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Abstract

Although recent research has witnessed a significant
progress on the video deblurring task, these methods strug-
gle to reconcile inference efficiency and visual quality si-
multaneously, especially on ultra-high-definition (UHD)
videos (e.g., 4K resolution). To address the problem, we
propose a novel deep model for fast and accurate UHD
Video Deblurring (UHDVD). The proposed UHDVD is
achieved by a separable-patch architecture, which collab-
orates with a multi-scale integration scheme to achieve a
large receptive field without adding the number of generic
convolutional layers and kernels. Additionally, we design
a residual channel-spatial attention (RCSA) module to im-
prove accuracy and reduce the depth of the network appro-
priately. The proposed UHDVD is the first real-time de-
blurring model for 4K videos at 35 fps. To train the pro-
posed model, we build a new dataset comprised of 4K blurry
videos and corresponding sharp frames using three differ-
ent smartphones. Comprehensive experimental results show
that our network performs favorably against the state-of-
the-art methods on both the 4K dataset and public bench-
marks in terms of accuracy, speed, and model size.

1. Introduction
Ultra-High-Definition (UHD, i.e., 12 megapixels or 4K)

becomes a trend during the last several years. Many device
manufacturers have released new devices (e.g., smartphones
and DSLR cameras) with 4K support. Unfortunately, irreg-
ular camera shakes and high-speed movements often gener-
ate undesirable blurs in captured UHD videos. The blurred
video leads to visually low quality and hampers high-level
vision tasks [27].

Numerous image and video deblurring methods have
been proposed to recover the sharp frames from a cap-
tured blurry video. Conventional methods usually make as-
sumptions on motion blurs and latent frames. Among these
methods, motion blurs are usually modeled as uniform ker-

Figure 1. PSNR(dB) vs. runtime(ms) of several deblurring meth-
ods and our method on different datasets. The green region indi-
cates real-time inference at 30 fps. The blue PSNR and icons are
methods on the HD dataset and the red ones with the same shape
are on the 4K dataset. Clearly, our method is better not only in
efficiency but also in accuracy. Furthermore, we try to handle the
4K resolution and achieve considerable results.

nels [35, 57, 54] or non-uniform kernels (e.g., region-wise
[11, 1, 9, 45, 4] and pixel-wise [10, 33]). While the sharp
frames are usually constrained by hand-crafted image priors
[19, 39, 24, 8] to regularize the solution space. However,
these assumptions do not usually hold for real cases, which
leads to an inaccurate estimation of the blur kernel and the
quality of the deblurred image is not desirable.

To address these issues, deep learning deblurring algo-
rithms have been proposed recently. These methods use
convolutional neural networks (CNNs) to explicitly learn
features from blurry input and regress the blur kernel [34, 7,
38] or directly recover the clean image [26, 52, 53, 56, 50].
These algorithms can remove blur effects caused by cam-
era shakes and object motions, and achieve state-of-the-art
results on image deblurring task. However, existing CNN-
based methods have two major problems. The first one is
that the computation and memory usage are too large for
practical applications, especially when the resolution of in-
put images is high. For example, the recent video deblurring
method of CDVD-TSP [30] needs about four seconds and
one minute to deblur a single frame from HD (720p) and
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UHD (4K) videos, respectively. The second one is that most
existing CNN-based video deblurring methods lack flexibil-
ity in dealing with different types of information due to less
discrimination ability learning between blur and sharp pairs.
Therefore, generating detailed textures from blurred videos
is still a non-trivial problem.

To overcome the above limitations, we present a new
UHDVD network which has advantages of high efficiency,
low memory overhead, and high quality deblurring perfor-
mance. Our method is partially motivated by the patch-
hierarchical image deblurring methods [50, 37] where
multi-patch hierarchy is fed into the network. This scheme
achieves great improvements on 720p image deblurring at
very high efficiency. However, the multi-patch hierarchy
[50, 37] has the same spatial resolution at different levels
and require slow algorithms to layout the patches and stitch
them together, which hinders the reconstruction ability of
the deep network and reduces the feature extraction speed.
We note that a low-resolution image is easier to recover than
high-resolution since there are less class information and
fewer modes (i.e., edges and textures) [13]. Therefore, we
propose a novel separable-patch architecture combined with
a multi-scale integration scheme, which allows to capture
the global structure on the coarse scale and process multi-
ple patches of each scale in parallel within an iteration.

In addition, most existing deblurring algorithms employ
a cascaded network to help the latent frame restoration
[30, 50]. However, to the best of our knowledge, simply
stacking the same network to construct deeper networks can
hardly obtain better improvements [37]. To achieve more
expressive and intelligent video deblurring capability, we
further propose a cascaded residual channel and spatial at-
tention (RCSA) module to improve deblurring performance
without sacrificing speed. The proposed RCSA is able to
adaptively learn more useful channel-wise features and em-
phasize the most informative region on the feature map for
video deblurring.

The main contributions of this paper are summarized as:

• We propose a novel UHDVD network by using a
separable-patch architecture combined with a multi-
scale integration scheme. To the best of our knowl-
edge, our proposed model is the first video deblurring
model that can deblur 4K videos in real-time by paral-
lelizing multiple patches.

• We design a cascaded RCSA module to improve fea-
ture representation power and discriminative ability,
ensuring high deblurring performance.

• We establish a 4K video deblurring dataset including
both synthesized and real captured videos. We evaluate
the proposed model on the proposed benchmark and
public datasets [25, 26, 36] and show that the proposed
method performs favorably against state-of-the-arts.

2. Related Work
To address the ill-posed nature of the deblurring prob-

lem, traditional methods make different assumptions and
use appropriate priors. These include total variation [32],
sparse image priors [22, 5], gradient distributions [16, 2],
patch priors [24, 39], l0-norm regularizers [46, 20], etc. One
of the limitations of these prior-based approaches is that
they does not always hold for dynamic scenes containing
depth variations and moving objects.

Recently, due to the immense success of deep learning
in the computer vision field, many CNN-based approaches
have also been proposed for image deblurring [51, 12, 28].
In these methods, the idea is to learn a mapping between
the blurry input and the corresponding sharp image using
a CNN architecture. In addition, Generative Adversarial
Nets (GANs) have also been exploited for image deblur-
ring due to the texture generation ability [18, 17]. How-
ever, these models usually involve large-size of network pa-
rameters and consume long processing times, which cannot
satisfy the ever-increasing demand for real-time deblurring,
especially for UHD videos.

Multi-Scale and Multi-Patch Networks. Coarse-to-fine
(i.e., multi-scale) methods have been popular in the con-
ventional deblurring literature [46, 16], recent CNN-based
methods also use the multi-scale mechanism to mimic con-
ventional coarse-to-fine approaches. Nah et al. [26] pro-
pose the first multi-scale CNN-based deblurring network,
which starts from a coarse scale of the blurred input and
then progressively deblur the input at higher scales until the
full resolution latent image is recovered. Tao et al. [41]
introduce a scale-recurrent network by training shared pa-
rameters across scales. The approach can preserve image
structures and motion information from the previous coarser
scales based on the recurrent network. Gao et al. [6] im-
prove the multi-scale CNN [41] by selective sharing param-
eters and modules in each scale. However, these multi-scale
networks are usually large and suffer from expensive infer-
ence time.

To address this challenge, a hierarchical multi-patch
model [50] is proposed to exploit the motion informa-
tion at different scales by feature aggregation over multiple
patches. Suin et al. [37] combine the multi-patch hierar-
chical and a global attention mechanism to avoid cascad-
ing network along depth. Zamir et al. [48] use a similar
scheme in a multi-stage architecture to obtain better results
but increase the computation time. These three multi-patch
networks support deblurring of 720p images in real time,
but still struggle to reconcile efficiency and deblurring per-
formance on full-high-definition (FHD, 1920 × 1080 reso-
lution) and UHD videos (e.g., 4K resolution). The perfor-
mance of some representative methods on 720P and UHD
datasets are shown in Figure 1.
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Figure 2. Our proposed UHDVD model and its some layer configurations. Symbol “+” is a summation akin to the target data.

FHD and UHD Image Enhancement. A few methods
have been proposed to recover clear images from FHD or
UHD degraded inputs by learning bilateral regularizer [14]
or 3D Lookup Tables [49]. However, all these methods re-
construct the final output by using some sophisticated inter-
polation techniques from a down-sampled version. In con-
trast to these approaches, our network directly deblur im-
ages at the full-resolution inputs on the finest scale and is
the first real-time deblurring model for 4K videos at 35 fps.

3. Proposed Method

The general idea of our proposed network is to integrate
the multi-scale and multi-patch schemes properly, and we
further propose a separable-patch strategy to dramatically
accelerate reference implementations. The architecture of
our UHDVD is shown in Figure 2.

Inspired by the work of [36], which demonstrates that
simply stacking neighboring frames without any alignment
performs better than the single frame based method. In
our network, given a blurred video B, the previous de-
blurred frame (D(i−1)) is concatenated with the current
blurry frame (B(i)) at channel dimension as our network in-
put to improve deblurring result. Thus, the input channel of
the first convolution layer in each scale network is 6 instead
of 3. The concatenated input is then half-downsampled or-
dinally at different 4 scales (B1, B2, B3, B4), and a cor-
responding sharp images (D1, D2, D3, D4) is recovered
at each scale. The sharp one at Scale 1 (D1) is the final
output. Based on this scheme, we can set a larger “crop
size” in training process to expand the receptive field, which
means more feature information [3, 47, 43] can be captured
and can improve the final deblurred results. In addition,
the number of split patches in each scale is multiplied by
scales. The input for each scale is generated by dividing

the original image input (Bi, i = 1,2,3,4) into multiple non-
overlapping patches. The maximum number of patch (Bi,j)
for each scale is set as J = [1, 2, 4, 8]. These process can
be modeled as:

Ds
i,j , F

s
i,j = Nets(Bs

i,j , D
s
i−1,j , D

s+1
i,j , F s+1

i,j ; θps), (1)

where s is the scale index, with s = 1 representing the finest
scale, j and i are the patch index and the video frame index,
respectively; Ds

i,j and Bs
i,j are our network output and input

at the s-th scale and j-th patch of i-th frame, respectively;
Ds+1

i,j denotes the deblurred j-th patch of i-th frame at upper
scale; Nets represents the proposed 4K video deblurring
network with training parameters denoted as θps . Since the
network is also recurrent, the middle state features F s

i,j flow
across scales from s+ 1 to s.

As shown in Figure 2, our real-time 4K video deblurring
network is composed of 4 similar encoder-decoder architec-
tures at each scale. Each encoder branch contains 3 convo-
lutions with the kernel size of 3 × 3 and stride 1, and each
convolution layer is followed by a RCSA module. Mean-
while, in each decoder branch, the residual modules is in
the front of every deconvolutional layer. The kernel size of
the first deconvolution in the decoder is 4× 4 with stride 2,
the second deconvolution’s kernel size is 4 × 4 with stride
4 to expand the output size twice so that its size is equal to
the input of the upper layer except the scale 1. The third
layer of the decoder is a normal convolution with its output
channel is 3. The red arrows represent the middle feature
maps F s

i,j in (1), which is double up-sampled from F s+1
i,j .

3.1. Asymmetrical Encoder-decoder Architecture

The symmetrical encoder-decoder structure has been
proven to be effective in many methods [26, 50, 41, 23],
which first progressively transforms input data into feature
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Figure 3. The separable-patch acceleration architecture. Taking the encoder branch of scale 3 before the second RCSA module as an
example, where Gi is the group number in convolutional layers.

maps with smaller spatial sizes and more channels (in en-
coder), and then transforms them back to the shape of the
input (in decoder). Skip-connection between corresponding
layers are widely used to combine different levels of feature
information. Usually, more convolution layers are added
in every level to further increase network depth to improve
the accuracy. However, directly employing the symmetri-
cal encoder-decoder structure is not the best choice for our
work with the following reasons. First, we aim to process
4K resolution videos in real-time, so it is still a great chal-
lenge by using traditional encoder/decoder structure since
the sizes of middle feature maps from 4K inputs are still
very large compared with common 720P images. Second,
using more convolution layers at every level of encoder-
decoder modules will make the network slow to converge
(with flat convolution at each scale) although this method
can reduce the size of the processed image.

Based on these considerations, we propose an approx-
imate asymmetrical encoder-decoder structure inspired by
super-resolution framework [40]. In our new architecture,
the transformation between encoder and decoder is different
from the traditional architecture. The asymmetry is mainly
reflected in the different modules that we used in encoder
and decoder branches. In the decoder branch we just use
three normal light residual module revealed in Figure 4(a)
after each standard deconvolution to reduce the parameter
numbers so that the computation speed can be greatly im-
proved. Each of the three residual modules contains 1 con-
volution layer with kernel size of 3 × 3 and stride 1, then
followed by a ReLU activation function and another same
convolutional layer. Relatively, we used RCSA module in-
stead of the residual module (Figure 4(a)) in the encoder
branch. The convolution in the encoder and the deconvolu-
tion in the decoder is also asymmetric in channel dimension.

3.2. Separable-Patch Acceleration Architecture

To further improve the inference speed of the UHDVD
model to reach the goal that can deblur a 4K resolu-
tion video within 30 ms at a single GPU, we design the
separable-patch acceleration architecture to handle multiple
patches or feature maps at the same time. As shown in Fig-
ure 3, the process of this architecture is linear like a pipeline.

At the beginning, the multiple patches (e.g., n = 4) are con-
catenated together as a new tensor in channel dimension,
and its size is [batch size, n ∗ cin, h, w]. The tensor is
processed by the subsequent convolutional layer with set-
ting the parameter groups = n.

Obviously, the computing burden of the new tensor is
((n ∗ cin) ∗ (n ∗ cout) ∗ kernel size2)/groups, while it is
equal to n original tensors. But the benefits are that we can
change these n serial computations to a parallel computa-
tion, this will greatly reduce the computation time. After
the computation in residual module, we reshape the tensor
to the size [batch size ∗ n, cout, h, w] so that it can be
computed synchronously in channel attention module and
spatial attention module, respectively. The output will be
taken as the input of the next RCSA module and this accel-
eration is going to continue until we get the middle feature
maps or restored images of the scale.

3.3. RCSA Module

We further propose a new RCSA module that contains
a channel attention module and a spatial attention mod-
ule [55, 6] in the deblurring network. The architecture of the
RCSA is shown in Figure 4(b). Following the recent suc-
cess of transformer architecture in natural language process-
ing domain [42] and image processing tasks [37, 21, 31], the
main building blocks of RCSA is the channel attention and
spatial attention which calculates the response at channel
and spatial dimensions.

The Channel Attention Module (CAM) is made of two
adaptive pooling computation: average pooling and max-
imum pooling. After each pooling calculation is a stan-
dard convolutional layer with its input channel number is
the same as the output channel of previous convolutional
layer which can be seen on blue blocks (RCSA Modules,
c32/c64/c128) in Figure 2, the output channel is 1/8 of input
channel, kernel size is 1× 1 and bias is false. Then, there
is a ReLU activation function and another same convolution
which input and output channels are the exactly opposite of
the front convolution.

C(x) = sigmoid(MC(Pavg(x)) +MC(Pmax(x))), (2)

where Pavg and Pmax are average pooling and maximum
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pooling, respectively; MC is the processing module de-
scribed above. Two processed pooling results added to-
gether as the input of sigmoid function.

The Spatial Attention Module (SAM) only has one con-
volutional layer with input channel is 2, output channel is
1, kernel size is 3 × 3, padding size is 1 and bias is false.
The input data is firstly processed by average and maximum
calculation respectively at dim = 1 and then concatenated
together at the same dim.

S(x) = sigmoid(MS(Avg(x, 1),Max(x, 1))), (3)

where MS is the special convolution described above and
the output will de calculated by sigmoid function before
passing to the next layer. The subsequent calculation is as
follows:

OC = C(x)× x,

ORCSA = S(OC)×OC + x,
(4)

where OC is the output of CAM module while ORCSA

is the output of RCSA module, the operation “×” denotes
point-wise multiplication.

The structure of RCSA module is simple and the depth
of it is light. It does not significantly affect computing speed
but improves the deblurring results to a certain extent. The
following experiments have proved this conclusion.

3.4. Loss Function

As a video deblurring network, different from ap-
proach [56] that use the previous middle feature map with
extra computation, we directly use the whole previous de-
blurred frame to guarantee the temporal continuity by con-
catenation. So we do not have to spend extra time to calcu-
late the optical flow and its loss [7, 30].

Meanwhile, the coarse-to-fine approach desires that ev-
ery mid-level outputs are the deblurred image of the cor-
responding scales. Thus, the training loss of our proposed
UHDVD network is the MSE loss between the image con-
tent of the network output and the ground truth frame at
each scale,

Li MSE =

S∑
s=1

Ks

Cs
i H

s
i W

s
i

||Ds
i −Gs

i ||22, (5)

where Ds
i and Gs

i are the deblurred image and the ground
truth at the s-th scale of i-th frame, respectively; Cs

i ,
Hs

i , W s
i are dimensions of multi-scale image; Ks is the

weights for each scale. We empirically set K1, 2, 3, 4 =
[0.7, 0.15, 0.1, 0.05]. In addition, S is the number of scales
in our network, we set S to 4 in the paper. Besides, we add
the Total Variation (TV) loss to avoid stripe artifect in the
recover image. So the total loss is formulated as:

Ltotal = Li MSE + βLi TV , (6)

Figure 4. The structure of Residual module (a) and RCSA module
(b) in UHDVD. (c) and (d) are CAM and SAM in RCSA module.
Symbol “×” is point-wise multiplication and “+” is addition.

The β is set for 1e−7 to control the impact of TV loss.
Note that our 4K real-time video deblurring network does
not rely on other complicated loss functions such as adver-
sarial loss [26, 17] and optical flow loss [30], only using
the MSE and TV loss can achieve competitive results as
demonstrated in next section.

4. Experiments
In this section, we evaluate the proposed algorithm

on both synthetic datasets and real-world 4K videos with
comparisons to the state-of-the-art image/video deblurring
methods in terms of accuracy and visual effect. For fair
comparisons, we also evaluate our method on public 720p
datasets with these methods. The new 4KRD dataset will be
made available to the public for further discussion and re-
search. Results on more frames and real blurry videos can
be found in the supplementary material.

4.1. Implementation Details

All our experiments are implemented in PyTorch and
evaluated on a single NVIDIA Tesla V100 GPU with 32GB
RAM. The batch size is set to 1 during training because
every frame needs its previous deblurred frame as an extra
feature. The Adam optimizer [15] is used to train our mod-
els with patch size of 512×512. The initial learning rate is
set to 0.0001 and the decay rate to 0.1. We normalize frame
to the range of [0,1] and subtract 0.5.

4.2. Dataset

Due to there is no public high-quality 4K dataset for de-
blurring study, we choose the scheme of [27] to generate a
4K Resolution Deblurring (4KRD) dataset. The proposed
dataset covers a diversity of characters, people, artificial or
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(a) Input (PSNR/SSIM) (b) [26] (30.28/0.912) (c) [41] (31.32/0.917) (d) [50] (29.84/0.907) (e) [44] (31.38/0.923) (f) [18] (30.66/0.912) (g) [30] (30.88/0.945) (h) [56] (26.97/0.883) (i) Ours (34.29/0.951) (j) GT (+∞/1)

(a) Input (PSNR/SSIM) (b) [26] (29.48/0.903) (c) [41] (30.83/0.909) (d) [50] (28.39/0.880) (e) [44] (30.40/0.911) (f) [18] (30.48/0.906) (g) [30] (31.67/0.918) (h) [56] (30.32/0.906) (i) Ours (32.69/0.921) (j) GT (+∞/1)

(a) Input (PSNR/SSIM) (b) [26] (28.01/0.787) (c) [41] (27.74/0.797) (d) [50] (27.14/0.775) (e) [44] (30.62/0.887) (f) [18] (27.63/0.784) (g) [30] (29.29/0.842) (h) [56] (27.35/0.717) (i) Ours (31.26/0.894) (j) GT (+∞/1)

Figure 5. Quantitative evaluations on the HD deblurring datasets, from top to bottom are GoPro [26], DVD [36] and REDS [25], respec-
tively. Our proposed method generates much clearer images with higher PSNR and SSIM values compared to MSResNet [26], SRN [41],
DMPHN-Stack(4) [50], EDVR [44], DeblurGAN-v2 [18], CDVD-TSP [30], and STFAN [56]. (Zoom in for best view)

Table 1. Quantitative comparisons against existing deblurring methods (MSResNet [26], SRN [41], DeblurGAN-v2 [18], DMPHN-Stack(4)
/ DMPHN-(1-2-4-8) [50], EDVR [44], CDVD-TSP [30], STFAN [56]) on four deblurring benchmarks, The runtime (writing generated
images to disk is not considered) is expressed in millisecond of an image. We use bold and underline to indicate the best and the second-best
performances, respectively. The ⋆ denotes that EDVR [44] uses the validation data for training on the REDS dataset.

Datasets GoPro [26] (test) DVD [36] (10 clips)
Methods [26] [41] [18] [50] [44] [30] [56] Ours [26] [41] [18] [50] [44] [30] [56] Ours

PSNR 28.45 30.10 29.55 31.20/30.25 26.87 31.67 28.63 31.33 28.98 29.10 28.54 30.47/29.91 30.27 32.13 31.24 32.19
SSIM 0.917 0.932 0.934 0.945/0.935 0.843 0.928 0.863 0.921 0.885 0.899 0.925 0.881/0.866 0.917 0.927 0.934 0.937
Time 747.8 731.7 293.6 1029.3/30.9 384.6 4216.6 150.4 12.7 775.8 783.6 312.2 987.9/30.4 289.2 4098.2 177.2 13.2

Datasets REDS [25] (validation) 4KRD (13 clips)
Methods [26] [41] [18] [50] [44]⋆ [30] [56] Ours [26] [41] [18] [50] [44] [30] [56] Ours

PSNR 26.49 25.40 25.61 25.18/25.06 30.63 26.29 25.49 27.53 25.81 25.58 25.64 24.99/24.91 26.36 26.43 26.14 27.88
SSIM 0.742 0.734 0.731 0.724/0.724 0.850 0.774 0.719 0.815 0.778 0.759 0.763 0.757/0.748 0.803 0.793 0.800 0.813
Time 802.6 823.3 350.8 1069.9/29.3 325.7 3765.6 155.7 13.9 7543.4 8723.3 3283.4 10378.1/399.4 2428.1 26922.9 953.2 27.9

(a) Input (PSNR/SSIM) (b) [26] (22.79/0.686) (c) [41] (22.11/0.675) (d) [50] (19.69/0.546) (e) [44] (20.88/0.587) (f) [18] (21.52/0.626) (g) [30] (21.70/0.679) (h) [56] (21.39/0.646) (i) Ours (24.10/0.749) (j) GT (+∞/1)

(a) Input (PSNR/SSIM) (b) [26] (25.91/0.885) (c) [41] (23.65/0.864) (d) [50] (20.74/0.802) (e) [44] (21.58/0.838) (f) [18] (24.22/0.864) (g) [30] (23.58/0.866) (h) [56] (21.86/0.837) (i) Ours (27.71/0.894) (j) GT (+∞/1)

Figure 6. Quantitative evaluations on our 4K resolution deblurring datasets. Our UHDVD generates much clearer images with higher
PSNR and SSIM compared to MSResNet [26], SRN [41], DMPHN-Stack(4) [50], EDVR [44], DeblurGAN-v2 [18], CDVD-TSP [30], and
STFAN [56]. (Zoom in for best view)

natural objects, indoor scenes, outdoor landscapes and city
street views, etc. The generating process is made up of two
main parts: frame interpolation and dataset synthesis. The
video capturing equipments are mainstream flagship mobile
phones at the time, e.g., iPhone 11 Pro Max, Samsung S20

Ultra, and HUAWEI Mate 30 Pro. We also use a DJI Osmo
Mobile 3 to stabilize mobile phones so that the captured
videos as clear as possible.

High frame rates are necessary for the subsequent multi-
frame fusion to ensure the continuity of frames in the syn-
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(a) Input (4KRD test set) (b) MSResNet [26] (c) SRN [41] (d) DMPHN-Stack(4) [50] (e) DMPHN-(1-2-4-8) [50]

(f) EDVR [44] (g) DeblurGAN-v2 [18] (h) CDVD-TSP [30] (i) STFAN [56] (j) Ours

Figure 7. Qualitative evaluations on our 4KRD real test datasets. Our proposed UHDVD model generates much clearer results in both
detail and full image. (Zoom in for best view)

(a) Input (GoPro) (b) w/o (26.27/0.783) (c) w/ (27.64/0.824) (d) GT (+∞/1) (a) Input (REDS) (b) w/o (27.44/0.787) (c) w/ (29.48/0.860) (d) GT (+∞/1)

(a) Input (DVD) (b) w/o (25.65/0.814) (c) w/ (27.22/0.836) (d) GT (+∞/1) (a) Input (4KRD) (b) w/o (26.17/0.871) (c) w/ (27.46/0.874) (d) GT (+∞/1)

Figure 8. Quantitative evaluations on different datasets with (w/) the whole RCSA module or not (w/o). (Zoom in for best view)

thetic dataset. However, we cannot directly capture 4K
videos at high-frame-rates with smartphones since hard-
ware configuration limitations. Therefore, we use the frame
interpolation method [29] to interpolate the recorded 4K
videos from 30/60 fps to 480 fps as like the scheme of [27].
Then we generate blurry frames by averaging a series of
successive sharp frames. In addition to our 4K resolution
dataset, we also use three public deblurring datasets of Go-
Pro [26], DVD [36], and REDS [25] to test our UHDVD
model. Specially, since the test ground truth is not available
for the REDS [25] dataset, we select the validation set as
our test data.

4.3. Performance Comparisons

In this section, we compared our UHDVD method with
the state-of-the-art video deblurring methods of [56, 36, 44]
and image deblurring approaches of [18, 26, 41, 50]. We
evaluate these methods by three criteria: PSNR, SSIM, and
average runtime of an image on each dataset. All these
methods are tested in the same server environment.

Quantitative Evaluation. Table 1 shows that our pro-
posed method performs favorably against the state-of-the-

art algorithms on the four datasets. The run time of all the
methods reported in this table is based on the same test en-
vironment. On the DVD benchmark [36] and our 4KRD
dataset, our algorithm obtain the best results in terms of
PSNR and SSIM, while on the GoPro [26] and REDS [25]
datasets, we are also the suboptimal method. Although
EDVR [44] achieves the best results on the REDS dataset,
we note that this method uses all the validation videos of
REDS to train their model. In addition, since CDVD-
TSP [30] explicitly uses temporal information of multiple
frames, this method exceeds us on the GoPro dataset. How-
ever, our algorithm is 300× faster than this approach. Fig-
ure 5 shows three visual examples from the GoPro [26],
DVD [36] and REDS [25] datasets, respectively. Figure 6
gives two examples of the 4KRD dataset. Our method
achieved better results on the visual effects.

Qualitative Evaluation. To further validate the general-
ization ability of our network, we also qualitatively compare
the proposed network with other algorithms on real blurry
frames on our 4K real videos. As illustrated in Figure 7,
the proposed method can restore clearer frames with more
details than other methods. These comparison results show
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Table 2. The PSNR and Time of an image for UHDVD with (w/)
Separable-Patch Acceleration Architecture (SPAA) or not (w/o).

720×1280 2160×3840
PSNR Time PSNR Time

w/o SPAA 29.76 32.5 ms 27.62 65.6 ms
w/ SPAA 29.74 12.5 ms 27.61 27.9 ms

Table 3. The PSNR/Time of our proposed UHDVD model on dif-
ferent datasets with (w/) the whole RCSA module or not (w/o).

Datasets GoPro DVD REDS 4KRD
w/o RCSA 30.64/12.4 31.57/12.3 26.64/12.5 27.38/22.6
w/ RCSA 31.33/12.7 32.19/13.2 27.53/13.9 27.88/27.9

that our UHDVD method can robustly handle unknown real
blurs in most scenes. For example, the kiosk lattice in our
restored image contain sharper structures and details than
the results generated by other approaches.

4.4. Effectiveness of Separable-Patch Architecture

To validate the effectiveness of Separable-Patch Accel-
eration Architecture (SPAA), we conduct experiments with
1000 blurry frames on 720p and 4K, respectively. We count
the average time of each task with the millisecond for per
image. The results are shown in Table 2. It is clearly shown
that we have more than doubled the computing speed by us-
ing the proposed acceleration architecture, while the PSNRs
are almost the same. These results demonstrate that our pro-
posed separable-patch acceleration architecture is pivotal to
increase the speed and enable 4K image deblurring in real-
time. Although the proposed SPAA is simple in theory, and
the multi-patch scheme used in the SPAA architecture is
similar to the work [37, 50], the parallel process of several
patches at the same time is SPAA’s target and it has been
proved that this can reduce operation time significantly.

4.5. Effectiveness of RCSA Module

To validate the effectiveness of RCSA module in our net-
work, we trained a new model without RCSA module on
4KRD dataset. The baseline model only uses two layers
of the residual block without any CAM and SAM. Except
for this difference, everything else is exactly the same as
the initial model. The quantitative results are shown in Ta-
ble 3. It indicates that our UHDVD model achieves about
0.5 dB gain than the model without using RCSA in terms of
PSNR. Meanwhile, the calculation speed of the two models
is almost the same by using the separable-patch acceleration
pipeline. Some visual results are shown in Figure 8. From
these examples, we can see that the proposed UHDVD ob-
tains better results in image details. The visual performance
also demonstrate the effectiveness of the RCSA module.

4.6. Running Time

Our model (UHDVD) can process a 2160×3840 frame
within 30 ms, which means our model supports real-time
4K video deblurring task at 35fps. DMPHN [50] has also
tried to reach real-time deblurring on images of 720p reso-
lution, but they achieve this by reducing the accuracy. From
the quantitative results of DMPHN in Table 1, it can be ob-
served that their high-speed version (without stack) yields
lower PSNR than the one with stack in all test datasets. Ad-
ditionally, their high-speed version still does not work to
reach real-time on 4K resolution. Our model is 10× faster
than the method of DMPHN-(1-2-4-8) on 4K resolution
videos. Furthermore, our model also improves the opera-
tional efficiency on 720p and reaches the speed of 12.7 ms
per frame. It should be pointed out that we follow the pro-
totype in [49, 50], the time we considered is just the GPU
process time, there are runtime overheads related to I/O op-
erations, which is directly proportional to the size of de-
blurring images. So the real-time processing means GPU’s
real-time in the strict sense.

The following factors contribute to our real-time: i)
multi-scale scheme reduces the input image size of the first
three scales; ii) multi-patch and separable-patch accelera-
tion architecture increases the speed of calculation; iii) rel-
atively few network layers and parameter amounts.

5. Conclusion

In this paper, we proposed a 4K video real-time deblur-
ring network by using an asymmetrical encoder-decoder
architecture. We integrated multi-scale and multi-patch
schemes in a unified framework to improve efficiency and
accuracy at the same time. Different from other methods,
we use the asymmetrical encoder-decoder structure to build
our network with fewer convolution layers to save calcula-
tion cost. In addition, we proposed the RCSA module to
further improve the efficiency and adopted the separable-
patch acceleration architecture to reach the real-time pro-
cessing speed at 35 fps on 4K resolution videos. To study
the 4K deblurring, we created the first public 4K resolution
video dataset. Quantitative and qualitative results show that
our proposed method performs favorably against the rele-
vant state-of-the-art deblurring methods on both synthetic
and real-world datasets.
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