes the camera
projection parameters which is sufficient to learn the back-
ward map (BM) for unwarping. Moreover, the shape rep-
resentation enables solving the unwarping task in a more
physically constrained domain rather than learning from a
joint distribution of document texture, shape, illumination

and, camera perspective. The design of SNet follows from
the 3D shape regression network proposed in [7]. We treat
the task as an image-to-image translation problem and use
a UNet style encoder-decoder for implementation.

Loss Functions. To train the SNet we utilize the L1 er-
ror between the predicted (Ĉ) and ground-truth (C) 3D co-
ordinate maps. Additionally, we apply an image gradient
based loss term on C for better reconstruction of sharp cur-
vature changes, e.g. the folds. The loss function is given by
Lc = ||C � Ĉ||1 +↵||rC �rĈ||1. Here, rC denotes the
horizontal and vertical gradient of C. ↵ controls the weight
of the gradient term.

3.2. Piece-wise Unwarping Network

Learning a global unwarping often leads to sub-optimal
result and often times the network introduces undesired
warping to lesser warped regions of the document (See fig-
ure 1 (b)). With piece-wise unwarping, we provide robust-
ness to local shape variations. To achieve this, the 3D co-
ordinate map (C) and backward map (B) is partitioned into
n2 non-overlapped patches {Ci,j} and {Bi,j}.

Ci,j =


i

n
,
i+ 1

n

◆
⇥

✓
j

n
,
j + 1

n

�
, 0  i, j < n (1)

Where i and j denotes the row and column index of the
patches. The corresponding BM B is partitioned as:

Bi,j =

⇢
[Bu, Bv]

i
n  u < i+1

n , j
n  v < j+1

n
�1 otherwise (2)

Where [Bu, Bv] is the value of the BM at location (u, v)
which contains a canonical pixel coordinate of I to be sam-
pled at (u, v). The -1 values denote the invalid pixels not
present in patch Ci,j .
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We normalize each Bi,j w.r.t. the canonical coordinate
range of the Cij and also tight crop the valid coordinates.
We call the normalized and cropped Bi,j as the local BM,
B0

i,j . For the valid coordinates the normalization operation
is given as the following:

B0
i,j =


Bu � (i/n)

(i+ 1)/n� (i/n)
,

Bv � (j/n)

(j + 1)/n� (j/n)

�
(3)

The PUNet takes a patch Ci,j 2 R(w/n)⇥(h/n)⇥3

as input and outputs the local backward map, B0
i,j 2

R(w/n)⇥(h/n)⇥2. This network is implemented as an
encoder-decoder of DenseNet blocks with Layer Normal-
ization [2]. Using BatchNorm [12] leads to over-fitting
since the Cij in a batch are highly correlated.

Loss Functions. Initially, PUNet is trained with L1 loss
on the local BM, B0

i,j and L2 loss on the predicted un-
warped image patches, Di,j . After the first round of train-
ing with ground-truth Ci,j as input, we perform end-to-end
training of the PUNet and SNet. For this step we utilize
the SNet predicted Ĉi,j as inputs to PUNet. The com-
plete loss function to train the PUNet is given as: Lp =

||B0
i,j � B̂0

i,j ||1 + �1||Di,j � D̂i,j ||2 + �2Lc. Where Di,j

and D̂i,j denotes the input image patches unwarped using
ground-truth BM patch, B0

i,j and predicted BM patch B̂0
i,j .

Following DewarpNet [7] we use the checkerboard images
for Di,j (more details are discussed in supplementary). For
the PUNet initial training with Ci,j , �2 is set to 0.

3.3. Global Stitching Network

We propose a feature level stitching network to stitch the
local BMs to regress B which is used to unwarp the im-
age I . Although, it is possible to design the stitching at
the image level using image registration strategies, it’ll be
susceptible to misalignment and ghosting [8] mainly due to
texture-less regions in a document. Conversely, a feature
level approach on the local BMs is robust to the aforemen-
tioned problems. Also, since the local BMs differ in scale
due to the perspective distortion present in I we employ a
feature pyramid in the stitching network. Finally, to ensure
better global alignment we introduce a global BM feature
branch as a residual to the local BM pyramidal features.

The proposed global stitching network (GSNet) con-
sists of two sub-modules, (1) Canonical Placement Mod-
ule (CPM) and (2) Grid Stitching Feature Pyramid Network
(G-FPN). An overview of GSNet is shown in figure 5.

Canonical Placement Module. After the normalization
step in eq. 3, each valid local BM position [Bu, Bv] 2 [0, 1]
encodes canonical coordinates of the corresponding image
patch, Ii,j . In order to unwarp the image I , [Bu, Bv] val-
ues need to be rescaled to the canonical coordinates of I .
Therefore prior to the stitching, the local BMs B0

i,j are de-
normalized using the inverse operation of eq. 3.
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Figure 3. Canonical Placement of Local BMs. Left: Red markers
show the corner correspondence between the image and the tex-
ture (unwarped) domain assuming the document is a equiangular
quadrilateral. The blue markers show the patch origins B

�
i
n ,

j
n

�

utilized in CPM. Right: CPM module: red shows the corner, and
blue shows the patch origins utilized for global coarse placement
of the local patches.

After the denormalization step, we perform a coarse spa-
tial placement of each local BM. Assuming a document is a
quadrilateral we can assume the top leftmost image patch,
C0,0 will unwarp to the top leftmost part of B and so on.
We show an illustration in 3. By exploiting this spatial cor-
respondence of Ci,j and B0

i,j , each local BM is placed at
B
�
i
n ,

j
n

�
. We can demonstrate a simplest case with n = 2,

where B0,0 is placed at B(0, 0), B0,1 at B(0.5, 0), B1,0 at
B(0, 0.5) and B1,1 at B(0.5, 0.5). Illustration of the un-
warped patches after the coarse placement step is shown
in figure 4 (bottom row). The denormalization and coarse
placement step eases the task of the G-FPN by roughly
aligning the input [Bu, Bv] values with the output B.

Grid Stitching Feature Pyramid Network. The output lo-
cal BMs are in different scales due to the perspective dif-
ference of the image patches, e.g. a patch closer to the
camera has higher scale than a patch far away from cam-
era. Consequently, an unwarped patch closer to the camera
has higher scale than a patch further away. This is illus-
trated in the figure 4 (bottom row). We handle this scale
mismatch by employing a feature pyramid while stitch-
ing. To perform stitching in the feature space we pro-
pose a novel feature pyramid encoder [15] based on Resid-
ual Channel Attention Network (RCAN) [37] blocks, ini-
tially introduced for image super-resolution. Our stitching
task is analogous to super-resolution in the sense that we
aim to preserve high-frequency details of the learned lo-
cal BMs. We use stride-s convolutions to reduce the spa-
tial resolution of local BM features by factor s at each
feature level. An overview of G-FPN is illustrated in fig-
ure 5. The primary input to G-FPN is the concatenation
of the n2 local BMs obtained from the CPM. To assist the
G-FPN with a consistent global scale and alignment, an
additional global branch is introduced following [7]. This
branch takes the 3D coordinate map C 2 Rh⇥w⇥3 as input
and learns to regress B. The output of the global branch
is used as a secondary input to the G-FPN. The extracted
local features from each level of the pyramid is concate-
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Figure 4. Illustration of the scale mismatch among different

patches: Top is the input image, bottom is the unwarped patches
after the spatial placement in the texture space using the CPM.

nated (Fl) and fed to a global fusion block (F) (also de-
noted by F in figure 5) along with the global features (Fg)
extracted from the global branch. An ablation experiment
shows the effect of the global and local branch in Table 2.
Fl =

Ln
i=1 fi; Ff = F(Fl +Fg); B = Ft(Ff ). Here fi

denotes the local features extracted from each feature level
i and � denotes the channel-wise concatenation operation.
Ff is the output of the global fusion block. Ft denotes the
final block which takes the fused features and outputs B.

In summary, input to the global stitching module is con-
catenation of the local BMs and the global BM, B̃ 2
Rh⇥w⇥2(n2+1) and output is the BM, B 2 Rh⇥w⇥2. We
show a comparative evaluation of different stitching model
variants in supplementary material. These modules vary in
terms of the global fusion function (F) and the long skip
block (LS block) structure.

Loss Functions. To train the PUNet we utilize the losses on
the final BM and the unwarped image. The respective loss
functions are given as: Ls = ||B � B̂||1 + �||D � D̂||2.
B̂ denote the stitched BM resulting from G-FPN and B is
the respective ground-truth. D̂ and D are the input images
unwarped using B̂ and B respectively. � denote the weight
associated with the second term of the Ls. Similar to [7] we
utilize the checkerboard pattern images to obtain D and D̂.

3.4. Training Details

Dataset. To train our network we use the Doc3D
dataset [7]. Doc3D contains 100K synthetic document im-
ages rendered using Blender [1]. This dataset utilizes a
large set of document textures for rendering and contains
3D shape, C and BM, B as ground-truth. We use a 88K and
8K split for training and validation of our network. Since
all our training data is synthetic, and per-module ground
truth is available, we follow the common practice in cas-
caded networks [31] of pre-training each module, to stabi-
lize overall training before performing end-to-end training.

Augmentations. For SNet training we apply random
brightness, contrast, hue, saturation shift to the input im-
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Figure 5. Proposed GSNet: CPM denote Canonical Placement
Module, Global Warp denote the global branch for global BM, LS
block denote a few few conv layers with global features, F denote
feature fusion (F ) for local (Fl) and global (Fg) features, FLi

denote the pyramid level i. � denotes channel-wise concatenation.

ages with probability 0.5. Additionally we randomly re-
place the background of these images using random textures
from DTD [6] dataset. For PUNet, we apply augmentation
by varying the shape patch size in [0.4, 0.6]. We also use
variable padding around the C. Without these augmentation
steps the PUNet becomes biased and fails to handle padding
variability at test time. We also noticed that it is likely that
a only small region of a document is visible within a patch
(Ci,j), which destabilizes the training. We utilize minimum
bounding rectangle around the document mask to homogra-
phy transform the image during the training of PUNet.

Hyperparameters. SNet is trained with 256 ⇥ 256 sized
images. For PUNet we set n = 2 and input 128 ⇥ 128
sized shape patches Ci,j . PUNet outputs same sized local
BM predictions. Each local BM is then resized to 128/n
and used as an input to CPM. Outputs of CPM and inputs
to the global texture stitching module is 128 ⇥ 128. We
use 5 Residual Channel Attention Blocks [37] to construct
the feature pyramid network, and use 4 times feature reduc-
tion in the channel attention block. To train each network,
we use Adam [13] optimizer with an initial learning rate of
1e � 5. The learning rate is halved if the validation error
doesn’t decrease in consecutive 5 epochs. SNet and PUNet
are first separately trained to convergence using ground-
truth and the learned weights are used to initialize the joint
training. We set the loss weights ↵ = 0.5, �1 = 0.03 and
�2 = 0.5. Similarly the G-FPN is first trained with local
BMs obtained from B. Later, we freeze the weights of SNet
and PUNet with the best models and fine-tune G-FPN with
� = 0.03. We found that using higher values for �1, � re-
sults noises on the unwarped image during testing.

4. Experimental Evaluation

We validated our proposed piece-wise unwarping ap-
proach with multiple experiments. We first evaluate our
method against current state-of-the-art and then we present
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Figure 6. Distribution of the CER in DocUNet Benchmark:
Proposed (CER-PW) vs. DewarpNet (CER-DW). Higher percent-
age of documents (y-axis) with lower CER (x-axis) is better.

additional ablation experiments to evaluate our design
choices. To evaluate the proposed approach we use the im-
age similarity metric, multi-scale structural similarity (MS-
SSIM) and Local Distortion (LD) on the 130-images bench-
mark from DocUNet [19]. Furthermore, we evaluate OCR
performance on an 51-images benchmark of DocUNet us-
ing character (CER) and word error-rate (WER).

4.1. Evaluation Metrics

The choice of evaluation metrics follows from the prior
document unwarping approaches [7, 19]. The most recent
paper CREASE [20] evaluates their method in terms of
Edit Distance (ED) [24] between the detected text bounding
boxes in ground-truth (scanned) and predicted unwarped
images. However, this evaluation scheme requires the
ground-truth warping field of the test images and is there-
fore not applicable for real benchmarks [19]. In this pa-
per, we focus our evaluation on metrics that are applica-
ble to real images. Image similarity metric, MS-SSIM [32]
is based on local image statistics (mean and variance) of
the unwarped and scanned (ground-truth) images calculated
over multiple Gaussian pyramid scales. LD is based on the
dense SIFT flow [16] between the unwarped and scanned
images. Details about the parameters settings of these eval-
uation metrics, MS-SSIM, LD, CER and WER are dis-
cussed in [7, 19]. We use the same settings for fair compar-
ison. For OCR evaluation we use the open source Tesseract
(4.1.1) [25] with the LSTM based OCR engine.

4.2. Comparison with Prior Methods

We quantitatively and qualitatively compare our method
with recent deep learning based document unwarping ap-
proaches, DocUNet [19], DocProj [14], DewarpNet [7],
CREASE [20], and AGUN [18]. DocUNet [19] uses
synthetic data and utilizes per-pixel forward mapping re-
gression to learn unwarping in an end-to-end manner.
DocProj [14] uses a patch-based approach for local regres-
sion with global latent features. But is not end-to-end train-
able due to a graph-cut based stitching of the forward map.
DewarpNet and CREASE are both trained using the Doc3D
dataset, which contains 3D shape of the documents. Our ap-
proach differs substantially from DewarpNet as it accounts

Method MS-SSIM " LD # CER # WER #
DocUNet [19] 0.4389 10.90 0.3203 (0.15) 0.4567 (0.20)
DocProj [14] 0.3832 12.83 0.3474 (0.16) 0.4889 (0.21)
AGUN⇤ [18] 0.4491 12.06 - -

DewarpNet [20] 0.4692 8.98 0.3028 (0.16) 0.4368 (0.21)
Proposed 0.4879 9.23 0.3001 (0.14) 0.4302 (0.18)

Table 1. Quantitative comparison of the proposed and prior ap-
proaches on DocUNet benchmark dataset. " and # signifies higher
and lower better respectively. Standard deviation is reported in the
parentheses. ⇤OCR metrics could not be calculated as images or
models are not publicly available.

for, and corrects, deformation at a local patch-level unlike
DewarpNet which only performs global unwarping. This
is achieved by the local branch consisting of the proposed
modules PUNet, CPM, and GSNet. AGUN [18] proposes
an adversarial learning based framework to learn document
unwarping using synthetically deformed documents in 2D.

Quantitative Comparison. We compare the proposed
piece-wise approach with prior document unwarping ap-
proaches, DewarpNet [7], AGUN [18], DocProj [14] and
DocUNet [19]. We exclude CREASE from this compar-
ison because their models are not publicly available for a
fair quantitative comparison. See Table 1 for the compari-
son of quantitative results. The proposed piece-wise method
outperforms the state-of-the-art DewarpNet in terms of MS-
SSIM metric and also shows a small improvement in OCR
accuracy. Image similarity based improvement is due to the
better local structural alignment of the scanned ground-truth
and unwarped images. Although our OCR numbers are very
close to DewarpNet, with the proposed piece-wise approach
we achieve a lower standard deviation (a 2% reduction), in
terms of both CER and WER metrics. To demonstrate the
improvement in OCR metrics we show the histogram plot
of the CER of all the OCR test documents in figure 6. We
can clearly see more documents have a lower CER with the
proposed approach. We also show a qualitative OCR error
comparison with [7] in figure 10. We must note that the
OCR error rates also depend on the accuracy of the OCR
engine, and we discuss a few cases in the supplementary
where we notice spurious ED values, although the the im-
ages are very similar in terms of unwarping quality. Our
improvement compared to DocProj [14] is more significant
because of two main reasons: (1) [14] assumes local patches
have no background, and (2) [14] doesn’t use the recon-
struction loss during stitching. We would like to highlight
that the background assumption is often violated in real im-
ages present in the benchmark.

Our method shows a small percentage increase in the LD
metric due to global misalignment and scale mismatch with
the introduction of local branch. However, these errors are
insignificant for document unwarping quality. We discuss
our observations in detail in the supplementary material.
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(a) Input (b) Proposed (c) DewarpNet (d) Scan
(a) (b) (c) (d)

(b) (c) (d)

(a) (d)

(a) (b) (c) (d)

(c)(b)

(a)

Figure 7. Qualitative comparison of the piece-wise unwarping and DewarpNet: (a) input, (b) proposed, (b) DewarpNet [7] , (d) scan
gt. The highlighted lines clearly show local improvements.

Figure 8. Local comparison of the proposed method with DewarpNet and CREASE: Column 1 and 3, shows our results, Column 2 is
DewarpNet [7], Column 4 is CREASE [20]. Higher-resolution unwarped images are unavailable for CREASE.
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(a) (b) (a) (b)

Figure 9. Qualitative comparison of the (a) proposed method and
(b) DocProj [14]. [14] assumes local patches have no background,
thus fail to handle large background regions in input image.

225

Figure 10. Qualitative comparison of the OCR on (left) pro-
posed unwarped, (middle) DewarpNet [7] unwarped, and (right)
Scanned. We highlight the OCR errors with red, number of recog-
nition errors is given in the yellow box. Zoom for detail.

Qualitative Comparison. We show a comparison of the
qualitative results with DewarpNet in figure 7. To better
demonstrate the local improvement due to the the piece-
wise approach we show close-up comparisons with global
unwarping approaches, DewarpNet [7] and CREASE [20]
in figure 8. We can clearly notice that our piece-wise for-
mulation captures local structures, such as text-lines, image
boundaries and text segments, better than global strategies.
Some of the improvements are highlighted with horizontal
and vertical cue lines in figure 7. We also show a qualitative
comparison with DocProj [14] in figure 9 which is a patch-
wise unwarping approach but not end-to-end differentiable.

4.3. Ablation Studies

This section details the design decisions and ablation
studies for our architecture. We would like to note, in ad-
dition to the sections below, we have included additional
experiments in the supplemental.

Comparison of Global and Local BM Branch. In this ex-
periment, we aim to evaluate the contribution of the global
and the local BMs in the global texture stitching module. To
separately evaluate each module, we train a stitching FPN
without the global BM as input. In this case, only the local
BM patches are used as input to the grid stitching FPN to
synthesize the final BM. A quantitative comparison of the

Method MS-SSIM " LD #
Local 0.4552 9.78
Global 0.4635 8.89

Local+Global 0.4879 9.23

Table 2. Comparison of the piece-wise unwarping modules. We
evaluate models with only Local or Global branches, and Both.

local stitched BM, global BM and the combination of these
two is reported in Table 2. The global branch (the setting
corresponding to DewarpNet) shows lower LD than other
variants since it achieves better global alignment with the
ground truth. On the other hand the local branch indepen-
dently suffers from global alignment and scale mismatches
in cases of large perspective difference between patches as
demonstrated in figure 4. The combined module compen-
sates these errors and achieves a 5% higher MS-SSIM over
the independent global branch based unwarping.
Performance trade-off between global and local branch.

We obtain the best unwarping result by training GSNet with
frozen, jointly-trained SNet and PUNet modules. When this
constraint is relaxed and SNet, PUNet, GSNet are trained
end-to-end, we observe that the GSNet biases the network
to focus on global unwarping rather than the local unwarp-
ing. In validation, this causes a ⇠2% L1 error increase in
PUNet, and a ⇠1.6% L1 error decrease in GSNet, thus de-
creases the overall performance in testing.
Effect of patch overlap. Overlapping between the patches
is a common design choice for patch based approaches
[14]. However, we don’t see any notable improvement with
overlapping patches. Our stitching network is trained with
global reconstruction loss in an end-to-end manner. It pro-
vides a sufficient learning signal so that our model can in-
terpolate the patches even in the absence of any overlap-
ping context. As an advantage of non-overlapping, we do
not need to transmit redundant information, and can save
on inference costs in memory and runtime.

5. Conclusions and Future Work

We presented a novel end-to-end architecture for piece-
wise unwarping of document images. In terms of the image
similarity and the OCR metrics we have shown superior per-
formance to prior state-of-the-art approaches. We explicitly
model the unwarping as a combination of local and global
warping fields, leading to better local reconstruction. For
future work, adaptive patching strategies can be leveraged
to better incorporate local 3D information. Further, local re-
construction of the stitching network could be extended to a
recurrent structure to handle an arbitrary number of patches.
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