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Abstract

Current approaches for video grounding propose kinds
of complex architectures to capture the video-text relations,
and have achieved impressive improvements. However, it
is hard to learn the complicated multi-modal relations by
only architecture designing in fact. In this paper, we intro-
duce a novel Support-set Based Cross-Supervision (Sscs)
module which can improve existing methods during train-
ing phase without extra inference cost. The proposed Sscs
module contains two main components, i.e., discriminative
contrastive objective and generative caption objective. The
contrastive objective aims to learn effective representations
by contrastive learning, while the caption objective can
train a powerful video encoder supervised by texts. Due to
the co-existence of some visual entities in both ground-truth
and background intervals, i.e. mutual exclusion, naively
contrastive learning is unsuitable to video grounding. We
address the problem by boosting the cross-supervision with
the support-set concept, which collects visual information
from the whole video and eliminates the mutual exclusion
of entities. Combined with the original objectives, Sscs can
enhance the abilities of multi-modal relation modeling for
existing approaches. We extensively evaluate Sscs on three
challenging datasets, and show that our method can im-
prove current state-of-the-art methods by large margins, es-
pecially 6.35% in terms of RI@0.5 on Charades-STA.

1. Introduction

Video grounding aims to localize the target time inter-
vals in an untrimmed video by a text query. As illustrated in
Fig.[T] (a), given a sentence ‘The person pours some water
into the glass.” and a paired video, the target is to localize
the best matching segment, i.e., from 7.3s to 17.3s. There
are various methods [51} 49, [12] have been proposed for
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Figure 1. (a) Comparison of the attention map of the similarity be-
tween video clips and text queries. The darker the color, the higher
the similarity. ‘GT’ indicates the ground-truth. (b) The proposed
Support-Set based Cross-Supervision (Sscs) Module. Sscs makes
the embedding of semantic-related clip-text pairs (dark circles and
triangles) to be close in the shared feature space.

this task, and they have made significant progresses. These
methods can reach an agreement that video-text relation
modeling is one of the crucial roles. An effective relation
should be that semantically related videos and texts must
have high responses, and vice versa.

To achieve this goal, existing methods focus on carefully
designing complex video-text interaction modules. For ex-
ample, Zeng et al. [49] propose a pyramid neural network
to consider multi-scale information. Local-global strat-
egy [30] and self-modal graph attention [26] are applied as
the interaction operations to learning the multi-modal rela-
tions. After that, they use the interacted features to perform
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video grounding straightway. However, the multi-modal re-
lations are complicated because the video and text have un-
equal semantics, e.g., ‘person’ is just one word but may last
a whole video. Hence, existing methods based on the archi-
tecture improvements have limited capacities to learn video-
caption relations; see Fig.[I] (a) (Please see ‘Baseline’).

Motivated by the advances of multi-modal pre-training
[28 133, 29]], we propose a Support-Set Based Cross-
Supervision, termed Sscs, to improve multi-modal relation
learning for video grounding in a supervision way com-
pared with the hand-designed architectures. As shown in
Fig.[I] the Sscs module is an independent branch that can
be easily embedded into other approaches in the training
stage. The proposed Sscs includes two main components,
i.e., contrastive objective and caption objective. The con-
trastive objective is as typical discriminative loss function,
that targets to learn multi-modal representations by apply-
ing infoNCE loss function [28| 33]. In contrast, the cap-
tion objective is a generative loss function, which can be
used to train a powerful video encoder [[15} |53]. For an
untrimmed video, there are some vision entities appear in
both ground-truth and background intervals, e.g., the per-
son and glass in Fig. 2] but the original contrastive learning
may wipe away the same parts between the foreground and
background, including the vision entities. These vision enti-
ties are also important for video grounding task, e.g., thus it
is unsuitable to directly apply the contrastive learning into
the video grounding task directly. To solve this problem,
we apply the support-set concept, which captures visual in-
formation from the the whole video, to eliminates the mu-
tual exclusion of entities. By this means, we can improve
the cross-supervision module naturally and further enhance
the relation modeling. To prove the robustness, we choose
two state-of-the-art approaches as our baselines, i.e., 2D-
TAN [51] and LGI [30], and the experimental results show
that the proposed Sscs can achieve a remarkable improve-
ment.

Our contributions are summarized as three-folds: (a)
We introduce a novel cross-supervision module for video
grounding, which can enhance the correlation modeling be-
tween videos and texts but not bring in the extra inference
cost. (b) We propose to apply support-set concept to ad-
dress the mutual exclusion of video entities, which make
it is more suitable to apply contrastive learning for video
grounding. (c) Extensive experiments illustrate the effec-
tiveness of Sscs on three public datasets, and the results
show that our method can significantly improve the perfor-
mance of the state-of-the-art approaches.

2. Related Work

Video grounding. Early approaches [12| [1, 46, [14] for
video grounding use a two-stage visual-textual matching
strategy to tackle this problem, which require a large num-

Query: Thefperson]pours some water into the|glass

A

Non-GT GT

Non-GT
Figure 2. Mutual exclusion of entities. The ‘person’ and ‘glass’
entities appear in both ground-truth (GT) clips and non-ground-
truth clips (Non-GT). Although there are no ‘pour water’ action
happening in Non-GT clips, the semantics of the Non-GT video
clips are also similar with those of GT ones, due to the common
entities.

ber of proposals. It is important for these methods to im-
prove the quality of the proposals. SCDM [47] incorporates
the query text into the visual feature for correlating and
composing the sentence-related video contents over time.
2D-TAN [51]] adopts a 2D temporal map to model temporal
anchors, which can extract the temporal relations between
video moments. To process more efficiently, recently, many
one-stage methods [49] 26| 148l |17, 144} 145] are proposed to
predict starting and ending times directly. Zeng et al. [49]
avoid the imbalance training by leveraging much more posi-
tive training samples, which improves the grounding perfor-
mance. LGI [30] improves the performance of localization
by exploiting contextual information from local to global
during bi-modal interactions.

Multi-modal Representation Learning. A mass of self-
supervised methods [9} [3| [10] have been proposed to pre-
train models on large-scale multi-modal data, such as im-
ages [37]], videos [5] and text [54]. To learn video-text
representations, a large-scale instructional video dataset,
HowTo100M [29], is released. Some works use the con-
trastive loss to improve video-text representations based on
HowTol100M for tasks such as video caption [53], video
retrieval [2] and video question answering [24]. MIL-
NCE [28] brings the multi instance learning into the con-
trastive learning framework to address the misalignment
between video content and narrations. Patrick et al. [33]]
combine both discriminative and generative objectives to
push related video and text instance together. Compared
with these approaches, our method targets to improve video
grounding via multi-modal training without extra inference
cost.

3. Proposed Method
3.1. Problem Formulation

Let’s define a set of video-text pairs as C =
{(V;, L;)}X_;, where N is the number of video-text pairs,
V; and L; are the i-th untrimmed video and sentence re-
spectively. Given a query sentence L;, the purpose of video
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Iustration of our proposed Support-set Based Cross-Supervision Module. For clarity, we only present two video-text pairs

{Vi, L;}, {Vj, L;} in the batch. After feeding them into a video and text encoder, the clip-level and sentence-level embedding ({X;, Y}
and {X,,Y;}) in a shared space are acquired. Base on the support-set module (see details in Fig.(b) ), we compute the weighted average
of X; and X to obtain X;, X respectively. Finally, we combine the contrastive and caption objectives to pull close the representations
of the clips and text from the same samples and push away those from other pairs.

grounding is to localize a target time interval A; = (ti,t¢)
in V;, where ¢ and ¢! denote the starting and ending time
respectively.

3.2. Video and Sentence Encoding

Video encoding. We first divide a long untrimmed video V;
into 7T clips, defined as V; = {vi}. ;. Each clip consists
of a fixed number of frames. Then, T clips are fed into
a pre-trained 3D CNN model to extract the video features
= {f}} € RT*Pv where D, denotes the dimension of
the clip-based video features.
Sentence encoding. For m-th word I, in a sentence Lj,
we feed it into the GloVe word2vec model [35] to obtain
the corresponding word embedding w?,. Then, the word
embeddings are sequentially fed into one three layer bidi-
rectional LSTM network [19], and we use its last hidden
state as the features of the sentence L, i.e., G; € RPt,

3.3. Cross-Supervised Video Grounding

In this section, we first outline the overall framework in
Section[3.3.1] Then, in Section[3.3.2] we introduce the con-
cept of support-set for video grounding in details. Finally,
we introduce several kinds of support-set in Section [3.4]

3.3.1 The Overall Framework

The key of video grounding is to capture the relations be-
tween videos and texts. That is, it should have a high sim-
ilarity between V; and S; if they are semantically-related
and vice versa. For this purpose, most existing methods
design multitudinous architectures to capture the relations
by modeling the video-text interactions [S1}30]. Typically,
they first fuse the visual and textual embeddings X; and Y,
and then predict target time intervals A= (t’ tl) directly.

sy 7e

At the training stage, the loss function £'8 is applied on the

fused features to optimize the models. The function L£'&
may have different form in different method, e.g., binary
cross entropy loss function applied in 2D-TAN [S1]].

Unlike these methods, we introduce two cross-
supervised training objectives that can improve existing
methods just during training phase. The two objectives con-
tain a contrastive objective and a caption objective, and can
be insert existing methods directly. Thus the overall frame-
work mainly contains two components, i.e., the commonly
used video grounding framework and the proposed cross-
supervised objectives. Hence, the overall objective of our
method is:

L=/ Alﬁcomrasl + AQﬁcaplion’ (1)

where £t and L£e%on denote the contrastive objective
and caption objective respectively. The hyperparameters \q
and )\ control the weight of two objectives.

3.3.2 Cross-Supervised Objectives

The target of the cross supervised objectives is to learn
effective video-text relations, as illustrated in Fig. To
make it clear, we first introduce the GT clip-based learn-
ing, based on which we present the details of the proposed
cross-supervised objectives. After that, we discus existing
problems, i.e., the mutual exclusion between the visual and
textual modalities. Finally, we provide the solution by sup-
port set based learning.

GT Clip-Based Learning. In video grounding, a sentence
usually corresponds to multiple clips, which are all con-
tained in a ground-truth interval. An intuitive method to
learn a powerful representation is to set the clips in ground-
truth (GT) intervals as the positive samples, while others are
negatives, i.e., clips in Non-GT intervals and other videos.
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Formally, we denote A mini-batch of samples from C with
B, hence B C C. Then the samples in the mini-batch can
be defined as B = {(V;, L;)}2 ,, where B is the size of
the mini-batch. After fed into the video and text encoders,
we can obtain base embeddings {(F;, G;)}Z ;. Then the
embeddings can be mapped into a same space with equal
dimension by X; = ¥ (F;) and Y; = ® (G;). For a pair of
the video and text embeddings (X;,Y ;) in B, we define the
set of ground-truth clips as M; = {xi |t € [t!,t!]}, where
ti and ! denote the starting and ending time of the ground-
truth, x? is the ¢-th vector in X;. The set of background clips
for V; can be denoted as M; = {x} |t ¢ [t,t.]}. Then, the
positive pairs in B can be constructed by considering the
ground-truth clips together with the corresponding text, de-
fined as P; = {(x,Y;)|x € M,}. The non GT clips and
clips in other videos can be regarded as the negative samples
of the text L;, i.e, N; = {(x,Y;) |x € M; UX;, i # j}.
Contrastive objective. Based on the above definitions, we
detail the contrastive objective here. The purpose of the
contrastive objective is to learn effective video-text repre-
sentations, for which we use a contrastive loss to increase
the similarities of positive pairs in P and push away those
from the negative pairs in V. Specifically, we minimize the
softmax version of MIL-NCE [28]] as follows:

5 Z exTy/T
. Z log (x,y)EP;
— Z eXTy/T + Z ex/Ty//T I
(x,y)€EP; (x',y")EN;

2

where 7 is the temperature weight to control the concen-
tration level of the sample distribution [18]. Therefore, the
constrastive objective is a typical kind of discriminative loss
function.
Caption objective. Besides the contrastive objective, we
also introduce the caption objective [33| 22]] to further im-
prove the video-text representation. The caption objective
can be formulized as:

B
) 1
[eaption 75 Z logp (li ‘ Wz) , 3)
i=1

where [; is the i-th word of L;, w; € RP is the em-
bedding for generating the sentence, which is obtained by
w;, = @ (Xft). Xft is the concatenated features in

ground-truth clips, i.e., X' = [x, , ..
formation layer which can be convolutional layers [40] or
self-attention [43]].

We name the model training with Eq. 2] and Eq. 3] as
the GT clip-based Learning. The model will push the sen-
tence feature Y; and its corresponding GT clip features to
be close, while push Y; away from Non-GT clip features.
Non-GT clip features of Y; contain non-ground-truth clips

and clips in other videos. However, in the same video, the

,x!,]. @ is the trans-
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Figure 4. (a) GT clips based supervision. The GT clips based
learning aims to encourage the GT clip features to be close with
Y; and push away the Non-GT clip features. (b) Support-set based
supervision. Considering there are also entities from the query in
Non-GT clips, i.e., the yellow cube, we maximize the similarity
between the weighted feature (X;) and Y.

entities may appear in both the GT and Non-GT clips, rather
than only GT clips, as shown in Fig. 4| (a). By simply at-
tracting Y, and GT clip features and repulsing Y; and Non-
GT clip features, the GT clip-based learning would make
the same entity (yellow cube in Fig. d) in background clips
also be far away from that in ground-truth clips. Hence, this
method is too strict and the learned representations of video
clips may be far away even they have similar semantics.

Support Set-Based Supervision. To address the mutual
exclusion between the videos and texts as analyzed above,
we propose a support-set based supervision approach. Our
motivation is that different clips in a video may share same
semantic entities. For example, given a sentence query ‘The
person pours some water into the glass’ and its correspond-
ing video, the person entity and glass entity appear through-
out the video, as shown in Fig. 2] and only in GT clips, the
action of ‘pour water’ occurs. Although there are no ‘pour
water’ happening in Non-GT clips, the semantics of them
are also similar with those of ground-truth ones, e.g., the se-
mantics of “The person pours some water into the glass’ is
much close to that of ‘The person hold a glass’, rather than
that of ‘Person put a notebook in a bag’. If we strictly push
away the representations of the Non-GT clips, the model
would only extract ‘pour water’ in the video and the text,
while ignoring ‘person’ and ‘glass’.

In order to make the learned representations of Non-
GT clips with the same entities also have a certain degree
of similarity with the corresponding text, we introduce a
support-set, defined as 5;, for each text L;. The clips in
S; normally have the same entities. In this work, we set
all clips in a video as the support-set of its corresponding
text, i.e., S; = {xi}]_,, where x; € RP is the embed-
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ding of v}. This is because in video grounding, clips in the
same video usually belong to the same scene, and most of
the people and things in those clips are similar or even the
same. Based on the support-set S;, we first compute the
similarity between all clips in .S; and L; and then the clip-
wise attention can be obtained as a softmax distribution over
clip indices:

i (X Ya) /7 @
U = ==
t Exesi e<x7Yi>/"'

where, (x},Y;) is the cosine similarity between x} and Y.
Then, we compute the weighted average of the embeddings
in .S; as follows:

T
Wi:Zai-xi. 5)
t=1

After acquiring w;, we can redefine the positive samples
and the negative samples in 3. Concretely, we set the
{(W:,Y:)}2 | as positive samples, and other pairs in the
batch as negative ones, i.e, N'; = {(W;, Y;)}i;. Then, the
contrastive objective can be defined as follows:

B BW;FYi/T
Econtrast — 10 — ,
; g ewTYi/T 4 Z B ex/Ty//T
(x',y")eN;

(6)

and the caption objective is:
1 B
gt == 5 3 logp (| ). ™

We name the model training with Eq. [6]and Eq. [7) as the

support-set based supervision. As Fig. 4] (b) shows, besides
pushing the sentence feature Y; and its corresponding GT
clip feature to be close, the representations of the same en-
tity (yellow cube) in both Non-GT clip features and the sen-
tence feature are also be attracted.
Comparison between [33] and Ours. The main differ-
ences with SS are two-fold: i) Motivations. Our goal is to
apply the cross-supervision to capture the relations between
the visual semantics and textual concepts. While [33]] aims
to improve video-text representations by relaxing the con-
trastive objective; ii) Solutions. In SS, the cross-captioning
objective is to relax the strict contrastive objective, hence
it’s an adversarial relationship actually. While in Scsc, our
two objectives are in a cooperative relationship because they
both aim to learn the video-text relations. Furthermore, our
contrastive objective is build on global video features en-
coded by support-set, while [33] applies a triplet ranking
loss based on local clip features.

Table 1. Ablation study of different supervision methods on the
Charades-STA dataset.

contrast caption Rankl1@ Rank5@
Model £ Lo 05 [ 07 | 05 | 07

2D-TAN [51] 50.62 | 28.71 | 79.92 | 48.52
v 54.77 | 31.63 | 86.28 | 55.07
2D-TAN+GTC v 51.72 | 29.35 | 83.66 | 52.12
v v 55.40 | 32.15 | 87.07 | 55.62
v 56.19 | 32.03 | 87.95 | 56.05
2D-TAN+SS v 53.12 | 30.05 | 85.19 | 53.28
v v 56.97 | 32.74 | 88.65 | 56.91

LGI [30] 59.46 | 35.48 - -

v 59.63 | 35.71 - -

LGI+GTC v 59.88 | 35.92 - -

v v 60.02 | 36.11 - -

v 60.09 | 36.32 - -

LGI+SS v 60.53 | 36.75 - -

v v 60.75 | 37.29 - -

3.4. Several Kinds of Support-Set

The support-set based supervision contains two basic op-
erations: (a) the construction of the support-set S;; and (b)
the function to map the support-set to a weighted embed-
ding w;. In this section, we explore three kinds of func-
tions to construct the support-set: (a) video-level support
set (V-SS): we set all clips in a video as the support, i.e.,
S; = {xi}L,; (b) ground-truth-level support set (GT-
SS), which only contains the GT clips, i.e., S; = M;; (c)
Non-GT level support set (Non-GT-SS): which only con-

tains the Non-GT clips, i.e., S; = M.

By these functions, we compare six ways as follows: (a)
cross-attention (CA). The function is computed by Eq.
and Eq. 5} (b) self-attention (SA). We first concatenate the
clips in S; along clip indices to obtain S;, then we compute
the similarity matrix of S; by Q; = SlT Si/7. The t-th
vector of Q; is q¢ € R”. Sum all the elements of g’ to
obtain the summed scalar z¢. Then we obtain the clip-wise
attention as follows:

_ et
3
@ == (®)
ZZEZi e*

where Z; is the set of all 2z} for Q;. Finally, W; can be
obtained by Eq.[5 (c) fully-connected layer (FC). In this
way, after concatenating the clips in S; along clip indices,
the concatenated feature S; is converted to w; by a fully-
connected layer. (d) Convolutional layer (Conv). Similar
to FC, we fed S; into a convolutional layer to acquire w;.
(e) Max-pooling (MP). In this way, after concatenating the
clips in S; along clip indices, the concatenated feature S; is
fed into a max-pooling layer to acquire w;. (f) Average-
pooling (AP). Similar to MP, we fed S; into a average-
pooling layer to acquire w;.
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Figure 5. (a) Comparison of the accuracy curve of different learn-
ing methods. (b) Comparison of the accuracy curve of different

kinds of support-set.

4. Experiments
4.1. Datasets

TACoS. TACoS is collected by Regneri et al. [36] which
consists of 127 videos on cooking activities with an average
length of 4.79 minutes for video grounding and dense video
captioning tasks. We follow the same split of the dataset as
Gao et al. [12] for fair comparisons.

Charades-STA. Charades is originally collected for daily
indoor activity recognition and localization [39], which
consists of 9,848 videos. Gao er al. [12] build the
Charades-STA by annotating the temporal boundaries and
sentence descriptions of Charades[39].
ActivityNet-Captions. ActivityNet [4]] is a large-scale
dataset which is collected for video recognition and tem-
poral action localization [25} 16} 13} 11,138,131} 134]]. Krishna
et al. [23] extend ActivityNet to ActivityNet-Captions for
the dense video captioning task.

4.2. Implementation details

Evaluation metric. For fair comparisons, we follow the
setting as previous work [12]] and evaluate our model by
computing Rank n@m. Specifically, it is defined as the
percentage of queries having at least one correct ground-
ing prediction in the top-n predictions, and the grounding
prediction is correct when its IoU with the ground truth is
larger than m. Similar to [51]], we evaluate our method with
specific settings of n and m for different datasets.

Feature Extractor. For a fair comparison, we extract video
features following previous works [51,149]. Specifically, We
use the C3D [42]] network pre-trained on Sports-1M [20]] as
the feature extractor. For Charades-STA, we also use VGG
[40], C3D [42] and I3D [5] feature to compare out results
with [12} 51]. We divided the video into segments and each
contains fixed number frames. The input of C3D network
is a segment with 16 frames for three datasets. When using
VGG feature for Charades-STA, the number of frames in a
segment is set to 4. Non maximum suppression (NMS) with
a threshold of 0.5 is applied during the inference. 7 is set

GT Video GT Video GT Video
@ (b) ()

Figure 6. Comparison of recalls of high-related video-text pairs
under different thresholds.

to 0.1. For Charades-STA, \; and A\ are set to 0.1, and for
TACoS, \; and )\, are set to 0.001.

Baseline Model. Our work is built on two current state-of-
the-art models for video grounding, 2D temporal adjacent
network (2D-TAN) [S1]] and local-global video-text inter-
actions (LGI) [30].

Training settings. We use Adam [21] with learning rate
of 1.6 x 10~2 and batch size of 256 for optimization. We
decay the learning rate with ReduceLROnPlateau function
in Pytorch [32]]. All of our models are implemented by Py-
Torch and trained under the environment of Python 3.6 on
Ubuntu 16.04.

4.3. Ablation Study

In this section, all presented results are on Charades-STA
[12]] with I3D [5] features. For convenience, we use ‘GTC’
and ‘SS’ to refer to GT clip and support-set based supervi-
sion in following experiments.

Comparison of different supervision methods. In this ab-
lation study (Table[T)), we compare different learning meth-
ods, proposed in Section 332} including GT clip based
supervision and support-set based supervision. It is clear
from Table [T} the performance of SS outperforms that of
GTC with large margins. What’s more, the contrastive ob-
jective LMt bring larger performance improvement than
the caption one L£¢%°", Combining both the contrastive ob-
jective and the caption objective, our model obtain the best
performance. The interactions of videos and text in 2D-
TAN [51] is Hadamard product, and those in LGI [30] is
in a coarse-to-fine manner which is more fine-grained than
2D-TAN. For 2D-TAN, the interaction and grounding mod-
ules are compute the similarity between video clips and text
to predict target intervals, which is very similar to the ob-
jective of cross-supervision. Hence, our method achieves
larger improvement in 2D-TAN. As Fig. [j] (a) indicates,
with an extra Cscs branch, besides the higher performance,
the model converges faster than the baseline method.

Comparison with different kinds of the support-set. In
this ablation study, we compare different kinds of construc-
tion methods and function methods of the support-set. Table
[]presents the performance of different kinds of the support-
set on the Charades-STA dataset. Specifically, we compare
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Table 2. Ablation study of different kinds of construction methods and function methods on the Charades-STA dataset.

Construction method Function method Rankl1@ Rank5Q
CA SA FC Conv MP AP| 05 0.7 0.5 0.7
v 56.97 | 32.74 | 88.65 | 56.91
v 54.88 | 30.98 | 86.56 | 54.92
V-SS v 5491 | 31.25 | 86.75 | 55.01
v 54.89 | 31.08 | 86.75 | 54.73
v 53.35 | 30.64 | 86.13 | 54.35
v | 53.14 | 30.36 | 86.10 | 54.13
v 5591 | 32.03 | 88.12 | 55.25
v 54.89 | 31.23 | 87.11 | 54.40
v 5490 | 31.17 | 87.10 | 54.85
GT-SS v 54.85 | 31.10 | 87.52 | 54.88
v 53.62 | 30.80 | 86.54 | 54.79
v | 5370 | 30.91 | 86.78 | 54.88
v 50.12 | 28.96 | 85.82 | 52.78
v 48.55 | 26.64 | 83.27 | 50.62
v 48.52 | 26.56 | 83.31 | 50.64
Non-GT-58 v 4829 | 2644 | 81.13 | 50.44
v 48.87 | 26.57 | 83.40 | 50.60
v | 4833 | 26.48 | 83.34 | 50.52

Table 3. Comparisons with state-of-the-arts on Charades-STA.

Rankl@ Rank5Q
Methods Feature 03 07 03 07
VAL [41] VGG | 23.12 | 9.16 | 61.26 | 27.98
ACL-K [14] VGG | 3048 | 12.20 | 64.84 | 35.13
TripNet [16] VGG | 36.61 | 14.50 - -
DRN [49] VGG | 4290 | 23.68 | 87.80 | 54.87
2D-TAN [51] VGG | 39.70 | 23.31 | 80.32 | 51.26
2D-TAN + ours VGG | 43.15 | 25.54 | 84.26 | 54.17
LGI [30] VGG | 41.72 | 21.48 - -
LGI + ours VGG | 43.68 | 23.22 - -
MAN [50] 13D 46.53 | 22.72 | 86.23 | 53.72
DRN [49] 13D 53.09 | 31.75 | 89.06 | 60.05
2D-TAN [51] 13D 50.62 | 28.71 | 79.92 | 48.52
2D-TAN + Ours 13D 56.97 | 32.74 | 88.65 | 56.91
LGI [30] 13D 59.46 | 35.48 - -
LGI + Ours 13D 60.75 | 36.19 - -

three types of construction methods: (a) V-SS, (b) GT-SS,
(c) Non-GT-SS and six ways of function methods: (a) CA,
(b) SA, (c) FC, (d) Conv, (e) MP, (e¢) AP (See details in
Section [3.4]). Our proposed method (V-SS + CA) achieve
the best performance. The V-SS way can make the learned
representation explore more similar entities in non-ground-
truth clips. CA aims to find the high similarity between
videos and text, while other function methods (e.g., SA,
FC, etc.) only considering the single modality information
(i.e, videos). Hence, CA is more effective in the support-
set. Since Non-GT-SS only contains non-ground-truth clips,
the learned representation of the videos and text would let
the ground-truth clips have dissimilar semantics, resulting
in poor performance in video grounding. The comparison
of accuracy curves presented in Fig. [5] (b).

Recalls of high-related video-text pairs. In order to verify

that the proposed approach can enhance the correlation be-
tween text and videos, we present the recalls of high-similar
video-text pairs under different thresholds (0.02, 0.04 and
0.06) in Fig.[] ‘Video’ indicates the average similarity be-
tween clips in the whole video and text, and ‘GT’ is the
average similarity between GT clips and text. It is clear
that, adding cross-supervision module can significantly im-
prove the similarity between the video and text. Support-set
based approach can have a more generalized representation,
compared with the GT clip based learning.

4.4. Comparison with the State-of-the-Arts

We conduct experiments on TACoS, Charades-STA
and ActivityNet-Captions datasets to compare with several
State-Of-the-Art (SOTA) approaches. From Table[3]and Ta-
ble[d] it clearly shows that the proposed method can largely
improve the SOTA models, i.e., 2D-TAN [51]] and LGI
[30], almost without any extra inference cost. We can also
see that Sscs achieve smaller gain with LGI. The reasons
may be that LGI is a regression based method that directly
regress the boundaries, while 2D-TAN is a comparison and
selection based method that compares text with dense pro-
posals and selects the best one. In Scsc, SS is built on a
contrastive objective, which has a similar spirit with 2D-
TAN, hence it achieves larger gains on 2D-TAN. Further-
more, with 2D-TAN, SS obtains larger gains by 6.35% and
4.24% on Charades and TACoS than that 2.16% on Activ-
ities. We think it because that Charades and TACoS have
static and smooth backgrounds and simple actions, while
ActivityNet is more complex and diverse. Thus the im-
provement on ActivityNet is relatively small.
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Table 4. Comparisons with state-of-the-arts on TACoS and ActivityNet-Captions.

TACoS ActivtiyNet-Captions
Methods Rankl@ Rank5Q Rankl@ Rank5Q
0.1 0.3 0.5 0.1 0.3 0.5 0.3 0.5 0.7 0.3 0.5 0.7
TGN [7] 41.87 | 21.77 | 18.9 | 53.40 | 39.06 | 31.02 | 43.81 | 27.93 - 4.56 | 44.20
ACRN [27] 2422 | 19.52 | 14.62 | 47.42 | 3497 | 24.88 | 49.70 | 31.67 | 11.25 | 76.50 | 60.34 | 38.57
CMIN [52] 3248 | 24.64 | 18.05 | 62.13 | 38.46 | 27.02 - - - - - -
QSPN [46] 25.31 | 20.15 | 15.23 | 53.21 | 36.72 | 25.30 | 52.13 | 33.26 | 13.43 | 77.72 | 62.39 | 40.78
ABLR [48] 3470 | 19.50 | 9.40 - - - 55.67 | 36.79 - - - -
DRN [49] - - 23.17 - - 33.36 - 4545 | 24.36 - 77.97 | 50.30
HVTG [8] - - - - - - 57.60 | 40.15 | 18.27 - - -
2D-TAN [16] 47.59 | 37.29 | 25.32 | 70.31 | 57.81 | 45.04 | 59.45 | 44.51 | 26.54 | 85.53 | 77.13 | 61.96
2D-TAN + Ours | 50.78 | 41.33 | 29.56 | 72.53 | 60.65 | 48.01 | 61.35 | 46.67 | 27.56 | 86.89 | 78.37 | 63.78
LGI [30] - - - - - - 58.52 | 41.51 | 23.07 - - -
LGI + Ours - - - - - - 59.75 | 43.62 | 25.52 - - -
person they arcalso | | person they're drinking 10 10
I drinking from a cup. | | a glass of water. ) y . ) "#;J s
e - ¥ .
04 W ’ 04 Fﬁg""’ )
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(a) Baseline (b) Ours

(a) Baseline

(b) GTC (©Ss
Figure 7. similarity matrix of (a) the baseline, (b) GTC and (c) SS.

We present 16 video-text sample pairs.

4.5. Qualitative analysis

In this section, we present some qualitative results on
Charades-STA. We present the similarity matrix of video-
text pairs in Fig.[7} It is clear that the baseline model can
not capture the semantic similarity of video-text pairs even
they come from the same sample (see Fig. |Z| (a) ). On the
contrary, the similarity score of videos and text from the
same sample would be higher than others. Compared with
GTC, SS can also capture the related semantics pairs, even
they are not from the same sample. As Fig. [/| shows, the
text in 4-th and 5-th samples have similar semantics, and the
similarity of the corresponding videos are also high, which
are not found in the baseline model and GTC.

Fig.[8|shows the successfully predicted time interval dis-
tributions. It is clear that most of the baseline model pre-
dicted time intervals are generally concentrated at the be-
ginning of the video, and the duration of the fragments are
about 20% — 40% of the total length of the video, as shown
in Fig. [] (a). Compared with the time intervals predicted
by the baseline model, the proposed method can find more
time intervals occurring in the middle of the videos, also the
duration of the time intervals are shorter, which is indicated
in Fig. [§] (b). This reason is that the proposed method can
learned better video-text representations, thus we can find

Figure 8. (a) The distributions of successfully predicted time in-
tervals by the baseline. (b) The distributions of our model addi-
tionally success-predicted time intervals, compared with the base-
line model.

more time intervals that are difficult to locate.

5. Conclusion

In this paper, we introduce a Support-Set Cross-
Supervision (Sscs) Module as an extra branch to video
grounding to extract the correlation between videos and
text. By conducting the contrastive and caption objective
to the clip-level and sentence features in a shared space,
the learned two-modality features are enforced to become
similar, only if the semantics of them are related. To ad-
dress the mutual exclusion of entities, we improve the cross-
supervision with the support-set to collect all important vi-
sual clues from the whole video. The experimental results
shows the proposed method can greatly improve the perfor-
mance of the state-of-the-art backbones almost without any
extra inference cost, and the ablation study verify the effec-
tive of the support-set.
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