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Abstract
Face recognition networks encode information about sen-

sitive attributes while being trained for identity classification.
Such encoding has two major issues: (a) it makes the face
representations susceptible to privacy leakage (b) it appears
to contribute to bias in face recognition. However, exist-
ing bias mitigation approaches generally require end-to-end
training and are unable to achieve high verification accu-
racy. Therefore, we present a descriptor-based adversarial
de-biasing approach called ‘Protected Attribute Suppression
System (PASS)’. PASS can be trained on top of descriptors ob-
tained from any previously trained high-performing network
to classify identities and simultaneously reduce encoding
of sensitive attributes. This eliminates the need for end-to-
end training. As a component of PASS, we present a novel
discriminator training strategy that discourages a network
from encoding protected attribute information. We show the
efficacy of PASS to reduce gender and skintone information
in descriptors from SOTA face recognition networks like Ar-
cface. As a result, PASS descriptors outperform existing
baselines in reducing gender and skintone bias on the IJB-C
dataset, while maintaining a high verification accuracy.

1. Introduction
Over the past few years, the accuracy of face recognition

networks has significantly improved [40, 41, 36, 15, 10, 17].
These improvements have led to the deployment of face
recognition systems in a large number of applications. How-
ever, recent studies [16, 25, 43] have also shown that face
recognition networks encode information about protected
attributes such as race, gender, and age, while being trained
for identity classification. Encoding of sensitive attributes
raises concerns regarding privacy and bias.
Privacy concerns: Many large-scale face verification and

identification systems employ a database that stores face
descriptors of identities, as opposed to face images. Face
descriptors refer to the features extracted from the penulti-
mate layer of a previously trained face recognition network.

*These authors have contributed equally to this work.
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Figure 1. Suppose a malicious agent X has gained access to a
private database D (blue) which consists of a pre-trained network
P and face descriptors of four identities. The agent can use P to
extract descriptors (red) for a gender-labeled dataset DX (Step 1).
Using these descriptors, the agent can train a gender classifier CX

(Step 2). Using the trained CX , the agent can predict the gender of
the descriptors in D (Step 3) and thus cause privacy breach.

Storing descriptors, rather than images, allows for very fast
gallery lookup and verification against known subjects. This
also acts as an additional layer of security by not storing
potentially sensitive information present in the original face
images. However, since some sensitive information is still
encoded in these descriptors (e.g. race, gender, age), a mali-
cious agent with access to these descriptors can potentially
extract this information and use it for nefarious purposes.
An example scenario is presented in Figure 1.
Bias concerns: Encoding of protected attributes such as
gender or race in face descriptors results in bias w.r.t. these
attributes when used for face recognition. A recent study
from NIST [22] found evidence that characteristics such as
gender and ethnicity impact verification and matching per-
formance of face descriptors. Similarly, it has been shown
that most face-based gender classifiers perform significantly
better on male faces with light skintone than female faces
with dark skintone [12].

One method of addressing privacy and bias issues is by
producing face descriptors that are independent of the pro-
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tected attribute(s). For instance, Debface [20] proposes an
end-to-end method for producing face descriptors that are
disentangled from protected attributes using an adversarial
approach. Another common strategy for mitigating bias is to
train face recognition systems using training datasets that are
balanced in terms of sensitive attributes. However, building
large datasets that are balanced in terms of the attributes we
want to protect is difficult, expensive, and time-consuming.
Moreover, once such a ‘fair’ dataset is constructed, we still
need to perform the costly operation of training a large recog-
nition network from scratch.

End-to-end training of a large-scale network requires ac-
cess to a large dataset and computing power, and is time-
consuming. Application of adversarial losses while training
(as done in [20]), also slows down the training process. Sev-
eral works [48, 11, 27] show that reducing the information
of sensitive attributes while training a network results in
a drop in overall performance. Even if a new network is
trained to generate attribute-agnostic face descriptors, we
need to replace the existing network (say, P in Fig 1), and
re-compute the descriptors for all the identities by feeding in
the respective face images.

In this work, we propose a solution that addresses the fol-
lowing four points: (i) reduces the opportunity for leakage
of protected attributes in face descriptors. (ii) mitigates bias
with respect to multiple attributes (gender and skintone). (iii)
operates on existing descriptors and does not require expen-
sive end-to-end training. (iv) does not require a balanced
training dataset.

The proposed method trains a lightweight model that
transforms face descriptors obtained from an existing face
recognition model, and maps them to an attribute agnostic
representation. We achieve this using a novel adversarial
training procedure called Protected Attribute Suppression
System (PASS). Unlike other works that adversarially sup-
press protected attributes [20, 48] using end-to-end training,
we operate on descriptor space. Once trained, PASS may be
easily applied to other existing face descriptors. In summary,
we make the following contributions in this paper:

1. We present PASS, an adversarial method that aims to
reduce the information of sensitive attributes in face de-
scriptors from any face recognition network, while main-
taining high face verification performance. We show the
efficacy of PASS to reduce gender and skintone informa-
tion in face descriptors, and thus considerably reduce the
associated biases. Moreover, PASS can be used on top
of face descriptors obtained from any face recognition
network. We show these results on two SOTA pre-trained
networks: Arcface [15] and Crystalface [36].

2. Our descriptor-based model cannot include CNN-based
discriminators, which poses new challenges. We present a
novel discriminator training strategy in PASS, to enforce

Method Target task Sensitive attribute
[49, 30] Analogy completion Gender

[47] Object classification Gender
[48] Action classification Identity, private attributes
[13] Action recognition Scene
[6] Gender/Age prediction Age/Gender

[19] Preserve pose/illumination/expresssion Identity
[27] Smile, high-cheekbones Gender, make-up
[7] Face detection Skintone

[35] Face attractiveness Gender
[46] Face recognition Race
[20] Face recognition Age,gender,race

PASS (Ours) Face recognition Gender, skintone
Table 1. Methods that adversarially remove sensitive attributes in
general vision/NLP tasks (top) and face-related tasks (bottom)

the removal of sensitive information in the descriptors.

3. We extend PASS to reduce information of multiple at-
tributes simultaneously, and show that such a framework
(known as ‘MultiPASS’) also performs well in terms of
reducing the leakage of sensitive attributes and bias in
face descriptors, while maintaining reasonable face veri-
fication performance.

4. Since reducing the information of protected attributes
in face descriptors also reduces their identity-classifying
capability, we introduce a new metric called Bias Per-
formance Coefficient (BPC), that measures the trade-off
between bias reduction and drop in verification perfor-
mance. We show that our PASS framework achieves
better BPC values than existing baselines.

2. Related work
Bias in face recognition: Several empirical studies

[22, 12, 18] have shown that many publicly available face
recognition systems demonstrate bias towards attributes such
as race and gender. [46, 45, 21] highlight the issue of racial
bias in face recognition, and propose strategies to mitigate
the same. In the context of gender bias [5, 29], most ex-
periments show that the performance of face recognition on
females is lower than that of males. Use of cosmetics by fe-
males [14, 26] and gendered hairstyles [3] has been assumed
to play a major role in the resulting gender bias. However,
[4] shows that cosmetics only play a minor role in the gender
gap. [29] shows that face verification systems perform better
on lighter skintones than darker skintones.[5, 47] show that
the gender bias is not mitigated even if the training dataset
is gender-balanced. [38, 46] presents an evaluation datasets
that is balanced in terms of race and provide the verification
protocols for the same.
Adversarial techniques to suppress attributes: A sum-
mary of works that adversarially remove sensitive attributes,
while performing a target task is provided in Table 1. Most
of these works do not operate on descriptor space. Also, in
some of the these experiments, the attribute under consider-
ation is ephemeral to the target task. For example, in [48],
an action is not specific to an identity. In contrast, attributes

15088



10-5 10 4 10 10 103 2 1 100
False Positive Rate

0.95

0.90

0.85

0.80

0.75

1.00

Tr
ue

Po
si

ti
ve

R
at

e Arcface (original): male-male pairs
Arcface (original): female-female pairs 
Crystalface (original): male-male pairs
Crystalface (original): female-female pairs

(a)

10-5 10 4 10 10 103 2 1 100

False Positive Rate

0.95

0.90

0.85

0.80

0.75

1.00

Tr
ue

Po
si

ti
ve

R
at

e

Arcface (Original): light-light pairs
Arcface (Original): dark-dark pairs 
Crystalface (Original): light-light pairs
Crystalface (Original): dark-dark pairs

(b)
Figure 2. (a) Gender-wise and (b) Skintone-wise verification plot
for Arcface and Crystalface networks, on IJB-C dataset. We define
bias as the difference between TPRs of males and females (or dark
and light skintones) at a fixed FPR.

like gender and race may not be ephemeral to face recog-
nition. A given identity can be generally tied to a single
gender/skintone. Because of the dependence between iden-
tity and gender/skintone, disentangling them is harder.
Attribute privacy in face recognition: [32, 33] introduce
techniques to synthesize perturbed face images using an ad-
versarial approach so that gender classifiers are confounded,
but the performance of a commercial face-matcher is pre-
served. [42, 11, 44] introduce techniques to suppress pro-
tected attributes like race, age and gender in face represen-
tations (as opposed to face images). However, the effect of
such privacy preserving techniques on bias in face recogni-
tion is currently unclear.

3. Problem Statement
Our goal is to reduce gender and skintone information

in face descriptors so that the ability of a classifier to pre-
dict gender and skintone from these descriptors is reduced.
As an additional requirement, we constrain the gender and
skintone-agnostic face descriptors to encode sufficient iden-
tity information, so that they can be used to perform face
verification. We hypothesize that reducing the ability to
predict protected attributes (gender and skintones) in face
descriptors will reduce gender/skintone bias in face verifi-
cation tasks. This hypothesis is built on the results of [20],
which shows that adversarially removing sensitive informa-
tion from face representations reduces bias. However, unlike
[20], we approach the problem in descriptor space.
Mesuring bias: At this point, we quantitatively describe
gender and skintone bias in the context of face verification.
Most work on face verification [15, 36, 28, 17] report perfor-
mance of a system by using an ROC (TPR vs FPR) curve,
similar to Fig 2. Hence, we define gender and skintone bias,
at a given false positive rate (FPR) as follows:

Gender Bias(F ) = |TPR(F )
m − TPR(F )

f | (1)

Skintone Bias(F ) = |TPR(F )
l − TPR(F )

d | (2)
where (TPR(F )

m ,TPR(F )
f ,TPR(F )

l ,TPR(F )
d ) denote the true

positive rates for the verification of male-male, female-
female, light-light and dark-dark pairs respectively at FPR
F . In some works such as [20], bias is evaluated as the
difference between area under ROC curves (AUC). While
this can be viewed as an aggregate of our measure, such an

aggregation fails to meaningfully capture the bias at realistic
operating points as it marginalizes the performance at low
FPR. In our experience, most real world verification systems
tend to operate at very low FPR, i.e. less than 10−4, which
is not meaningfully captured with AUC. In this work, we fo-
cus on FPR values that we consider to be realistic operating
conditions.
Measuring bias/performance trade-off: Several methods
that reduce the information of sensitive attributes in images
or representations demonstrate a slight drop in overall per-
formance of the system [11, 27, 48, 39]. So, reducing gen-
der/skintone information in descriptors for de-biasing may
lead to a slight drop in face verification performance. In-
spired by the metric in [11], we introduce a new metric called
bias performance coefficient (BPC) to measure the trade-off
between bias reduction and drop in verification performance.

BPC(F ) =
Bias(F ) − Bias(F )

deb

Bias(F )
−

TPR(F ) − TPR(F )
deb

TPR(F )
(3)

Here, (TPR(F ),Bias(F )) refer to the overall TPR obtained
by original descriptors and the corresponding bias (Gen-
der/Skintone bias) at FPR of F . (TPR(F )

deb ,Bias(F )
deb ) denote

their de-biased counterparts. We prefer an algorithm that
obtains higher BPC since a higher BPC denotes high bias
reduction and low drop in verification performance. The orig-
inal face descriptors (without any de-biasing) would have a
zero BPC (since Bias(F ) = Bias(F )

deb and TPR(F ) = TPR(F )
deb ).

Note that a negative BPC denotes that the percentage drop in
TPR is higher than the percentage reduction in bias. In our
work, we denote the BPC for skintone as ‘BPCst’ and that
for gender as ‘BPCg’. In summary, we aim to build systems
that achieve high BPC values.

4. Proposed Approach
4.1. PASS

The key idea in our proposed approach - PASS, is to train
a model to classify identities while discouraging it from
predicting a specific protected attribute. Firstly, for a given
image I , we extract a face descriptor fin using a pre-trained
network P .

fin = P (I) (4)
We present the PASS architecture in Fig. 3. This architec-

ture is inspired by the adversarial framework in [48]. PASS
is composed of three components:
(1) Generator model M : A model that accepts face descrip-
tor fin from a pre-trained network P , and generates a lower
dimensional descriptor fout ∈ R256. M consists of a single
linear layer with 256 units, followed by a PReLU [24] layer.
The weights of M are denoted as ϕM .
(2) Classifier C: A classifier that takes in fout and generates
a prediction vector for identity classification. The weights
of C are denoted as ϕC .
(3) Ensemble of attribute classifiers E: An ensemble of
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Figure 3. PASS architecture. Face descriptors fin are extracted
from a previously trained network P and are fed to a model M . M
consists of a single linear layer with PReLU activation that outputs
transformed face descriptor fout. This is then fed to classifier C and
ensemble E. The arrows indicate the dataflow at various training
stages. In stage 1, M and C are initialized and trained to classify
identity using the gradients of Lclass. In stage 2, E is initialized
and trained to classify attribute using gradients of Latt. In stage 3,
M and C are trained using the gradients of Lbr to debias fout with
respect to the target attribute, while simultaneously being able to
classify identity. In stage 4, one member of ensemble E is trained
to classify attribute from fout using the gradients of Latt. Stages
3 and 4 are repeated in alternating fashion, where the ensemble
member of E being trained in stage 4 changes at each iteration.

K attribute prediction models represented as E1, E2 . . . EK

that take fout as input. Each of these models is a two layer
MLP with 128 and 64 hidden units respectively with SELU
activations, followed by a sigmoid activated output layer
with Natt units. Here, Natt denotes the number of classes
in the attribute being considered. We collectively denote the
weights of all the models in E as ϕE and weights of kth

model Ek as ϕEk
. Note that the attribute classifiers in E are

simple MLP networks (and not CNNs as used in [48]). This
is because the input to E are low-dimensional descriptors
fout and not images.

We now explain PASS as an adversarial approach. M can
be viewed as a generator that should generate descriptors
fout that are agnostic to the attribute under consideration.
fout is fed to the ensemble E of attribute prediction models
which acts as a discriminator and tries to predict the protected
attribute. The objective of M is to generate descriptors fout
that can fool E in terms of attribute prediction, and can
also be used to classify identities. Therefore, we impose
two constraints on fout: (i) a penalty for misidentification,
and (ii) a penalty for attribute predictability from fout. To
this end, we propose a bias reducing classification loss Lbr

described in section 4.1.1.

4.1.1 Bias reducing classification loss Lbr

After extracting the descriptor fin from a pre-trained face
recognition network, we pass it through M to obtain a lower
dimensional descriptor fout.

fout = M(fin, ϕM ) (5)

First constraint: To make fout proficient at classifying
identities, we provide it to classifier C and use cross-entropy
classification loss Lclass to train both C and M .

Lclass(ϕM , ϕC) = −yid.log(C(fout, ϕC)) (6)
yid is a one hot identity label and classifier C produces
softmaxed outputs.
Training discriminators: M generates fout which is fed to
ensemble E. Each of the attribute prediction models in E,
denoted as Ek, is used for computing the cross entropy loss
L
(Ek)
att for attribute classification. Latt is computed as the

sum of cross-entropy losses for each Ek.

Latt(ϕM , ϕE) = −
K∑

k=1

Natt∑
i=1

yatt,ilog y
(k)
att,i (7)

yatt,i is the binary attribute label for the ith attribute cat-
egory associated with the input face descriptor, and y

(k)
att,i

represents the respective softmaxed outputs of Ek in the
ensemble. Natt denotes the number of categories associated
with the attribute under consideration.
Training generator (second constraint): After training E,
M is trained to transform fin into attribute-agnostic descrip-
tor fout. We then provide fout to each model in E:

ok = Ek(fout, ϕEk
) for k = 1 . . .K (8)

The outputs ok are Natt-dimensional and represent the prob-
ability scores for different categories associated with the
attribute. We refer to the ith element of ok as ok,i.

If an optimal classifier operating on fout were to always
produce a posterior probability of 1

Natt
for all categories

in the attribute, then this implies that no attribute informa-
tion is present in the descriptor. To this end, we define the
adversarial loss L(Ek)

adv for the kth model in E to be:

L
(Ek)
adv (ϕM , ϕEk

) = −
Natt∑
i=1

1

Natt
log(ok,i) (9)

Here, we use an ensemble of attribute prediction models,
rather than a single model because, we want fout to be
constructed such that no model can predict the protected
attribute. This approach was motivated by the work of [48]
to solve ‘the ∀ challenge’. After computing the adversarial
loss for model M with respect to all the models in E, we
select the one for which the loss is maximum. We term this
loss as debiasing loss Ldeb.

Ldeb(ϕM , ϕE) = max{L(Ek)
adv (ϕM , ϕEk

)|Kk=1} (10)
This loss function penalizes M with respect to the strongest
attribute predictor which it was not able to fool. This ap-
proach was introduced in [48]. Ldeb is then combined with
Lclass to compute a bias reducing classification loss Lbr.
Lbr(ϕC , ϕM , ϕE) = Lclass(ϕC , ϕM ) + λLdeb(ϕM , ϕE)

(11)Here, λ is used to weight the de-biasing loss.

4.1.2 Stage-wise Training
We now discuss the various stages of training PASS.
Stage 1 - Initializing and training M and C: Using input
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Figure 4. Descriptor space for AET (top) versus OAT (bottom)
strategies (example using 2 member ensemble). Using OAT, M
is more restricted in how it may represent protected attribute in-
formation in descriptor space, encouraging it to instead remove
information about the protected attribute all-together.

descriptors fin from a pre-trained network, we train M and
C from scratch for Tfc iterations using Lclass (Eq. 6).
Stage 2 - Initializing and training E: Once M is trained to
perform classification, we feed the outputs fout of M to an
ensemble E of K attribute prediction models. E is trained
from scratch to classify attribute for Tatrain iterations using
Latt (Eq. 7). ϕM , ϕC remain unchanged in this stage.
Stage 3 - Update model M and classifier C: Here, M is
trained to generate descriptors fout that are proficient in clas-
sifying identities and are relatively attribute-agnostic. fout
is fed to the ensemble E and the classifier C, the outputs of
which result in Ldeb (Eq. 10) and Lclass (Eq. 6) respectively.
We combine them to compute Lbr (Eq. 11) for training M
and C for Tdeb iterations, while ϕE remains locked. While
computing Lbr, the gradient updates for Ldeb are propagated
to ϕM and those for Lclass are propagated to ϕM and ϕC .
Stage 4 - Update ensemble E (discriminator): In stage
4, members of E are trained to classify attribute using
fout. Therefore, we run stages 3 and 4 alternatively, for
Tep episodes, after which we re-initialize and re-train all the
models in E (as done in stage 2). This re-initialization fol-
lows from [48], in order to prevent trivial overfitting between
M and E. Here, one episode indicates an instance of run-
ning stages 3 and 4 consecutively. In stage 4, we choose one
of the models in E, and train it for Tplat iterations or until it
reaches an accuracy of A∗ on the validation set. ϕM and ϕC

remain locked in this stage. The detailed PASS algorithm is
provided in the supplementary material.

4.1.3 One-At-a-time (OAT) vs All-Every-Time (AET)
We note that the method on which PASS is based [48], trains
all the discriminators during stage 4 training. We call this
‘All-Every-Time (AET)’ strategy. However, in this section
we present a conceptual argument describing how AET could
produce descriptors that still contain sensitive information.
The key ideas of this argument are visualized in Fig 4.

Consider the case where PASS consists of an ensemble
E with two gender classifiers, and suppose that model M
has distilled all gender information into a subspace, A, of de-
scriptor space after stage 3 of episode t. Following the AET
strategy, all classifiers in E are trained to classify gender,
thus, encouraging them to focus on subspace A. In episode
t+ 1, suppose M re-organizes the descriptor space to distill
gender information into a new subspace B (orthogonal to
A) in order to fool the classifiers in E. In stage 4 of episode
t+ 1, all the gender classifiers will then be trained again to
extract gender information, causing them to focus on sub-
space B and forget subspace A. Thus, in stage t + 2, M
could revert to its episode t state, once again distilling gender
information back into subspace A without penalty.

To address this issue, we propose a novel discriminator
training strategy that we call ‘One-At-a-Time (OAT)’, where,
during stage 4 we train one member in E, and freeze the
rest. Using the same example from Fig 4 (bottom row), we
describe how this encourages M to remove gender.

As before, suppose that after stage 3 of episode t, M has
distilled all gender information into subpace A. However,
unlike in the AET example, suppose only member E1 of
ensemble E is trained during stage 4. In stage 3 of episode t+
1, suppose M again distills gender information into subspace
B. During stage 4 of episode t + 1, E2 is trained, and the
weights of E1 are held constant. Thus, after 2 episodes the
prediction of ensemble E depends on both subspace A and B
(since E1 is still dependent on subspace A). Our conclusion
is that this strategy restricts M from reverting back to its
episode t state after stage 3 of episode t+ 2, thus improving
the chance that M removes gender information all-together.

For the PASS architecture with K classifiers in ensemble
E, at episode i, we train the jth classifier in the ensemble,
where j = i mod K, and freeze the rest (thus sequentially
choosing one discriminator). We conduct experiments to
compare OAT and AET (in Section 5.5) and show that OAT
leads to better attribute-removal as compared to AET.

4.2. MultiPASS
We also propose MultiPASS (Fig 5), by extending PASS

to reduce the information of several sensitive attributes si-
multaneously. Here, we describe how to extend PASS to
tackle two attributes.

We consider two attributes : Attribute a, with N
(a)
att cat-

egories and attribute b, with N
(b)
att categories. In contrast

to PASS, we include two ensembles of discriminators in
MultiPASS: one for attribute a, denoted as E(a) and one
for attribute b, denoted as E(b). Let E(a) and E(b) consist
of Ka and Kb adversary classifiers respectively. The stage
1 training for model M in MultiPASS is same as that in
PASS. In stage 2, we train both E(a) and E(b). In stage 3,
we compute the outputs o(a)k from all the classifiers in E(a)
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Figure 5. We build MultiPASS by extending PASS to tackle two
attributes simultaneously.
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We compute the adversarial loss L(b)
deb with respect to E(b)

in a similar way. Using weights λa for L(a)
deb and λb for L(b)

deb,
we compute the bias reducing classification as follows:

Lbr = Lclass + λaL
(a)
deb + λbL

(b)
deb (15)

We provide the detailed MultiPASS algorithm in the supple-
mentary material.

5. Experiments
5.1. Pre-trained networks and evaluation dataset

We evaluate the face descriptors obtained from the penul-
timate layer of following two pre-trained networks:
Arcface[1] : Resnet-101 trained on MS1MV2[2] with Addi-
tive Angular margin (Arcface) loss [15].
Crystalface : Resnet-101 trained on a mixture of
UMDFaces[9], UMDFaces-Videos[8] and MS1M [23], with
crystal loss [36].
The aforementioned Arcface [15] network achieves state-of-
the-art performance in face verification and identification.
Hence, we construct the baselines and our PASS framework
on top of the Arcface descriptors, and provide detailed analy-
sis for the same (in Sec. 5.4). To evaluate the generalizability
of PASS and baselines, we also perform similar experiments
with Crystalface [36] descriptors (in Sec. 5.4.4).

For evaluation, we use aligned faces from IJB-C, and
follow the 1:1 face verification protocol defined in [31]. The
alignment is done using [37]. This dataset provides gender
(male/female) and skintone labels. There are six classes
for the skintone attribute which we reorganize into three
groups, (i) Light (‘light pink’ ∪ ‘light yellow’), (ii) Medium
(‘medium pink’ ∪ ‘medium yellow’), (iii) Dark (‘medium
dark’ ∪ ‘dark brown’). For evaluating gender bias, we com-
pute the verification performance of face descriptors for

male-male and female-female pairs separately (out of all
the pairs defined in the IJB-C protocol [31]). To compute
skintone bias, we compute the verification performance of
face descriptors for dark-dark and light-light pairs.

Using Arcface and Crystalface, we extract 512 dimen-
sional descriptors for the aligned faces in the IJB-C dataset
which are then used for gender-wise and skintone-wise veri-
fication, the plots for which are provided in Fig. 2.

5.2. PASS for gender and skintone
In Section 4, we present PASS as a general approach to

de-bias face descriptors with respect to any attribute. Here,
we show the effectiveness of PASS by using it to reduce in-
formation about gender and skintone (separately). We term
the PASS framework trained to reduce gender information
from descriptors as PASS-g, and its skintone counterpart
as PASS-s. Additionally, we build another variant of PASS
(called ‘MultiPASS’) to reduce the predictability of gender
and skintone simultaneously. To train PASS-g, PASS-s and
MultiPASS, we first need to extract fin from a pre-trained
face recognition network on a training dataset that consists
of appropriate labels. fin is extracted using the Arface net-
work, described in Section 5.1.
PASS-g : For training PASS-g, we extract fin for a
combination of UMDFaces[9], UMDFaces-Videos[8] and
MS1M[23]. There are 39,712 male and 18,308 female iden-
tities in the dataset. Face alignment and gender labels are
obtained using [37]. For PASS-g, Natt = 2 (male/female).
PASS-s : To the best of our knowledge, we currently do
not have a large dataset with skintone labels. So, we train
PASS-s using fin extracted for a dataset with race labels
instead, since there is some correlation between race and
skintone [34]. We use the BUPT-BalancedFace [45] for
training PASS-s (aligned using [37]). The dataset consists
of 1.3 million images for 28k identities. Each identity is
associated with one of the four races : African, Asian, Indian
and Caucasian. So, for PASS-s, Natt = 4.
MultiPASS: We design MultiPASS by combining the ad-
versarial ensembles in PASS-s and PASS-g. MultiPASS is
trained using the descriptors for BUPT-BalancedFace dataset,
which consists of race labels. The gender labels for this
dataset are predicted using [37].

After training PASS/MultiPASS, we feed the 512-
dimensional descriptor fin for test (IJB-C) images to the
trained model M which generates 256-dimensional fout.
fout is then used for face verification. Additional informa-
tion on the hyperparameters required for training PASS is
provided in the supplementary material, where we also ana-
lyze the effect of important hyperparameters on bias mitiga-
tion and verification performance. The code for implement-
ing PASS will be made publicly available upon publication.

15092



5.3. Baseline methods
5.3.1 Incremental Variable Elimination (IVE)
IVE [42] is an attribute suppression algorithm that excludes
variables in the face representation that affect attribute classi-
fication. We build a two variants of IVE: IVE(g) and IVE(s).
IVE(g) is trained to reduce gender information using Arc-
face descriptors descriptors from MS1M and gender labels
predicted using [37]. Similarly, IVE(s) is trained to reduce
skintone information using Arcface descriptors and labels
from BUPT-BalancedFace [45]. Additional training details
are provided in the supplementary material.
5.3.2 Obscuring hair - similar to [3]
It is shown in [3] that obscuring hair in facial images during
evaluation helps to reduce gender bias by improving the sim-
ilarity scores of genuine female-female pairs. We construct a
similar pipeline for gender-bias mitigation. We compute the
face border keypoints using [37] for the images in the evalu-
ation dataset (IJB-C) and obscure all hair regions using these
keypoints. Finally, we extract Arcface descriptors for these
hair-obscured images. More details for [3] are provided in
the supplementary material.

5.4. Results
5.4.1 Evaluating leakage of gender and skintone
To evaluate gender-leakage, we train an MLP classifier on
Arcface descriptors and its de-biased counterparts (PASS
variants/IVE). These descriptors are extracted for a training
set with 60k images (30k males and females), sampled from
IJB-C. The MLP classifier is a two hidden layer MLP with
128 and 64 hidden units respectively with SELU activations,
followed by a sigmoid activated output layer. Subsequently,
we test the MLP on descriptors extracted for 20k non-training
images (10k males and females) in IJB-C. Finally, we com-
pute the gender classification accuracy of the MLP. Using the
same experimental setup with respect to skintone, we also
train an MLP (with the same architecture) to predict skintone
(dark/medium/light). In Tables 2 and 3, we find that for both
gender and skintone, the classification accuracy is lowest
when the face descriptors are produced using MultiPASS.
We also find that classifiers trained on PASS-g and PASS-s
descriptors obtain the second lowest classification accuracy.
This indicates that PASS variants are capable of reducing
gender and skintone information in face descriptors.

5.4.2 Evaluating bias
We provide the gender-wise and skintone-wise verification
TPRs and the corresponding bias on IJB-C for all the meth-
ods in Tables 2 and 3 respectively. From Fig 6, we infer that
Arcface descriptors transformed using PASS/MultiPASS ob-
tain lowest gender/skintone bias at most FPRs. Moreover,
from Tables 2 and 3 , we also infer that PASS/MultiPASS-
based frameworks obtain higher BPCs (Eq 3) than the base-
lines at most FPRs. This shows that PASS variants are ef-
fective in reducing bias while maintaining high verification
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Figure 6. (a) Gender and (b) skintone bias in Arcface descriptors
and their de-biased counterparts on IJB-C.
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Figure 7. (a) Gender and (b) skintone bias in Crystalface descriptors
and their de-biased counterparts on IJB-C.

performance. We provide the gender-wise, skintone-wise
ROC plots (similar to the ROC curves in Fig 2), along with
overall verification plots in the supplementary material.

5.4.3 End-to-end vs PASS
One subtlety when operating in an end-to-end fashion is that,
in order to establish a baseline, one is generally required
to retrain an entire face recognition system from scratch.
Training such systems to achieve SOTA performance is tech-
nically challenging. Other works often report results using
a weaker baseline system. For example, GAC [21] uses a
ResNet50 version of Arcface that achieves lower overall per-
formance in IJB-C, than the original ArcFace, as shown in
Table 6. Alternatively, PASS operates on pre-trained mod-
els, allowing us to start with an existing SOTA model, and
maintaining nearly SOTA performance.
5.4.4 PASS with Crystalface
To evaluate the generalizability of PASS and other baselines,
we perform all of the aforementioned experiments on the
Crystalface descriptors (mentioned in Sec. 5.1). We present
the corresponding results of gender/skintone leakage in IJB-
C in Tables 4 and 5. We find that PASS and MultiPASS-
transformed descriptors have the least gender/skintone pre-
dictability. Similarly, Crystalface descriptors transformed
with PASS/MultiPASS obtain the lowest bias (Fig. 7) and
highest BPC values on IJB-C (as shown in Tables 4 and 5)
at all FPRs, for both gender and skintone. The hyperparam-
eter information and detailed results for all the methods are
provided in the supplementary material.
5.5. OAT vs AET results

We train PASS-g systems with OAT and AET strategy
on top of Arcface and Crystalface descriptors. We ensure
that both OAT and AET approaches have the same number

15093



FPR 10−5 10−4 10−3

Method Acc-g (↓) TPRm TPRf TPR Bias(↓) BPCg(↑) TPRm TPRf TPR Bias(↓) BPCg(↑) TPRm TPRf TPR Bias(↓) BPCg(↑)

Arcface[15] 82.06 0.921 0.900 0.929 0.021 0.000 0.962 0.947 0.953 0.015 0.000 0.969 0.956 0.974 0.013 0.000
W/o hair[3] 80.77 0.418 0.833 0.616 0.415 -19.099 0.788 0.889 0.864 0.101 -5.827 0.933 0.928 0.925 0.005 0.565
IVE(g[42]) 80.20 0.922 0.881 0.925 0.041 -0.957 0.962 0.947 0.950 0.015 -0.003 0.969 0.956 0.966 0.013 -0.008

PASS-g (ours) 73.65 0.900 0.881 0.919 0.019 0.084 0.948 0.925 0.946 0.023 -0.541 0.957 0.947 0.962 0.010 0.218
MultiPASS (ours) 68.43 0.871 0.874 0.881 0.003 0.805 0.934 0.919 0.934 0.015 -0.019 0.953 0.936 0.950 0.017 -0.332

Table 2. Gender bias analysis and accuracy (‘Acc-g’) of gender classifier for Arcface descriptors, and their transformed counterparts on
IJB-C. TPR: overall True Positive rate, TPRm: male-male TPR, TPRf: female-female TPR. Bold=Best, Underlined=Second best

FPR 10−4 10−3 10−2

Method Acc-st (↓) TPRl TPRd TPR Bias(↓) BPCst(↑) TPRl TPRd TPR Bias(↓) BPCst(↑) TPRl TPRd TPR Bias(↓) BPCst(↑)

Arcface [15] 87.15 0.951 0.938 0.953 0.013 0.000 0.974 0.968 0.974 0.006 0.000 0.976 0.974 0.976 0.002 0.000
IVE(s)[42] 88.23 0.951 0.938 0.953 0.013 0.000 0.973 0.967 0.974 0.006 0.000 0.976 0.974 0.976 0.002 0.000

PASS-s (ours) 83.86 0.925 0.919 0.934 0.006 0.519 0.949 0.949 0.950 0.000 0.975 0.974 0.974 0.973 0.000 0.997
MultiPASS (ours) 79.22 0.925 0.919 0.934 0.006 0.519 0.950 0.949 0.950 0.001 0.809 0.974 0.974 0.973 0.000 0.997

Table 3. Skintone bias analysis and accuracy (‘Acc-st’) of skintone classifier for Arcface descriptors, and their transformed counterparts on
IJB-C. TPR: overall True Positive rate, TPRl: light-light TPR, TPRd: dark-dark TPR. Bold=Best, Underlined=Second best

FPR 10−5 10−4 10−3

Method Acc-g(↓) TPR BPCg (↑) TPR BPCg(↑) TPR BPCg(↑)

Crystalface[36] 86.73 0.833 0.000 0.910 0.000 0.951 0.000
W/o hair[3] 86.04 0.589 -8.926 0.780 0.823 0.899 0.731
IVE(g)[42] 86.10 0.833 0.833 0.910 0.391 0.951 0.071

PASS-g 80.54 0.761 0.847 0.839 0.857 0.910 0.956
MultiPASS 76.31 0.708 0.383 0.809 0.823 0.881 0.784

Table 4. Gender bias analysis and accuracy (‘Acc-g’) of gender clas-
sifier of Crystalface descriptors, and their transformed counterparts
on IJB-C. Bold=Best, Underlined=Second best

FPR 10−4 10−3 10−2

Method Acc-st (↓) TPR BPCst(↑) TPR BPCst(↑) TPR BPCst(↑)

Crystalface[36] 89.30 0.910 0.000 0.951 0.000 0.974 0.000
IVE(s)[42] 88.26 0.910 -0.041 0.951 -0.407 0.974 -1.000

PASS-s 83.84 0.844 0.261 0.914 0.702 0.919 0.125
MultiPASS 79.44 0.809 0.639 0.881 0.927 0.968 0.994

Table 5. Skintone bias analysis and accuracy (‘Acc-st’) of skin-
tone classifier for Crystalface descriptors, and their transformed
counterparts in IJB-C. Bold=Best, Underlined=Second best

Method/FPR 10−5 10−4 10−3 Training method Training attributes
Arcface [15](SOTA) 92.9 95.3 97.4 - -

Demo-ID+ [20] 83.2 89.4 92.9 End-to-End Age
Debface-ID+ [20] 82.0 88.1 89.5 End-to-End Age,gender,race

GAC+ [21] 83.5 89.2 93.7 End-to-End Race
PASS-s w/ AF 88.1 93.4 95.0 Descriptor-based Race
PASS-g w/ AF 91.9 94.6 96.2 Descriptor-based Gender

MultiPASS w/ AF 88.1 93.4 95.0 Descriptor-based Race, gender
Table 6. IJB-C verification performance (TPR% @ given FPR). AF
refers to Arcface.+ = Numbers copied from original paper.

of classifiers (K = 3 for Arcface, and K = 4 for Crystal-
face) in ensemble E. We conduct the same gender-leakage
experiment as done in Sec 5.4.1, and report the gender clas-
sification accuracy of the trained MLP in Table 7. For both
Arcface and Crystalface, MLP classifiers trained on descrip-
tors from ‘PASS-g (OAT)’ obtain lower accuracy than their
AET counterparts. Moreover, in Table 7, we find that the
gender bias demonstrated by ‘PASS-g (OAT)’ is lower than
that of PASS-g (AET) at most FPRs. In fact, from Table 7,
it is clear that AET frameworks hardly reduce gender bias.

FPR 10−5 10−4 10−3

Method Acc-g TPRm TPRf Bias TPRm TPRf Bias TPRm TPRf Bias

Arcface 82.06 0.921 0.900 0.021 0.962 0.947 0.015 0.969 0.956 0.013
AET 81.84 0.922 0.900 0.022 0.962 0.947 0.015 0.969 0.956 0.013
OAT 73.65 0.900 0.881 0.019 0.948 0.925 0.023 0.957 0.947 0.010

Crystlfce 86.73 0.836 0.806 0.030 0.913 0.867 0.046 0.952 0.924 0.028
AET 86.42 0.834 0.806 0.028 0.912 0.867 0.045 0.952 0.924 0.028
OAT 80.54 0.751 0.749 0.002 0.831 0.828 0.003 0.909 0.909 0.000

Table 7. Comparison of AET vs OAT strategies for gender bias
reduction on Arcface (top) and Crystalface (bottom). Acc-g refers
to gender classification accuracy (lower is better).

Therefore, we conclude that our novel discriminator training
strategy - OAT is an important component of PASS, and
effectively removes sensitive attributes in descriptors.

6. Conclusion
We present an adversarial approach called PASS that can

reduce the information of any protected attribute in face
descriptors, while making them proficient in identity clas-
sification. Our approach allows the user to re-use the pre-
computed descriptors for de-biasing them, without the need
for expensive end-to-end training. In PASS, we also propose
a novel discriminator training strategy called OAT to enforce
removal of sensitive attributes and show that OAT is an im-
portant component of PASS. PASS can also be extended (as
MultiPASS) to reduce the information of multiple attributes
simultaneously.
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Explicit removal of biases and variation from deep neural
network embeddings. In Proceedings of the European Con-
ference on Computer Vision (ECCV) Workshops, pages 0–0,
2018. 2

[7] A Amini, AP Soleimany, W Schwarting, SN Bhatia, and D
Rus. Uncovering and mitigating algorithmic bias through
learned latent structure. In Proceedings of the 2019
AAAI/ACM Conference on AI, Ethics, and Society, pages
289–295, 2019. 2

[8] A Bansal, CD Castillo, R Ranjan, and R Chellappa. The do’s
and don’ts for CNN-based face verification. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 2545–2554, 2017. 6

[9] A Bansal, A Nanduri, C D Castillo, R Ranjan, and R Chel-
lappa. Umdfaces: An annotated face dataset for training deep
networks. In 2017 IEEE International Joint Conference on
Biometrics (IJCB), pages 464–473. IEEE, 2017. 6

[10] A Bansal, R Ranjan, C D Castillo, and R Chellappa. Deep
features for recognizing disguised faces in the wild. In
2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 10–106. IEEE,
2018. 1

[11] B Bortolato, M Ivanovska, P Rot, J Križaj, Philipp Terhörst,
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