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Abstract

Pedestrian trajectory prediction is challenging due to its
uncertain and multimodal nature. While generative adver-
sarial networks can learn a distribution over future trajec-
tories, they tend to predict out-of-distribution samples when
the distribution of future trajectories is a mixture of multi-
ple, possibly disconnected modes. To address this issue, we
propose a multi-generator model for pedestrian trajectory
prediction. Each generator specializes in learning a distri-
bution over trajectories routing towards one of the primary
modes in the scene, while a second network learns a cat-
egorical distribution over these generators, conditioned on
the dynamics and scene input. This architecture allows us
to effectively sample from specialized generators and to sig-
nificantly reduce the out-of-distribution samples compared
to single generator methods.

1. Introduction
To safely navigate through crowded scenes, intelligent

agents such as autonomous vehicles or social robots need to
anticipate human motion. Predicting human trajectories is
particularly difficult because future actions are multimodal:
given a past trajectory, there exist several plausible future
paths, depending on the scene layout and social interactions
among pedestrians. Recent methods leverage conditional
generative adversarial networks (GANs) [14, 16, 34, 22] to
learn a distribution over trajectories. These methods present
significant improvements over deterministic models [1, 18].
However, they suffer from limitations observed in the con-
text of GANs [38, 20] that manifest in mode collapse or pre-
diction of undesired out-of-distribution (OOD) samples, ef-
fectively yielding non-realistic trajectories. Mode collapse
can be tackled with best-of-many sampling [6] or regular-
izations of the latent space [22, 2] but the problem of OOD
samples remains unsolved. These OOD samples are par-
ticularly problematic in real-world applications where high

*Equal contribution.

precision of predictions matters. Imagine an autonomous
vehicle driving through crowded environments and interact-
ing with pedestrians. To ensure the safety of pedestrians, the
vehicle needs to anticipate their future motion and react ac-
cordingly, e.g., brake or turn. As a consequence, unrealistic
predictions may lead to sudden reactions that pose danger
to other traffic participants.

To understand why OOD samples are produced by state-
of-the-art GAN methods, we need to understand the un-
derlying geometry of the problem. Consider a pedestrian
reaching the junction in Figure 1a. There are three plausible
main directions that the pedestrian can take, namely, going
straight, left, or right. Furthermore, there exist several paths
that route towards these directions. While all recent works
agree that such trajectory distribution is inherently multi-
modal, we further observe that the distribution consists of
several disconnected modes. Each mode is shown in Fig-
ure 1c in different colors, and as we can observe, the three
modes are disconnected in space. Existing GAN models do
not consider this property, and hence generate undesirable
OOD samples in between modes, visualized as red trajec-
tories in Figure 1b. This is an inherent problem of single-
generator GANs, as they cannot learn a mapping from a
continuous latent space to a disconnected, multimodal tar-
get distribution [38].

In this paper, we address this issue and explicitly focus
on learning such disconnected multimodal distributions for
pedestrian trajectory prediction. To this end, we propose a
novel multi-generator GAN that treats the multimodal target
distribution as a mixture of multiple continuous trajectory
distributions by optimizing a continuous generator for each
mode. Unlike previous multi-generator models [19, 7], our
model needs to adapt to the selection of generators to differ-
ent scenes, e.g., two- and three-way junctions. For this, we
employ a fixed number of generators and allow the model
to learn the necessary number of modes directly from vi-
sual scene information. Towards this end, we train a sec-
ond module estimating the categorical probability distribu-
tion over the individual generators, conditioned on the input
observations. At test time, we first select a specific gener-
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Figure 1: The figure illustrates a pedestrian reaching a junction (black) including (a) the multimodal target distribution of
future paths, (b) learned future trajectory distribution by a single generator GAN predicting out-of-distribution samples (red),
and (c) learned trajectory distribution of multi-generator mixture model.

ator based on its categorical probability and sample then
trajectories specialized to that particular mode present in
the scene. For measuring the quality of the predictions, we
extend the concept of traditional L2 error measures with a
precision and recall metric [36, 23]. Our experimental eval-
uation shows that our proposed model overcomes state-of-
the-art and single-generator methods when comparing the
behavior of predicting OOD samples.

We summarize our main contributions as follows: (i)
we discuss the limitations of single generator GANs and
propose a novel multi-generator method that learns a mul-
timodal distribution over future trajectories, conditioned on
the visual input. To this end, we (ii) present a model that
estimates a conditional distribution over the generators and
elaborate a training scheme that allows us to jointly train our
model end-to-end. Finally, (iii) we introduce recall and pre-
cision metrics for pedestrian trajectory prediction to mea-
sure the quality of the entire predictive distribution, and in
particular OOD samples. We demonstrate our method’s ef-
ficiency and robustness through extensive ablations. The
source code of the model and experiments is available:
https://github.com/selflein/MG-GAN.

2. Related Work

Trajectory Forecasting. Since its inception, the field
of pedestrian trajectory prediction has moved from hand-
crafted [18] to data-driven [1] methods. While the
first learning methods used deterministic LSTM encoder-
decoder architectures (S-LSTM [1]), deep generative mod-
els [16, 34, 22, 2, 12, 8] quickly emerged as state-of-the-
art prediction methods. This development enabled the shift
from predicting a single future trajectory to producing a dis-
tribution of possible future trajectories. S-GAN [16] estab-
lishes a conditional Generative Adversarial Networks [14]
to learn the ground-truth trajectory distribution and S-GAN-
P [16]and SoPhie [34] extend S-GAN with visual and social

interaction components. Further, S-BiGAT [22] increases
the diversity of the samples by leveraging bicycle GAN
training [42] that encourages the connection between the
output and the latent code to be invertible. Goal-GAN [8]
circumvents the problem of mode collapse by conditioning
the decoder on a goal position estimated based on the topol-
ogy of the scene.

GANs [14] have well-known issues with mode collapse,
this is why many models [16, 34] use an L2 variety loss [6]
or modify the GAN objective [2] to encourage diversity of
the samples. While producing highly diverse samples en-
sures coverage of all modes in the distribution, we also ob-
tain many unrealistic out-of-distribution samples. The prob-
lem of OOD samples has been remained unnoticed partially
due to the evaluation metrics used in the field which only
measure the minimum L2 distance between the set of pre-
dictions and the ground truth, namely the recall. Nonethe-
less, the realism of predicted trajectories, equivalent to a
precision metric, is seldomly evaluated. We advocate that
trajectory prediction methods should be evaluated concern-
ing both of the aforementioned aspects.

Other work uses conditional variational autoencoders
(VAE) [21] for multimodal pedestrian trajectory predic-
tion [24, 35, 26, 5]. More recently, Trajectron++ [37]
uses a VAE and represents agents’ trajectories in a graph-
structured recurrent neural network. PECNet [28] proposes
goal-conditioned trajectory forecasting. Similar to GANs,
VAEs are also continuous transformations and suffer from
the limitations of generating distributions on disconnected
manifolds [32].

Lastly, P2TIRL [9] learns a grid-based policy with max-
imum entropy inverse reinforcement learning. In summary,
existing methods pay little attention to the resulting emer-
gence of out-of-distribution samples and do not discuss the
topological limitation in learning a distribution on discon-
nected supports.
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Generation of Disconnected Manifolds. Understanding
the underlying geometry of the problem is important when
training deep generative models [11]. More precisely,
learning disconnected manifolds requires disconnectedness
within the model. A single generator preserves the topol-
ogy of the continuous latent space and cannot exclusively
predict samples on disconnected manifolds [38].

For image generation, the problem of multimodal learn-
ing is well-known and widely studied. Addressing this is-
sue, [38] proposes a rejection sampling method based on the
norm of the generator’s Jacobian. InfoGAN [7] discretizes
the latent space by introducing extra dimensions. Other
works use mixtures of generators [40, 39, 41, 17, 13, 4] to
construct a discontinuous function. However, these mod-
els assume either a uniform or unconditional probability for
their discrete latent code or generators. As a result, these
methods are unable to adapt to different scenes and thus un-
suitable for the trajectory prediction task.

Our research is the first to address the problem of learn-
ing disconnected manifolds using multiple generators for
the task of pedestrian trajectory prediction by modeling a
conditional distribution over the generators.

3. Problem Definition
In this work, we tackle the problem of jointly predict-

ing future trajectories for all pedestrians in the scene. For
each pedestrian i, we generate a set of K future trajectories
{Ŷ k

i }k=1,...,K with t 2 [tobs + 1, tpred] for a given input
trajectory Xi with t 2 [t1, tobs]. This implies learning the
true distribution of trajectories conditioned on the input tra-
jectories and scene layout.

In many real-world scenarios such as in Figure 1, the
target distribution pD is multimodal and composed of dis-
connected modes.

Why do Single Generator GANs produce OOD Sam-
ples? State-of-the-art methods use the standard condi-
tional GAN architecture [14] and its modifications [29, 3]
to learn a distribution over future trajectories. These mod-
els learn a continuous mapping G : X ⇥ Z ! Y from the
latent space Z combined with the observations’ space X
to the space of future trajectories Y . The probability prior
p(z) on Z is mainly a standard multivariate normal distri-
bution with z ⇠ N (0, 1). When modeling G with a neu-
ral network, the mapping is continuous and preserves the
topology of the space. Hence, the transformation G (x,Z)
of the support of the probability distribution Z is connected
in the output space [38]. Therefore, theoretic work [38, 20]
discusses that learning a distribution on disconnected man-
ifolds is impossible; we also observe this phenomenon in
our experiments.

Why are OOD Samples problematic? Real world-
applications relying on trajectory predictions, e.g. au-

tonomous vehicles, have to treat every prediction as a pos-
sible future scenario and need to adjust their actions accord-
ingly. Thus, not only missed but also unrealistic predictions
may crucially hurt the performance of those applications.
As OOD samples without support in the ground-truth dis-
tribution are likely to be unrealistic, we aim to keep their
number small while still covering all modes.

How can we prevent OOD Samples? All single genera-
tor models will predict OOD if the target distribution lies on
disconnected manifolds. Theoretically, there are only two
ways to achieve disconnectedness in Y: making Z discon-
nected or making the generator mapping G : X ⇥ Z ! Y
discontinuous. We discuss both approaches in our paper but
find the latter to be more effective.

How to measure OOD Samples? Best-of-many L2 dis-
tance metrics focus on minimizing the error between a sin-
gle sample out of a set of predictions without assessing the
quality of the remaining trajectories. Therefore, we com-
pare our model on both, recall and precision [36, 23], which
are commonly used to assess the quality of generative mod-
els. While existing distance measures highly correlate with
recall, we are equally interested in precision that correlates
with the number of OOD samples.

4. Method
In this section, we present our multi-generator frame-

work for pedestrian trajectory prediction. Our model learns
a discontinuous function as a mixture of distributions mod-
eled by multiple generators (Section 4.1).

To adapt to different scenes, we train a second network
estimating the categorical distribution over generators (Sec-
tion 4.2) for new unseen scenes.

4.1. MG-GAN
Visual and Trajectory Encoders. We outline the archi-

tecture of our model in Figure 2. First, the feature encoders
extract visual and dynamic features di from the input se-
quences Xi and scene image patches Ii of each pedestrian
i. The attention modules combine these encodings to com-
pute the physical attention [34] features vi and social atten-
tion [2] features si. After the encoding and attention, we
concatenate the dynamic di, physical vi, and social si fea-
tures to ci = [di, vi, si]. In the following, we omit the index
indicating individual pedestrians to avoid notation clutter.
Note that we leverage established modules to model physi-
cal and social interactions [34, 2, 16], as our contribution is
the multi-generator framework. We provide more details on
these components in the supplementary.

Multi-generator Model. In our model, we leverage nG

different generators {Gg}, where each generator specializes
in learning a different trajectory distribution conditioned on
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Figure 2: Architecture of MG-GAN. The scene image Ii and observed trajectories X are encoded and passed to the physical
and social attention modules. The nG generators can predict different conditional trajectory distributions for the given scene
observation. The PM-Net estimates probabilities ⇡ for the generators. The model samples or selects a generator from ⇡ and
predicts a trajectory Ŷ conditioned on the features c and the noise vector z.

the input c. All generators share the same network archi-
tecture, however, they do not share weights. The generator
architecture consists of a LSTM decoder, initialized with
the features c and a random noise vector z ⇠ N (0, 1) as
the initial hidden state h

0. The final trajectory Ŷ is then
predicted recurrently:

�Ŷ
t = LSTMg

�
�X

t�1
, h

t�1
�
. (1)

Existing multi-generator modules proposed in the con-
text of image generation assume the distribution over the
generators to be constant [19, 17]. However, in the case
of trajectory prediction, the number of modes is unknown
a priori. Therefore, we train a module that adapts to the
scene by activating specific generators, conditioned on the
observations and interactions c.

4.2. Path Mode Network (PM-Net)

The Path Mode Network (PM-Net) parameterizes a dis-
tribution over the indices of the generators p(g|c) =
[⇡1, · · · , ⇡nG ] conditioned on the features c and is mod-
elled with a multi-layer perceptron MLP(c). The outputs
{⇡g} assign probabilities to each of the nG generators. Dur-
ing inference, we can sample different generators based on
the predicted distribution. Note, that this provides a major
advantage over existing methods [19, 20], where the dis-
tribution is fixed and cannot adjust to different scenes. In
comparison, our PM-Net is capable of selecting the relevant
generators for a given scene while deactivating unsuitable
ones.

4.3. Model Training

We now present a training algorithm that jointly op-
timizes the distribution over generators parameterized by
PM-Net and the multi-generator GAN model. For this,
we propose an alternating training scheme, inspired by
expectation-maximization [15, 20].

4.3.1 GAN Training

We train our model using a conditional generator, discrim-
inator network D [14] that distinguishes between real and
fake trajectories and a classifier C [19] learning to identify
which generator predicted a given trajectory. More details
on these networks’ architectures can be found in the supple-
mentary.

Adversarial Loss. We define each generator Gg as
Ŷg,z = Gg(c, z) inducing an implicit distribution pGg (Ŷ |c).
All nG generators together describe a joint probability
distribution

PnG

g=1 ⇡g pGg (Ŷ |c), thus the established re-
sults [14] for GANs hold. We use the original adversarial
loss LAdv [14]. The discriminator D learns to distinguish
between real samples Y and samples Ŷ generated by the
model encouraging realism of the predictions. However, D

by itself does not prevent the generators from collapsing to
the same mode.

Classification Loss. To incentivize the generators to
cover different, possibly distinct modes occupying different
regions of the output space, we follow [19] and introduce
a classifier C which aims to identify the generator index g

that generated a sample Ŷg,z . The cross-entropy loss LCl

between the classifier output and the true generator label of
the predicted trajectory encourages the generators to model
non-overlapping distributions and drives the trajectories of
different generators spatially apart. This behavior is regu-
larized through the adversarial loss LAdv that constrains the
samples to be realistic and not diverge from the real distri-
bution. Overall, the training object reads as follows

min
G

max
D

LAdv + �TrajLTraj + �ClLCl, (2)

where we additionally apply a L2 best-of-many loss [6, 16]
LTraj with q samples to increase the diversity of predicted
trajectories. �Traj and �Cl are weighting hyperparameters.
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Figure 3: Predicted trajectories for two scenarios in the synthetic dataset. The upper row contains scene on a junction with
3 modes and an interacting pedestrian (white). The lower row shows a scenario with two modes. Figures (a) represent the
support of the conditional multimodal ground-truth distributions for these scenes. Figures (e) of MG-GAN also show the
probabilities ⇡ of the PM Network. We visualize trajectories of one generator/discrete latent variable in the same color.

4.3.2 PM-Net Training

To train PM-Net, we approximate the likelihood of a partic-
ular generator distribution pGg supporting the trajectory Y

by the generated trajectories Ŷg,c,zi = Gg(c, zi) as:

p(Y |c, g) / 1

l

lX

i=1

exp

0

B@
�
���Ŷg,c,zi � Y

���
2

2

2�

1

CA . (3)

Here, we marginalize the GAN noise z and assume a nor-
mally distributed and additive error ✏ ⇠ N(0, �I) between
Ŷ and Y as common for regression tasks [10]. We ob-
tain the conditional probability over generators by applying
Bayes’ rule:

p(g|c, Y ) =
p(Y |c, g)PnG

g0 p(Y |c, g0)
. (4)

Finally, we optimize the PM-Net with the approximated
likelihood minimizing the cross entropy loss:

L⇧ = H(p(g|c, Y ), ⇧(c)). (5)

Intuitively, the network is trained to weigh the generator that
generates trajectories closest to the ground-truth sample the
highest. We provide the full derivation of the objective in
the supplementary.

4.3.3 Alternating Training Scheme

Our training scheme consists of two alternating steps simi-
lar to an expectation-maximization algorithm [15]:

1. PM-Net Training Step: We sample l trajectories for
each generator and optimize the parameters of PM-Net us-
ing Equation (5) while keeping the rest of the network’s pa-
rameters fixed.

2. Generator Training Step: In the generator training
step, we use PM-Net to generate probabilities ⇡ and sam-
ple q generators predicting trajectories. With these predic-
tions, we update the model excluding PM-Net optimizing
Equation (2). We provide pseudo-code detailing our train-
ing procedure in the supplementary.

4.4. Trajectory Sampling

We can use the estimated probabilities ⇡ =
[⇡1, . . . , ⇡nG ] generated by the PM-Net to establish
different mechanisms to sample trajectories from the mul-
tiple generators. This helps us to cover all modes present
in the scene with as-few-as-possible predictions. In single
generator models [22, 34] the relation between regions in
the Gaussian latent space and different modes in the output
space is implicit and unknown. However, for MG-GAN
we can use the estimated probabilities ⇡ = [⇡1, . . . , ⇡nG ]
from the PM-Net to control and to cover predictions for all
modes present in the scene. Next to randomly sampling k

trajectories (Random) from ⇡ we introduce an additional
strategy (Expectation) where we compute the expected
number of samples for each generator as ng = k · ⇡g . We
round all ng to the nearest integer and adjust the number
of the generator with the highest score to ensure that all
numbers sum up to k.
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Figure 4: Precision vs. Recall on synthetic dataset.

5. Experimental Evaluation
We evaluate our model on four publicly available

datasets [30, 25, 31, 27] for pedestrian trajectory predic-
tion and compare our results with state-of-the-art methods.
Furthermore, we conduct experiments on synthetic datasets.
Compared to real data, synthetic data provides access to
the ground-truth trajectory distribution which enables us to
identify OOD samples by comparing ground-truth and gen-
erated trajectory distributions. Finally, we run an ablation
on the individual components of MG-GAN and study the
robustness of our model w.r.t. the number generators nG.

5.1. Experimental Setup
We follow prior work [31, 1] and observe 8 past time

steps (3.2 seconds) and predict the future 12 time steps (4.8
seconds) for every pedestrian in the scene.

Metrics. We evaluate results using the following metrics:
Average Displacement Error (ADE) is defined as a mean L2

distance between the prediction and ground-truth trajectory.
Final Displacement Error (FDE) is defined as the distance
between the prediction and ground-truth trajectory position
at time tpred.
For both metrics, ADE and FDE, we follow the Minimum
over k procedure [16, 34, 22] with k = 20. Note that
this approach only considers a single prediction with the
lowest ADE and FDE, but not the entirety of the set of k

generated output trajectories combined. Therefore, we in-
clude additional metrics commonly used in the GAN liter-
ature [36, 23], namely recall and precision. Recall mea-
sures the coverage of all ground-truth modes, while preci-
sion measures the ratio of generated samples in the support
of the ground truth distribution. Hence, the precision is di-
rectly related to the number of OOD samples. We also com-
pute the F1 score, combining recall and precision.

Datasets. We perform the evaluation using the following
datasets. ETH [30] and UCY datasets [25] contain five se-
quences (ETH: ETH and HOTEL, UCY: UNIV, ZARA1,
and ZARA2), recorded in four different scenarios. We fol-
low the standard leave-one-out approach for training and

Figure 5: Generated samples of our MG-GAN, Trajec-
tron++, and PECNet.

testing, where we train on four datasets and test on the re-
maining one. The Stanford Drone Dataset (SDD) [31] con-
sists of 20 video sequences captured from a top view at the
Stanford University campus. In our experiments, we follow
the train-test-split of [33] and focus solely on pedestrians.
The recently proposed Forking Paths Dataset (FPD) [27] is
a realistic 3D simulated dataset providing multi-future tra-
jectories for a single input trajectory. To study the ability
of our model to predict multimodal trajectories while pre-
venting OOD samples, we create a synthetic dataset where
we simulate multiple possible future paths for the same ob-
servation emerging due to the scene layout and social in-
teractions. Detailed information on the generated dataset is
provided in the supplementary material.

Baselines. We compare our method with several single
and multi-generator GAN baselines. We evaluate a (i)
vanilla GAN baseline, (ii) GAN L2 trained with variety
loss [6], (iii) GAN L2 Reject [38] that filters OOD samples
based on gradients in the latent space, and (iv) InfoGAN [7]
with discrete random latent variable. Furthermore, we com-
pare MG-GAN to multi-generator models MGAN [19] and
DMGAN-PL [20], proposed in the context of image gener-
ation, that we adapt for the task of trajectory prediction. To
ensure comparability, all models use the same base model
following SoPhie [34] with attention modules as described
in Section 4.1. For qualitative comparison, we evaluate our
method against state-of-the-art prediction models presented
in Section 2 on the standard benchmarks for trajectory fore-
casting.

5.2. Experiments on Synthetic data
We first study our model on a synthetic dataset in which

we have access to the ground-truth distribution of the future
trajectories. In this experiment, we show that MG-GAN
achieves better performance in learning a multimodal tra-
jectory distribution with disconnected support and is more
efficient than the baselines.

Results. The results in Figure 4 show that MG-GAN out-
performs the single-generator baselines and increases Re-
call by 0.28 and Precision by 0.32. To this end, we find that
all multi-generator methods have a similar recall but MG-
GAN achieves a 15% higher Precision corresponding to a
lower number of OOD samples.
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Figure 6: Comparison between single generator model GAN+L2 and MG-GAN. (a) recall for different number of samples
k and sampling methods. (b) - (c) compares ADE/FDE, recall/precision, and MACs (Multiply–accumulate operations) for
varying total number of model parameters.

Visual Results. In Figure 3, we visualize predicted tra-
jectories for two different scenarios where the white trajec-
tory represents another interacting pedestrian. The support
of the ground-truth distribution for each timestep is shown
as a red circle in Figure 3a. A model achieves low preci-
sion in Figure 4 if many trajectory points lie outside the
corresponding red circle for a particular timestep. Simi-
larly, a model has high recall if its samples cover most of the
area of red circles. Single generator models, GAN+L2 (Fig-
ure 3b), and InfoGAN (Figure 3c) produce many OOD sam-
ples leading to low precision. In particular, we find that In-
foGAN is not able to learn the correspondence between the
discrete latent space and the modes in the trajectory space.
While theoretically plausible, these results indicate that a
discretized latent space is not well-suited for learning dis-
tribution on disconnected support. Contrarily, MGAN can
learn the distribution but is incapable to adjust generators
resulting in OOD samples in Figure 3d when the number
of modes does not match the number of generators. Finally,
our MG-GAN is able to adjust to both scenarios in Figure 3e
as the PM-Net deactivates generators which are unsuitable
and prevents OOD samples explaining the high Precision in
Figure 4.

Effective Mode Covering. Figure 6a shows the recall de-
pending on the number of samples k. Our method covers
more modes of the ground-truth distribution than the single
generator model for the same number of samples as indi-
cated by the higher recall. Additionally, we observe signif-
icant improvements compared to random sampling by us-
ing expectation sampling leveraging PM-Net as described
in Section 4.4, especially for fewer samples.

Number of Parameters and Computational Cost. In
this experiment, we show that our MG-GAN does not
require more resources w.r.t. parameters or computations
compared to a single generator baseline. For this, we
compare MG-GAN using four generators with the single-
generator baseline while keeping the total number of param-
eters of both models fixed by only using approx. 1/4 of the
parameters for each generator. As can be seen in Figures 6b
and 6c, MG-GAN outperforms the single generator GAN
w.r.t. to ADE/FDE (50%) and recall/precision (30%) using

Dataset S-LSTM
[1]

S-GAN
[16]

SoPhie
[34]

S-BiGAT
[22]

CGNS
[26]

GoalGAN
[8]

PECNet
[28]

Trajectron++
[37]

MG-GAN
(Ours)

ETH 1.09/2.35 0.81/1.52 0.70/1.43 0.69/1.29 0.62/1.40 0.59/1.18 0.54/0.87 0.39/0.83 0.47/0.91
HOTEL 0.79/1.76 0.72/1.61 0.76/1.67 0.49/1.01 0.70/0.93 0.19/0.35 0.18/0.24 0.12/0.21 0.14/0.24
UNIV 0.67/1.40 0.60/1.26 0.54/1.24 0.55/1.32 0.48/1.22 0.60/1.19 0.35/0.60 0.20/0.44 0.54/1.07
ZARA1 0.47/1.00 0.34/0.69 0.30/0.63 0.30/0.62 0.32/0.59 0.43/0.87 0.22/0.39 0.15/0.33 0.36/0.73
ZARA2 0.56/1.17 0.42/0.84 0.38/0.78 0.36/0.75 0.35/0.71 0.32/0.65 0.17/0.30 0.11/0.25 0.29/0.60

AVG 0.72/1.54 0.58/1.18 0.54/1.15 0.48/1.00 0.49/0.97 0.43/0.85 0.29/0.48 0.19/0.41 0.36/0.71

Table 1: Quantitative results on ETH [30] and UCY [25].
We report ADE (#) /FDE (#) in meters. Underlined results
denote the second best.

S-LSTM
[1]

S-GAN
[16]

CAR-NET
[35]

DESIRE
[24]

SoPhie
[34]

CGNS
[26]

CF-VAE
[5]

P2TIRL
[9]

GoalGAN
[8]

PECNet
[28]

MG-GAN (4)
(Ours)

ADE 57.0 27.3 25.7 19.3 16.3 15.6 12.6 12.6 12.2 10.0 13.6
FDE 31.2 41.4 51.8 34.1 29.4 28.2 22.3 22.1 22.1 15.9 25.8

Table 2: Quantitative results on Stanford Drone Dataset
(SDD) [31]. We report ADE and FDE in pixels.

the same number of total parameters across various param-
eter budgets. In Figure 6a, the computational cost measured
by MACs for the prediction of a trajectory is always lower
for MG-GAN compared to the baseline. The model only
runs one selected generator with 1/4 amount of parameters
during the forward pass while the cost of running PM-Net
is negligible.

5.3. Benchmark Results
In this section, we compare our method to the state-of-

the-art on the standard benchmarks ETH [30], UCY [25],
and SDD [31], as well as the recently proposed Fork-
ing Path Dataset (FPD) [27]. We report the performance
of the model with the lowest validation error as we train
our method with different numbers of generators nG 2
{2, . . . , 8}. We discuss the robustness w.r.t. the number of
generators in Section 5.4.

ADE & FDE. Our MG-GAN achieves competitive re-
sults for the ADE and FDE on the ETH/UCY and Stan-
ford Drone Dataset (SDD) shown in Table 1 and Table 2,
respectively. Even though our method does not achieve
SOTA performance on the ADE and FDE metrics on these
benchmarks, we still argue that our method provides signif-
icant improvement to the task. That is since the distance-
based L2 measures can be drastically reduced by increasing
the variance of the predictions for the price of producing
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ADE # FDE # Precision " Recall " F1 "
GAN+L2 28.81 58.37 0.55 0.87 0.67

PECNet 13.14 24.55 0.46 0.95 0.62
Trajectron++ 13.15 32.00 0.38 0.96 0.54

MG-GAN (Ours) 22.09 46.38 0.71 0.89 0.79

Table 3: Results on FPD. We report ADE/FDE in pixels.

more OOD samples. A visual comparison of the trajectories
produced by Trajectron++ and PECNet in Figure 5 shows
that these methods produce high variance predictions with-
out accounting for any constraints in the scene. Contrarily,
MG-GAN only predicts trajectories inside the ground-truth
manifold (red). While covering all modes, our predictions
remain in the support of the ground-truth distribution. To
quantify this observation, we compute the recall and preci-
sion metrics.

Precision & Recall. As ADE and FDE do not consider
the quality of the entire generated distribution, we add re-
sults using precision/recall metrics [36, 23] on the FPD
dataset [27]. This is possible on FPD as it contains mul-
tiple feasible, human-annotated ground-truth trajectories.

In Table 3, MG-GAN outperforms GAN+L2 by 29%,
PECNet by 54% and Trajectron++ by 86% in terms of Pre-
cision, while the difference in Recall with 0.02, 0.06, and
0.07 points is small. Single generator models predict overly
diverse trajectories, thus increasing Recall slightly and re-
ducing ADE/FDE, but produce OOD samples leading to
low Precision. These results confirm that MG-GAN is sig-
nificantly more reliably at predicting paths that align well
with the human-annotated future trajectories (high preci-
sion), while also covering a similar amount of modes in the
scene (high recall). Overall, we conclude that MG-GAN
does not match SOTA performance on traditional evaluation
metrics in Table 1 and Table 2. However, studying precision
and recall reveals that our model can lower the number of
OOD and achieves an overall better F1 than current SOTA
methods.

5.4. Ablation Studies
In this section, we ablate the key modules of MG-GAN.

We emphasize that the goal of the paper is to demonstrate
the need and effectiveness of a conditional multi-generator
framework for pedestrian trajectory prediction. Hence, the
study of attention modules used within our model described
in Section 4.1, is not the goal of this work and has been
extensively done in prior work [16, 2, 34, 22].

Effectiveness of Key Modules. We perform the ablation
on our synthetic dataset by removing key components from
our final model: multiple generators, the classifier C, and
the PM-Net in Table 4. Reducing the number of generators
to 1 results in a significant drop in performance of almost

M C PM ADE # FDE # Precision " Recall "

0.94 1.58 0.46 0.48
0.59 0.79 0.37 0.68
0.35 0.49 0.72 0.91
0.37 0.53 0.73 0.91

0.32 0.44 0.77 0.95

Table 4: Ablation experiments: (M) Multi-generator, (C)
Classifier, and (PM) Path Mode network.

2 3 4 5 6 7 8 Best

ADE 0.37 0.38 0.38 0.39 0.37 0.36 0.37 0.36
FDE 0.72 0.74 0.75 0.76 0.71 0.71 0.72 0.70

Table 5: Results for nG 2 {2, . . . , 8} on ETH/UCY.

50% in recall and 31% in precision.
As described in Section 4.1, the classifier C encourages

individual generators to specialize and increases precision
from 37% to 73%. Similarly, with PM-Net learning a dis-
tribution over generators, the precision increases from 37%
to 72%. Finally, leveraging PM-Net and classifier C, com-
bining the advantages of both, further improves the perfor-
mance on all considered metrics.

Robustness over the Number of Generators. The mul-
timodality over future trajectories depends on social inter-
actions and the scene layout, imposing a significant chal-
lenge when choosing the number of generators nG at train-
ing time. To this end, we introduced the PM-Net that learns
to activate generators depending on the observed scene fea-
tures. As can be seen in Table 5, PM-Net successfully
makes MG-GAN robust w.r.t. the choice of nG as results
only deviate 7% from the best reported values at maximum.

6. Conclusion
In this paper, we addressed the issue of single-generator

GAN models for pedestrian trajectory prediction. While ex-
isting generative networks learn a distribution over future
trajectories, they are fundamentally incapable of learning a
distribution consisting of multiple disconnected modes. To
overcome this problem, our proposed MG-GAN leverages
multiple generators that specialize in different modes and
learns to sample from these generators conditioned on the
scene observation. We demonstrated the efficacy of MG-
GAN at reducing out-of-distribution samples in comparison
to the existing state-of-the-art. Finally, we emphasized the
importance of precision next to recall metrics and hope to
encourage a discussion on preventing OOD in future work.
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Wasserstein Generative Adversarial Networks. In Interna-
tional Conference on Machine Learning, 2017. 3

[4] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi
Zhang. Generalization and Equilibrium in Generative Adver-
sarial Nets GANs. In International Conference on Machine
Learning, 2017. 3

[5] Apratim Bhattacharyya, Michael Hanselmann, Mario Fritz,
Bernt Schiele, and Christoph-Nikolas Straehle. Conditional
Flow Variational Autoencoders for Structured Sequence Pre-
diction. In Neural Information Processing Systems, 2019. 2,
7

[6] Apratim Bhattacharyya, Bernt Schiele, and Mario Fritz. Ac-
curate and diverse sampling of sequences based on a “Best of
Many” sample objective. In Conference on Computer Vision
and Pattern Recognition, 2018. 1, 2, 4, 6

[7] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya
Sutskever, and Pieter Abbeel. InfoGAN: Interpretable rep-
resentation learning by information maximizing generative
adversarial nets. In Neural Information Processing Systems,
2016. 1, 3, 6
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