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Figure 1. A deep neural network trained in a self-supervised manner with a differentiable ray tracer estimates a complete set of facial
attributes – 3D head pose, geometry, personalized albedo (diffuse and specular) from unconstrained monocular image. Reconstruction
based on these attributes enables a variety of applications, such as relighting.

Abstract
Robust face reconstruction from monocular image in

general lighting conditions is challenging. Methods com-
bining deep neural network encoders with differentiable
rendering have opened up the path for very fast monocular
reconstruction of geometry, lighting and reflectance. They
can also be trained in self-supervised manner for increased
robustness and better generalization. However, their dif-
ferentiable rasterization-based image formation models, as
well as underlying scene parameterization, limit them to
Lambertian face reflectance and to poor shape details.
More recently, ray tracing was introduced for monocu-
lar face reconstruction within a classic optimization-based
framework and enables state-of-the art results. However,
optimization-based approaches are inherently slow and lack
robustness. In this paper, we build our work on the afore-
mentioned approaches and propose a new method that
greatly improves reconstruction quality and robustness in
general scenes. We achieve this by combining a CNN en-
coder with a differentiable ray tracer, which enables us
to base the reconstruction on much more advanced per-
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sonalized diffuse and specular albedos, a more sophisti-
cated illumination model and a plausible representation of
self-shadows. This enables to take a big leap forward in
reconstruction quality of shape, appearance and lighting
even in scenes with difficult illumination. With consistent
face attributes reconstruction, our method leads to prac-
tical applications such as relighting and self-shadows re-
moval. Compared to state-of-the-art methods, our results
show improved accuracy and validity of the approach.

1. Introduction

Fast and accurate image-based face reconstruction has
many applications in several domains including rig based
realistic videoconferencing, interactive AR/VR experiences
and special effects for professionals like facial attribute
manipulation/transfer or relighting. Also, supporting un-
constrained pose and in-the-wild capture conditions with-
out specific hardware, such as multi-view setup, allows for
enhanced flexibility and extended applicability. However,
captured images reflect the complex interaction between
light and faces including shadows and specularities, which
poses a real challenge for face reconstruction. Speed is also
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a key factor for interactive scenario and other real-time use
cases. Great multi-view approaches exist ([1, 2, 3, 4, 5]),
but they may not be easily applied in many applications
such as VR or movies / special effects. Significant progress
has been made on monocular face reconstruction where
most methods resort to some form of parametric prior;
high-quality analysis-by-synthesis monocular optimization
methods exist ([6, 7, 8]), but besides being rather slow, they
would fail for difficult head poses and lighting conditions.
More recently, and to improve this robustness against light-
ing conditions, [9] introduced ray tracing for face recon-
struction within an optimization-based framework. But the
quality of their reconstruction remains sensitive to the land-
marks used for initialization.

Real-time analysis-by-synthesis approaches have also
been presented, however they often sacrifice reconstruction
details. To increase reconstruction efficiency, CNN based
approaches ([10, 11, 12, 13]) that directly regress 3D recon-
struction parameters from images have been investigated.
To overcome the challenge of creating large amounts of la-
beled data, while enabling reconstruction on the basis of
meaningful scene parameters, methods combining CNNs
with differentiable image formation models trained in a self-
supervised way have been presented ([10, 11, 14]). They
enable reconstruction performance in the range of millisec-
onds, and can be applied to more general scenes and sub-
jects ([11, 14]). However, even the best of these highly ef-
ficient monocular reconstruction methods fall short of the
quality and robustness requirements expected in profes-
sional visual effects (VFX) pipelines. They rely on sim-
ple parametric diffuse reflectance models based on low-
frequency spherical harmonics (SH) illumination model,
whereas more detailed models would be needed to recon-
struct at the level of quality that is typically required. The
inability to model self-shadows is also a prime reason for
their instability under challenging scene conditions.

To overcome these limitations, we present a new ap-
proach that is the first to jointly provide the following ca-
pabilities: it enables monocular reconstruction of detailed
face geometry, spatially varying face reflectance and com-
plex scene illumination at very high speed on the basis of
semantically meaningful scene parameters. To achieve this,
our model resorts to a parametric face and scene model that
represents geometry using 3DMM statistical model, illumi-
nation as high-order spherical harmonics and reflectance
model with diffuse and specular components. Our new
CNN-based approach can be trained in a self-supervised
way on unlabeled image data. It features a CNN encoder
projecting the input image into the parametric scene rep-
resentation. We also use an end-to-end differentiable ray
tracing image formation model which, in contrast to ear-
lier rasterization-based models, provides a more accurate
light-geometry interaction and is able to synthesize images

with complex illumination accounting for self-shadows. To
the best of our knowledge, this is the first time a differen-
tiable ray tracer is used for deep-based face reconstruction
in an inverse-rendering setup. While ray tracing enables
[9] to improve the state of the art, their method is based
on costly and slow iterative optimization and the final re-
construction remains sensitive to the quality of the land-
marks. Our method overcomes these limitations: it ab-
sorbs the complexity of ray tracing at training time, achieves
robust and competitive results with near real-time perfor-
mance, and, being completely independent of landmarks
at test time, is more suitable for in-the-wild conditions.
Finally, with an appropriate training strategy, our method
is the first self-supervised method to achieve robust face
reconstruction in challenging lighting conditions and cap-
tures person-specific shadow-free albedo details (such as
facial hair or makeup) not restricted by the 3DMM space.
Our rich and consistent facial attributes reconstruction natu-
rally allows various types of applications such as relighting,
light/albedo edit and transfer. Our comparison with recent
state-of-the-art methods shows improved robustness, accu-
racy and versatility of our method.

2. Related works

While methods such as [2, 1, 3, 4, 5] produce high-
quality face reconstruction from multi-view camera and/or
from multi-light illumination setup, they are not applicable
for in-the-wild images. We focus therefore on monocular
image-based face reconstruction approaches that do not re-
quire any external hardware setup.

Statistical morphable model To make the highly ill-posed
problem of monocular face reconstruction tractable, statisti-
cal priors have been introduced [15] such as 3D morphable
models (3DMMs) [16, 17, 18]. 3DMM was the main build-
ing block for most recent approaches because of its effi-
ciency. However, 3DMM limits face reconstruction to a
low-dimensional space and does not capture person spe-
cific details (such as beards and makeup), and its statisti-
cal albedo prior bakes some illumination in it. Recently, to
overcome these limitations, [19] proposes a drop-in replace-
ment to 3DMM statistical albedo model with more sophis-
ticated diffuse and specular albedo priors. In this work, we
base our reconstruction on the 3DMM geometry and albedo
prior (diffuse and specular) of [19] and we learn an incre-
ment, similarly to [13, 9], on top of the albedo prior to cap-
ture more person-specific details outside of the statistical
prior space.

Optimization-based approaches [8, 6, 7, 20, 21, 9] use
optimization formulation for face (geometry and diffuse
albedo) reconstruction. In [8, 6, 7, 9], a 3DMM based sta-
tistical priors act as optimization regularizer while minimiz-
ing a photo-consistency loss function. While such methods
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work well for controlled scene conditions, often they do not
generalize well for in-the-wild images scenarios and can be
computationally expensive.

Illumination and reflectance models The aforementioned
methods generally use low-order spherical harmonics (SH)
to model light and assume Lambertian surface, while our
method uses higher-order SH in order to better model light
interaction with non-Lambertian surface (with diffuse and
specular). While [22] extracts diffuse and specular albe-
dos from a single image using SH illumination, they do not
explicitly model self-shadows and show only results in con-
trolled conditions. [9] introduced a novel virtual light stage
to model area lights and used a Cook-Torrance BRDF (dif-
fuse, specular and roughness) to model skin reflectance.

Differentiable rendering A simple and efficient vertex-
wise differentiable rendering is proposed in [10]. Two
shortcomings of this approach are the simple Lambertian
BRDF and its inability to handle self-shadows. To address
these limitations, [23, 9] introduce the use of differentiable
ray tracing for face reconstruction. It can handle more com-
plex illumination and BRDF models, and naturally accounts
for self-shadows. However, in addition to being computa-
tionally expensive, differentiable ray tracing exhibits noisy
gradients on the geometry edges as they are sampled by
very few points (solutions, such as [24, 25], exist but re-
main computationally expensive).

Deep learning based approaches When trained on large
corpus, convolution neural networks (CNNs) are well
proven face deep representation decoders and encoders such
as [26, 27]. Several novel approaches have been pro-
posed ([12, 13, 10, 11, 14, 28, 29]). [10] was among the
first to show the use of self-supervised autoencoder-like
inverse rendering based architecture to infer semantic at-
tributes. These unsupervised learning approaches have the
potential to leverage vast amount of face images. They
are however limited by their differentiable rasterizer, re-
lying on a low-order spherical harmonics parametrization
and a pure-Lambertian skin reflectance model, which lim-
its their performance and reconstruction quality under chal-
lenging lighting conditions. [10] relies on diffuse albedo
obtained from 3DMM, which restricts generalization of the
true diversity in face reflectance. [11] uses self-supervision
to learn a corrective space to capture more person-specific
albedo/geometry details outside of the 3DMM space. More
recently, [30] learns user-specific expression blendshapes
and dynamic albedo maps by predicting personalized cor-
rections on top of a 3DMM prior. However, these meth-
ods do not separate diffuse and specular albedos, which
get mixed in their final estimated reflectance. They also
do not show reconstruction under challenging lighting con-
ditions. Our method uses self-supervision to train a CNN
and extracts personalized diffuse and specular albedos, out-

side of the 3DMM space. In contrast to the aforementioned
methods, our method uses high-order SH for better light ap-
proximation and an image formation layer based on a dif-
ferentiable ray tracing that handle advanced lighting and
self-shadows. All this contributes to a robust face recon-
struction even in scenes with challenging lighting condi-
tions. Our loss functions and training strategy allow us to
obtain personalized diffuse and specular albedos, outside
the span of 3DMM, with faithful separation between them
avoiding baking residual self-shadows in the albedo. More
recently, [12, 13] use supervised training to learn a non-
linear 3DMM model to produce more detailed albedo and
geometry. [31, 32, 33] show vast improvements in geome-
try reconstruction. [34] improves on these approaches fur-
ther by inferring mesoscopic facial attributes given monoc-
ular facial images, an attribute we do not model in our final
reconstruction. Finally, [35] and [36] use image-to-image
translation networks to directly regress diffuse and specu-
lar albedos but they do not model light. Self-shadows can
be observed in the albedo they obtain, whereas we model
self-shadows implicitly. Additionally, these methods re-
quire ground-truth data to train the generative model, which
is not easy to acquire.

3. Method
Our method is inspired by the work of [9], which

achieves face reconstruction with personalized albedos out-
side the statistical albedo prior space and in challenging
lighting conditions using ray-tracing within an optimization
framework. While their method achieves state-of-the art re-
sults, it lacks robustness against initial starting point and is
inherently slow, which makes their method not suitable for
in-the-wild conditions. Our method overcomes these lim-
itations by leveraging the generalization capacity of self-
supervised learning.

Our method is composed of two stages as shown in Fig-
ure 2. In stage I, an input image IR is passed through a deep
network E1 (a pre-trained ResNet-152) followed by a fully
connected layer to predict a semantic attribute vector χ for
3DMM shape (α), expression blendshapes (δ), camera pose
(ϕ = {R, T}, composed of rotation and translation), light
(γ) modeled with 9 spherical harmonics bands, albedo prior
(β), which encodes diffuse and specular priors from [19].
Statistical diffuse D and specular S textures are obtained
from β. These parameters are fed to a differentiable ray
tracer to generate a ray traced image IS

1 . This encoder E
is trained end-to-end in a non-supervised manner to obtain
a ‘base’ reconstruction. At this level, the estimated albe-
dos only capture low-frequency skin attributes. In stage II,
to enhance these albedo priors, we train two additional de-
coders, D1 and D2, in a self-supervised way to estimate

1For the sake of conciseness, in the rest of the paper, we use E to denote
the combination of this encoder with the fully connected layer.
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Figure 2. Method overview: A network E regresses semantic face attributes (shape, expression, light, statistical diffuse and specular
albedos and camera). Two additional networks D1,D2 are used to estimate increments ∆d,∆s on top of the statistical albedos to capture
personalized reflectance (diffuse and specular) outside of the statistical prior space. A differentiable ray tracer is used for image formation.

diffuse ∆d and specular ∆s increments to be added on top
of the previously estimated textures, D and S, respectively.
The resultant textures, D̂ and Ŝ, are used to generate a new
image IS

2 . The challenges is to avoid mixing the diffuse and
specular parts and baking unexplained shadows (residual)
in the personalized albedos. In the next section, we briefly
describe the scene attributes used for image formation, and
then we discuss the training of the different networks.

3.1. Scene attributes

Geometry We use [16, 37]’s statistical face model,
where identity is given by e = as + Σsα. e a vector of
face geometry vertices with N vertices. The identity-shape
space is spanned by Σs ∈ R3N×Ks composed of Ks = 80
principal components of this space. α ∈ RKs describes
weights for each coefficient of the 3DMM and as ∈ R3N is
the average face mesh. We use linear blendshapes to model
face expressions over the neutral identity e. v = e + Σeδ,
where v is the final vertex position displaced from e by
blendshape weights vector δ ∈ RKe and Σe ∈ R3N×Ke

composed of Ke = 75 principal components of the expres-
sion space.

Reflectance A simplified Cook-Torrance BRDF [38, 39],
with a constant roughness term, is used to model skin re-
flectance. In contrast to Lambertian BRDF, the Cook-
Torrance BRDF can model specular reflections, and thus
defines for each vertex vi a diffuse ci ∈ R3 and a specular
si ∈ R3 albedos. The statistical diffuse albedo c ∈ R3N

is derived from 3DMM as c = ar + Σrβ, where Σr ∈
R3N×Kr defines the PCA diffuse reflectance with Kr = 80
and β ∈ RKr the coefficients. ar is the average skin dif-
fuse reflectance. Similarly to [9], we employ the statistical
specular prior introduced by [19] to model the specular re-
flectance: s = ab + Σbβ where Σb ∈ R3N×Kr defines
the PCA specular reflectance. ab is the average specular
reflectance. We use the same coefficients β to sample for
the diffuse and specular albedos as suggested by [19]. In

unwrapped (UV) image texture space, D ∈ RM×M×3 and
S ∈ RM×M×3 are the statistical diffuse and specular albe-
dos, with M ×M being the texture resolution.

Illumination Specular reflections are much more sensitive
to light direction than diffuse reflections. So while in the lit-
erature 3-order spherical harmonics have been widely used
in conjunction with Lambertian BRDF, we resort to nine SH
bands with the Cook-Torrance model. We actually found
SH to be better suited to our deep learning framework than
an explicit spatial representation as the one used by [9].
We show in section 5 that high-order SH produces better
shadows estimation than low-order SH. To use with the ray
tracer, an environment map of 64 × 64 is derived from this
light representation. We define γ ∈ R9×9×3 as the light co-
efficients to be predicted by the network E.

Camera We use the pinhole camera model with rotation
R ∈ SO(3) and translation T ∈ R3. We define ϕ = {T,R}
the parameters predicted by E.

3.2. Training

First stage (Base reconstruction) In this stage, we use
statistical geometry and albedo priors to obtain a first esti-
mation of geometry, reflectance, light and camera attributes.
We define χ = {α, δ, ϕ, γ, β} as the semantic attribute vec-
tor used by the differentiable ray tracer to obtain a ray traced
image IS

1 . We train a deep encoder E to directly regress χ.
We use a pixel-wise photo-consistency loss between IS

1 and
the input image IR:

Eph(χ) =
∑
i∈I

|pSi (χ)− pRi | (1)

Here, pSi , p
R
i ∈ R3 are ray traced and real image pixel

colors, respectively. Rendered pixel colors are given by
pSi = F(χ), where F is the Monte Carlo estimator of the
rendering equation [40]. We also define a sparse landmark
loss Eland, which measures the distance between the pro-
jection of L = 68 facial landmarks and their corresponding
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Figure 3. Yellow box: Base reconstruction (Stage I section 3) with the estimated statistical albedo priors. Red box: Final reconstruction
(Stage II section 3) with the final albedos and light.

pixel projections zl on the input image (more details in [9]).
These landmarks are obtained using an off-the-shelf land-
marks detector [41]. During training, we minimize the
following energy function:

argmin
(α,δ,ϕ,γ,β)

Ed(χ) + Ep(α, β) + Eb(δ) (2)

Ed(χ) = Eph(χ) + α1 Eland(χ) and Ep is the statistical
face (shape and albedo) prior ([9]) that regularizes against
implausible face geometry and reflectance deformations.
Eb(δ) is a soft-box constraint that restricts δ to range [0, 1].
Second stage (personalized albedos) In Figure 3 (yellow
boxes) we show the final reconstruction together with the
estimated statistical albedos (D and S) obtained by the base
reconstruction of stage I. This result misses subject specific
skin features, like beards and make-up, as 3DMM does not
support them. We aim to personalize the albedo. However,
the challenges are to avoid mixing the diffuse and specular
parts and to avoid baking unexplained shadows (residual)
in the personalized albedos. We train two additional net-
works D1 and D2, which take as input the latent space of E
and estimate a diffuse and specular increments ∆d and ∆s

which are added to D and S, respectively. D̂ = D+∆d and
Ŝ = S+∆s are then used by the differentiable ray tracer to
generate a new synthetic image IS

2 . Predicting an increment
on statistical texture priors instead of directly estimating a
complete texture is important to force E to produce a good
albedo prior while at the same time estimating a good in-
crement over these priors. We define χ̂ = {α, δ, ϕ, γ, D̂, Ŝ}
which is used in the photo-consistency loss (eq 1). The fol-
lowing energy function is minimized:

argmin
(∆d,∆s)

Ed(χ̂) + w1(Es(D̂) + Es(Ŝ))+

w2DEc(D̂,D) + w2SEc(Ŝ,S)+
w3(Em(D̂) + Em(Ŝ))+
w4(Eb(D̂) + Eb(Ŝ)) (3)

where Eb is the soft box constraint that restricts the albedos
to remain in an acceptable range [0, 1]. Em is a constraint
term which ensures local smoothness at each vertex, with

respect to its first ring neighbors in the UV space, and is
given by Em(Â) =

∑
xj∈Nxi

||(Â(xj) − Â(xi)||22, where
Nxi is 4-pixel neighborhood of pixel xi.

We use regularization similar to [13, 9] to prevent
residual shadows to leak into the albedos. Es(Â) =∑

i∈M |Â(xi))−flip(Â(xi)))|1 is a symmetry constraint,
where flip() is the horizontal flip operator. Ec(Â,A)
is a consistency regularizer, which weakly regularizes Â
with respect to the previously optimized albedo A based
on the chromaticity κ of each pixel in the texture given by
Ec(Â,A) =

∑
i∈M |κ(Â(xi))− κ(A(xi))|1.

Figure 4. Row I: Comparison of the estimated light using 3 and
9 SH bands. Row II: Comparison of a single network vs. our
dual-network approach to estimate albedo increments. Row III:
Comparison of results obtained with and without the symmetry
and consistency regularizers. Row IV: Comparison of base vs.
final geometry reconstruction. Row V: comparison of vertex-based
renderer and ray tracing.

Training strategy Obtaining faithful and personalized dif-
fuse and specular albedos (outside of the statistical prior
space) in uncontrolled lighting conditions is an ill-posed
problem. For instance, one can easily overfit the diffuse
albedo increment ∆d to explain the remaining information
in the input image. To avoid this case, we proceed with the
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following strategy to separate the diffuse and specular albe-
dos: After training E for few epochs, we fix E and start
training D1 and D2 with a high regularization weight w2D

for the diffuse consistency regularizer in order to keep D̂
closer to D. Next, we progressively relax the w2D con-
straint during the training to let the diffuse increment ∆s

capture more details. Finally, we train for all networks
jointly (E, D1 and D2). So, for a given image, we generate
two images IS

1 and IS
2 and minimize the energy functions

in 2 and 3 respectively and back-propagate over the whole
attributes. This last step is important to stress E to produce
better priors, light and pose while at the same time pushing
D1 and D2 to capture more details in the albedos.

Figure 5. Comparison against [11] (subjects from authors paper).

4. Results

For training, we used a total of 250K images, partially
from CelebA dataset [42]. For E, we use a pre-trained
ResNet-152, and both D1 and D2 networks use a cascade
of 7 convolution layers. Ray tracing is based on the method
of [25]. Because ray tracing is very memory consuming, we
use 256×256 as resolution for the texture and the input im-
ages. The inference takes 54 ms (47 ms for E and 7 ms for
D1,D2). During training, we use 8 samples per pixels for
ray tracing the images. Other implementation details can
be found in the supplementary material (section I). Please
note that images used in the figures were not used for train-
ing. The attributes estimated by our method are compatible
with most rendering engines, nevertheless all results shown
in the paper were rendered using ray tracing.
Figure 3 (red boxes) shows reconstruction results from in-
the-wild images for different subjects with various face at-
tributes, head pose and lighting conditions. Our method
successfully captures the facial hair and the lipstick – out-
side of statistical albedo prior space – for subjects on the left
and in the middle respectively. Subject on the right is under
challenging lighting conditions. Our method robustly esti-
mates meaningful albedos and avoid baking residual shad-
ows in the final albedos. We also show on Figure 3 the
effectiveness of albedo personalization provided by the net-
works D1 and D2 (red box) to refine the estimated statis-
tical priors obtained by E (yellow box) from outside of the
statistical albedo prior space. More results are shown on
Figure 1 and in supplementary material (section 5).

Figure 6. Comparison against [9] (right subject: authors paper).

5. Ablation
Low-order SH parameterization In this experiment,

we compare 9-order with 3-order SH. Estimated illumi-
nations are shown in Figure 4 (first row). This shows
that using higher-order spherical harmonics results in bet-
ter shadow reconstruction, which prevents baking residual
shadows in the albedo. In a similar experiment, 9-order SH
has proven itself to be slightly better than 7-order.

Dual networks In this experiment, we trained a single net-
work to regress diffuse ∆d and specular ∆s increments. As
shown in Figure 4 (second row), a single network produces
poor albedo separation compared to our approach that uses
two separate networks, possibly because the diffuse and
specular components capture different skin features that in-
terfere when using a single network.

Symmetry and consistency regularizers Figure 4 (row III)
shows the importance of the regularizers used in equation 3.
In fact, because our light model may not always perfectly
capture the real shadows, these regularizers prevent from
baking residual shadows in the albedo.

Joint training Training E jointly with D1 and D2 (refer
to section 3) improves the final geometry as shown in Fig-
ure 4 (row IV). The ‘final’ mesh better fits the input image
compared to the ‘base’ mesh obtained from the base recon-
struction (when training E only).

Vertex-based renderer In this experiment, we train the
same architecture, except that we used a ‘vertex-based’ ren-
derer, with the same illumination model (9-order SH) [43]
and the simplified Cook-Torrance BRDF (more details in
supp. material, section 2). Figure 4 (last row) shows that ray
tracing produces smoother and natural projected-shadows
(especially around the nose). This is because ray tracing
can naturally models self-shadows while vertex-based ren-
derer cannot. For instance, spherical harmonics (SH) coef-
ficients are converted to an environment map (EM) for the
use with ray tracing. Each pixel in EM acts as a light source
at infinity. Shadows rays (rays shot from a surface point (P)
towards a light source sampled from EM) are used to calcu-
late a visibility mask for P. On the other hand, vertex-based
renderers do not naturally model visibility of light sources.
Work such as [44] tries to solve for this.

6. Comparison
In the next, we compare, qualitatively and quantitatively,

our method against recent methods and to the ground-truth
Digital Emily project and NoW benchmark [45].
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Figure 7. Comparison between methods - [35], [36], [13], [19], and ours. The red arrows indicate the shadow baked in diffuse albedo.

Visual comparison Figure 5 shows comparison results of
our method against [11] (results and images are taken from
authors paper). Both methods achieve visually compara-
ble results on the final reconstructed images. However, our
method separates diffuse and specular albedos while [11]
only estimates a reflectance map, which mixes diffuse and
specular components. This makes our method more suitable
for applications such as relighting.

Figure 6 shows comparison against [9]. For the left sub-
ject, their method infers incorrect shape (around the mouth),
head pose and illumination estimation. For the right subject,
their estimated shape is inaccurate (right part of the head).
This illustrates the sensitivity of [9] to the landmarks quality
(as reported by the authors). Our method, completely inde-
pendent of landmarks, is more robust to the lighting condi-
tions and generates more convincing results. In the supp.
material (section 4), we show that our method achieves vi-
sually comparable results ([9] being slightly better) while
being an order of magnitude faster (54 ms vs. 6.4 min). We
note, that similarly to [46], combining both approaches by
using our predicted attributes as initialization for the opti-
mization produces better reconstruction quality. Finally, we
note that [9] can capture shadows projected by point lights,
while our method can only handle lights at infinite distance;
nevertheless, our training strategy, together with carefully
designed loss functions helps our method from baking un-
explained shadows in the final personalized albedos at the
expense of some albedo details (please refer to supp. mate-
rial for more results in challenging lighting conditions).

Figure 7 shows comparison against [35, 36, 13, 19]. Re-
sults for [19] are obtained using their open-source imple-
mentations. For [13, 35, 36], results are from original au-
thors. [35] and [36] methods do not estimate light and thus
final reconstruction is not available. Because [35] does not
model light, they bake some shadows in the diffuse albedo
for both subjects. [19] estimates light using 3-order SH
but their reconstruction is bounded by the statistical albedo
space and cannot capture personalized albedos outside of
this space. Compared to [13], our method has ‘visually’
better light estimation and smoother shadows (for first sub-
ject). Additionally, their diffuse and geometry have some
artifacts visible around the nose. Also, their method does

Table 1. Vertex position and normal error µ and standard deviation
σ for each method on all subjects.

[35] [36] [13] [9] Ours
Position error µ (cm) 0.236 0.184 0.176 0.174 0.181
Position error σ (cm) 0.114 0.072 0.065 0.064 0.069
Normal error µ (rad) 0.152 0.156 0.159 0.139 0.148
Normal error σ (rad) 0.051 0.043 0.046 0.046 0.048

not estimate the specular component. [36] produces con-
vincing shadow-free diffuse albedo. However, they do not
estimate light and head pose.

Geometric comparison We evaluate the quality of the re-
constructed geometry on 23 images with 3D ground truth
(GT) mesh from 3DFAW [47], AFLW2000 fitting package
[48][49][50], and from the wikihuman project2 [51]. We
compared our method to [35, 36, 13, 9] (Figure 8 and Table
1), using vertex position and normal errors calculated with
respect to the GT meshes. Table 1 reports, for each method
on all subjects, the average error (µ) and standard deviation
(σ) for vertex position and normal direction. For vertex-
position error, [9] scores the best average error (0.174),
while [13] reports the second lowest measure. Compar-
ing to the above methods, our method shows similar per-
formance (0.181). We note that [13] learns a non-linear
3DMM model to improve the geometry while our method,
which only uses 3DMM geometry, achieves comparable re-
sults. Our score is also on par with optimization-based
method [9], while being order of magnitude faster. For nor-
mal error, our method reports the second-best error (0.148),
very close to [9]. Also, our score is better than [13] (0.159),
since the mesh estimated by the latter has noise that ap-
pears around the nose (visible in Figure 7 and Figure 8).
We also evaluate our method on the NoW benchmark [45]
that only evaluates neutral mesh (no expression, albedo and
pose evaluation). Nevertheless, we obtain very competitive
results: 1.26/1.57/1.31mm (median/mean/std).

Digital Emily As shown in Fig.9, we compare our
method with Digital Emily [51] ground truth (GT). We note
that our method bakes some albedo in the estimated light
(as shown in the recovered environment map).

2More details in supp. material section 3.
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Figure 8. Vertex position and normal error for each method (from left [35], [36], [13], [9], and Ours) compared to GT mesh.

We also compare quantitatively our image reconstruc-
tion quality against state-of-the-art (see Table 2). For each
method, we compute SSIM [52] and PSNR scores ver-
sus GT, for final render, diffuse, and specular. Since each
method uses a different UV mapping, we compare the pro-
jection of the albedo on the input image (using the GT cam-
era pose) and not on the unwrapped texture. For the ‘Final’
rendered image, our method is on par with the method of
[9] and achieves better performance than [19]. Since [35]
and [36] do not estimate scene light, they do not have a fi-
nal render image, so no comparison is available for these
methods. For diffuse and specular albedos, [35] is globally
better than the other methods except for ‘Diffuse SSIM’ and
‘Specular SSIM’, where [9] and our method measure higher
similarity, respectively.

Figure 9. Our final, diffuse, and specular render images (Ours box)
compared to GT (GT box). All GTs are rendered by Maya.

Table 2. Final render, diffuse and specular albedos in comparison
with GT Maya renders. SSIM and PSNR (dB): higher is better.

vs GT Final Final Diffuse Diffuse Spec. Spec.
Render (SSIM) (PSNR) (SSIM) (PSNR) (SSIM) (PSNR)
Ours 0.933 35.932 0.653 29.548 0.642 29.274
[9] 0.965 36.390 0.722 29.812 0.547 29.670
[19] 0.906 35.389 0.639 29.006 0.452 28.833
[36] - - 0.540 28.633 0.516 28.926
[35] - - 0.679 30.061 0.604 30.923

7. Limitations, Future works and Conclusion
Limitations Our data-driven method inherits the bias of

the training data, which does not provide high diversity in
lighting and facial expression (most subjects in the dataset
are with smiling faces, eyes opened and well lit). This
leads to sub-optimal reconstruction for less frequent expres-
sion/lighting (incorrect light estimation for left subject in
Figure 10). This limitation can be mitigated by using a more
balanced dataset while the method remains the same. Also,
with images with extreme shadows some artifacts may ap-
pear in the estimated albedos (right subject in Figure 10).

Disentangling light color from skin color from a single
image is an ill-posed problem and is not solved in this work.

The limitations of 3DMM statistical albedo prior (unable to
model all skin types e.g. non-Caucasian) make this sepa-
ration even more difficult. Adding light color regulariza-
tion, together with a more complete albedo prior can miti-
gate this.

Future works Our method could be extended by using a
non-linear morphable model such as [53] to improve the ge-
ometry at finer level. Using a more complex skin reflectance
model such as BSSRDF/dielectric materials [54] is also in-
teresting. Our method could also benefit from a work such
as [55], which tackles the foreign (external) shadows chal-
lenge. Finally, our method can naturally extend to video-
based reconstruction [14], which should improve the accu-
racy of the estimated facial attributes.

Figure 10. Limitations of our method.

Conclusion In this work, we address the problem of face re-
construction under general illumination conditions, an im-
portant challenge to tackle for in-the-wild face reconstruc-
tion. For this, we introduced the first deep-based and self-
supervised method that achieves state-of-the art monocular
face reconstruction in challenging lighting conditions. We
build our work on recent methods, namely [10] which com-
bines deep neural networks with differentiable rendering
and [9] which uses ray tracing for face reconstruction within
an optimization-based framework. Our method solves the
limitations of [10] by using a better light and BRDF mod-
els and captures personalized diffuse and specular albedos
outside of 3DMM space, while being robust against harsh
shadows. Our approach also solves the limitations of [9]
and achieves near-real time performance while at the same
time being completely independent of landmarks at test
time. Our method naturally benefits from large-scale un-
labeled data-sets. By comparing to recent approaches, we
achieve better results in terms of robustness in scenes with
challenging lighting conditions, while producing plausible
reconstruction of subject-specific albedos. Beyond its ro-
bustness to lighting conditions, the rich reflectance decom-
position produced by our method is compatible with exist-
ing rendering engines and allows for several style – illumi-
nation and albedo – transfer, edit applications, avatar cre-
ation and relighting.
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