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Abstract

In this work, we address the challenging task of referring
segmentation. The query expression in referring segmen-
tation typically indicates the target object by describing
its relationship with others. Therefore, to find the target
one among all instances in the image, the model must
have a holistic understanding of the whole image. To
achieve this, we reformulate referring segmentation as a
direct attention problem: finding the region in the image
where the query language expression is most attended
to. We introduce transformer and multi-head attention to
build a network with an encoder-decoder attention mech-
anism architecture that “queries” the given image with
the language expression. Furthermore, we propose a
Query Generation Module, which produces multiple sets
of queries with different attention weights that represent
the diversified comprehensions of the language expression
from different aspects. At the same time, to find the best
way from these diversified comprehensions based on visual
clues, we further propose a Query Balance Module to
adaptively select the output features of these queries for
a better mask generation. Without bells and whistles, our
approach is light-weight and achieves new state-of-the-
art performance consistently on three referring segmen-
tation datasets, RefCOCO, RefCOCO+, and G-Ref. Our
code is available at https://github.com/henghuiding/Vision-
Language-Transformer.

1. Introduction
Referring segmentation targets to generate segmentation

mask for the target object referred by a given query expres-
sion in natural language [10, 16, 15, 3]. As the referring
segmentation involves both natural language processing
and computer vision, it is considered as one of the most
fundamental and challenging multi-modal tasks. With
the recent success of learning methods, a lot of deep-
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Figure 1. Our method detects multiple emphasis or understanding
ways for one language expression, and produces a query vector
for each of them. We use each vector to “query” the image,
generating a response to each query. Then the network selectively
aggregates these responses, in which queries that provide better
comprehensions are spotlighted.

learning-based works are proposed in this area and have
achieved remarkable performance. However, there are still
many challenges left in this task. The objects in images
of referring segmentation are correlated in a complicated
manner while the query expression frequently indicates the
target object by describing the relationships with others,
which requires a holistic understanding on the image and
language expression. Another challenge is caused by
the varieties of objects/images as well as the unrestricted
expression of languages, which brings a high degree of
randomness.

Firstly, to address the challenge of complicated corre-
lations in the given image and language, we explore to
enhance the holistic understanding of multi-modal features
by building the network with global operations, in which
direct interactions are modeled among all elements (e.g.,
pixel-pixel, word-word, pixel-word). Currently, the Fully
Convolutional Network (FCN)-like framework [17, 5, 6, 4]
is widely used in referring segmentation methods [10, 22].
They usually perform convolution operations on the fused
(e.g., concatenated) vision-language features to generate
the target mask. However, the long-range dependencies
modeling in regular convolution operation is indirect, as
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its large receptive field is typically achieved by stacking
small-kernel convolutions. This oblique process brings in-
efficiencies to information interactions among pixels/words
in a distance [27], thus is undesirable for referring seg-
mentation models to understand the global context of the
image [28]. In recent years, the attention mechanism
is gaining respectable popularity in the computer vision
community for its advantage in building direct interaction
among all elements, which greatly helps the model in
capturing the global semantic information. Some previous
referring segmentation works also use attention to alleviate
the long-range dependency issues [28, 11, 24]. However,
most of them only utilize the attention mechanism as
auxiliary modules based on the FCN-like pipeline, which
limits their ability to model the global context. In this
work, we reformulate the referring segmentation problem
in terms of attention and reconstruct the current FCN-like
framework with Transformer [25]. We generate a set of
query vectors from language features using vision-guided
attention, and use these vectors to “query” the given image
and generate the segmentation mask from the responses, as
shown in Fig. 1. This attention-based framework enables us
to implement global operation among multi-modal features
in every stage of computation, making the network better
at modeling the global context of both vision and language
information.

Secondly, to deal with the randomness caused by the
varieties of objects/images and the unconstrained expres-
sion of languages, we propose to comprehend the language
expression in different ways incorporating with vision fea-
tures. In many previous referring segmentation methods,
such as [19, 29], the language self-attention is often used to
extract the most informative part and emphasized word(s)
in the language expression. For these methods, their
linguistic understanding is derived alone from the language
expression itself without interacting with the image, so that
they cannot distinguish which emphasis is more suitable
and effective that better fit a particular image. Thus their
detected emphases might be inaccurate or inefficient. On
the other hand, in most previous vision-transformer works,
queries for the transformer decoders are usually a set of
fixed learned vectors, each of which is used to predict
one object. Experiments show that each query vector has
its own operating modes and specializes in certain kinds
of objects [1]. In these works with fixed queries, there
must imply a hypothesis that objects in the input image are
distributed under some statistic rules, which does not match
the randomness of referring segmentation. To address these
issues, we propose a Query Generation Module (QGM)
to produce multiple different query vectors based on the
language, and with the aid of vision features. Each vector
comprehends the language expression in its own way. With
the proposed QGM, we improve the diversity of ways to

understanding the image and query language, enhancing the
network’s robustness in dealing with highly random inputs.
At the same time, to ensure the generated query vectors are
valid and find the more suitable comprehension ways to the
image and language, we further propose a Query Balance
Module to adaptively select the output features of these
queries for a better mask generation.

Our approach builds deep interactions between language
and vision features at different levels, greatly enhancing
the fusion and utilization of multi-modal features. Besides,
the proposed module is lightweight and its parameter size
is roughly equivalent to seven convolution layers. In
summary, our main contributions are listed as follows:

• We design a Vision-Language Transformer (VLT)
method to build deep interactions among multi-modal
information and enhance the holistic understanding to
vision-language features.

• We propose a Query Generation Module that un-
derstands the language from different comprehension
ways, and a Query Balance Module to focus on the
suitable ways.

• The proposed method achieves new state-of-the-art on
multiple datasets consistently, especially on hard and
complex datasets.

2. Related Works
2.1. Referring Segmentation

The aim of the referring segmentation is to find the target
object in an image given an natural language expression
describing its properties. The task is first proposed by Hu
et al. in [10], in which a set of fused features are extracted
by concatenating the linguistic features extracted by LSTM
and vision features extracted by CNN. Then, a fully con-
volutional network (FCN) is applied on the fused feature,
proving the feasibility of this problem. In [16], in order to
make use of each word in the referring sentence, Liu et al.
proposed a recurrent network based on multimodal LSTM
(mLSTM). The framework model each word in every recur-
rent stage, so that the language feature is better fused with
vision features along all the forward process. In [29], Yu et
al. proposed a two-stage method which first extract multiple
instances using an instance segmentation netwrok Mask R-
CNN [8] then utilizes language features to select the target
from the extracted instances. Luo et al. [19] proposed a
framework which jointly learns to solve two tasks: referring
expression comprehension (REC) [20, 9] and segmenta-
tion (RES), achieving remarkable performance. Besides,
with the attention-based method getting into people’s sight,
researchers find that the attention mechanism preciously
suit the formulation of the task. This is shown by a
number of works, such as [28] designed a Cross-Modal
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Figure 2. The overview of the network framework. Firstly, the input image and language expression are transformed into feature spaces.
Features then processed by a transformer encoder-decoder model, generating a set of query responses. These responses are then decoded
to output the target mask. “Pos. Emb.”: Positional Embeddings.

Self-Attention (CMSA) model which adaptively focus on
informative words in the query expression and the important
part of the input image, and [11] utilizes a pair of attention
module namely language-guided visual attention module
and vision-guided linguistic attention module to learn the
relationship between multi-modal features.

Unlike previous methods that are built upon FCN-like
networks, we replace the prediction and identification head
with a fully attention based architecture, which helps us to
easily model the long-range dependencies in the image.

2.2. Attention and Transformer

The Transformer model, which is a sequence to se-
quence deep network architecture that uses only the at-
tention mechanisms, is first introduced by Vaswani et al.
in [25]. The transformer model quickly gain its attraction
in the Natural Language Processing (NLP) and shows
promising performance on several major NLP tasks such as
machine translation [25], language modeling [14], question
answering [2]. In recent years, the transformer is also being
adopted in the computer vision community and has shown
potential on various tasks such as object detection [1],
image recognition [7], human-object interaction [26], se-
mantic segmentation [32], etc. Unlike CNN that focus on
local pixels (kernels), transformer is appreciated because its
ability on modeling global information.

3. Methodology
The overall architecture of our approach is shown in

Fig. 2. The network takes an image I ∈ RH′×W ′×3 and an
language expression T = {wi}i=1,...,t as input, where H ′

and W ′ are the height and width of the input image respec-
tively, t is the length of the language expression. Firstly,
the input image and language expression are mapped into
the feature space. Next, language and vision features
are processed together by the Query Generation Module
(QGM) to produce a set of language query vectors, which
represent different comprehensions about the image and
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Transformer Decoder

Fq

Linear(Wv)
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Vision 
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+

Attention 
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Figure 3. Architecture of the Query Generation Module. The
module takes language features Ft and vision feature Fvr as input,
and generate a set of query vectors Fq .

language expression. At the same time, vision features are
sent to the transformer encoder to generate a set of memory
features. The query vectors obtained from QGM are used
to “query” the memory features, and the resulting responses
from decoder are then selected by a Query Balance Module.
Finally, the network outputs a mask Mp for the target object.

3.1. Query Generation Module

In most previous vision-transformer works [1], queries
for the transformer decoder are usually a set of fixed learned
vectors, each of which is used to predict one object and
has its own operating mode, e.g., specializes in objects
of certain kinds or located in certain regions. In these
works with fixed queries, there must imply a hypothesis
that objects in the input image are distributed under some
statistic rules. This is proved to work in other related tasks
such as object detection and panoptic segmentation.

For referring segmentation, the target-of-interest indi-
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Figure 4. The preparation process of vision features in the Query
Generation Module. The module converts regular 2D vision
feature into a set of sequential features.

cated by the input language can be any instance in the
image. Since both image and language expression are un-
constrained, the randomness of the target object’s properties
is significantly high. Thus, fixed query vectors, like in most
other vision-transformer works, are not enough to represent
the properties of the target object. Instead, these properties
are hidden in the language expression, e.g., keywords like
“big/small”, “left/right”. To extract the key information and
address this high randomness in referring segmentation, we
propose a Query Generation Module to adaptively produce
the query vectors online according to the input image and
language expression with the help of image information, as
shown in Fig. 3. Also, in order to let the network learn
different aspects of information and enhance the robustness
of the queries, we generate multiple queries though there is
only one target instance.

The Query Generation Module takes language feature
Ft ∈ RNl×C and raw vision feature Fvr ∈ RH×W×C as
input. In Ft, the i-th vector is the feature vector of the word
wi, which is the i-th word in the input language expression.
Nl in Ft is fixed by zero-padding. The module aims
to output Nq query vectors, each of which is a language
feature with different attention weights guided by vision
information.

Firstly, the vision features are prepared as shown in
Fig. 4. We reduce the feature channel dimension size of the
vision feature Fvr to query number Nq by three convolution
layers, resulting in Nq feature maps. Each of them will
participate in the generation of one query vector. The
feature maps are then be flattened in the spatial domain,
forming a feature matrix Fvq of size Nq × (HW ), i.e.,

Fvq = Flatten(Conv(Fvr))
T (1)

It is known that for a language expression, the im-
portance of different words is different. Some previous
works address this issue by measuring the importance of
each word. For example, [19] gives each word a weight
and [29, 12] defines a set of labels, e.g., location, attribute,
entity, and finds the degree of each word belongs to different
labels. Most works derive the weights by the language
self-attention, which does not utilize the information in
the image and only outputs one set of weights. But in

Input: "The large circle on the left"

(a) (b)

Figure 5. An example of one sentence having different emphasis.
For different images, the informative degree of words “large” and
“left” are different.

practice, a same sentence may have different understand-
ing perspectives and emphasis, and the most suitable and
effective emphasis can only be known with the help of
the image. We give an intuitive example in Fig. 5. For
the same input sentence “The large circle on the left”, the
word “left” is more informative for the first image but the
“large” is more useful for the second image. In this case,
language self-attention cannot differentiate the importance
between “large” and “left” and hence can only give both
words high attention weights, making the attention process
less effective. Therefore, in the Query Generation Module,
we comprehend the language expression from multiple
aspects incorporating the image, forming Nq queries from
language. Different queries emphasize different words,
and more suitable attention weights are then be found and
enhanced by a Query Balance Module.

To this end, we derive the attention weights for language
features Ft by incorporating the vision features Fvq . Firstly,
we apply linear project on Fvq and Ft. Then, for the n-
th query, we take the n-th vision feature vector fvqn ∈
R1×(HW ), n = 1, 2, . . . , Nq and language feature of all
words. Let the feature of the i-th word denote as fti ∈
R1×C , i = 1, 2, . . . , Nl. The n-th attention weight for the
i-th word is the product of projected fvqn and fti:

ani = σ(fvqnWv) σ(ftiWa)
T (2)

resulting in a scalar ani. Wv ∈ R(HW )×C and Wa ∈
RC×C are learnable parameters and σ is activation function.
Softmax function is applied across all words for each query
as normalization.

For the n-th query, a set of attention weights for all words
are formed up from ani to An ∈ R1×Nl , n = 1, 2, . . . , Nq .
It consists of a set of attention weights for different words,
and the different queries may attend to different parts of
the language expression. Thus, Nq query vectors focus on
different emphasis, or different comprehension ways, of the
language expression.

Next, the derived attention weights are applied on the
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language features:

Fqn = Anσ(FtWt) (3)

where Wt ∈ RC×C are learnable parameters. Each
Fqn is an attended language feature vector guided by
vision information and serves as one query vector to the
transformer decoder. Mathematically, each query is a
projected weighted sum of features of different words in
the language expression, therefore it remains properties as
a language feature, and can be used to query the image.

3.2. Query Balance Module

We get Nq different query vectors from the proposed
Query Generation Module. Each query represents a spe-
cific comprehension of the input language expression. As
we discussed before, both the input image and language
expression are of high randomness. Thus, it is desired to
adaptively select the better comprehension ways and let the
network focus on the more reasonable and suitable compre-
hension ways. On the other hand, as the independence of
each query vector is kept in the transformer decoder [1] but
we only need one mask output, it is desired to balance the
influence of different queries to the final output. Therefore,
we propose a Query Balance Module to adaptively assign
each query vector a confidence measure that reflects how
much it fits the prediction and the context of the image. The
architecture is shown in Fig. 6.

The Query Balance Module takes the query vectors
Fq from the Query Generation Module and its response
from the transformer decoder, Fr, which is of the same
size as Fq . Let Frn represent the corresponding response
to Fqn. In the Query Balance Module, the query and
its corresponding response are first concatenated together.
Then, a set of query confidence levels Cq of size Nq × 1
is generated by two consecutive linear layers. Each scalar
Cqn shows how much the query Fqn fits the context of its
prediction, and controls the influence of its response Frn to
the mask decoding. The second linear layer uses sigmoid
as an activation function to control the output range. Each
response Frn is multiplied with the corresponding query
confidence Cqn, and sent for mask decoding.

3.3. Network Architecture

Encoding. Since the transformer architecture only ac-
cepts sequential inputs, the original image, and language
input must be transformed into feature space before sending
to the transformer. For vision features, following [1], we
use a CNN backbone for image encoding. We take the
features of the last three layers in the backbone as the
input for our encoder. By resizing the three sets of feature
maps to the same size and summing them together, we get
the raw vision feature Fvr ∈ RH×W×C , where H,W is
the spatial size of features, and C is the feature channel
number. For language features, we first use a lookup table
to convert each word into word embeddings [31], and then
utilize an RNN module to convert the word embedding to
the same channel number as the vision feature, resulting
in a set of language features Ft ∈ RNl×C . Fvr and Ft

are then sent to the Query Generation Module as vision and
language features. At the same time, we flatten the spatial
domain of Fvr into a sequence, forming the vision feature
Fv ∈ RNv×C , Nv = H × W , which will be sent to the
Transformer Module.

Transformer Module. We use a complete but shallow
transformer to apply the attention operations on input fea-
tures. The network has a transformer encoder and a decoder,
each of which has two layers. Each layer has one (encoder)
or two (decoder) multi-head attention modules and one
feed-forward network, as defined in [25]. The transformer
encoder takes the vision feature Fv as input, deriving the
memory features about vision information Fm ∈ RNv×C .
Before sending to the encoder, we add a fixed sine spatial
positional embedding on Fv . In our experiments, we then
multiply Fv with the final state of the language features as in
[19] to enrich the information in vision features. Fm is then
sent to the transformer decoder as keys and values, together
with Nq query vectors produced by the Query Generation
Module. The decoder queries the vision memory feature
with language query vectors and outputs Nq responses for
mask decoding.

Mask Decoder Module. The Mask Decoder consists of
three stacked 3×3 convolution layers for decoding followed
by one 1 × 1 convolutional layer for outputting the final
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Table 1. Comparison with Convolutional Networks in terms of parameter size and performance. The “#params” represents the number of
trainable parameters in our Transformer and its substitute, a module with seven 3×3 convolutional layers.

Type #params IoU Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9
7 Conv Layers ∼ 16.6M 44.28 49.54 42.16 35.24 25.98 10.47
Transformer ∼ 17.5M 49.36 55.84 50.79 41.68 29.96 10.76

Table 2. Comparison of our query generation method with other related methods. “Ft”: use the language features of all words as queries.
“Learnt”: queries are parameters learnt in training while fixed in testing, similar with [1].

No. Method IoU Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9
1 Ft 45.05 52.69 46.08 36.20 20.97 3.42
2 Learnt 42.99 49.85 42.38 31.52 17.14 2.41
3 Ours 49.36 55.84 50.79 41.68 29.96 10.76

segmentation mask. Upsampling layers can be optionally
plugged in between layers to control the output size. To
demonstrate the effectiveness of the transformer module
more clearly, in our implementation, the Mask Decoding
Module does not use any former CNN features. We use the
Binary Cross Entropy loss on the output mask to guide the
network training.

4. Experiments
4.1. Implementation Details

Experiment Settings. We strictly follow previous
works [19, 29] for experiment settings, including preparing
the Darknet-56 backbone as the CNN encoder. Input
images are resized to 416 × 416. Each Transformer block
has 8 heads, and the hidden layer size in all heads is
set to 256. The maximum length for the input language
expression is set to 15 for RefCOCO and RefCOCO+ and
20 for G-Ref. We train the network for 50 epochs using the
Adam optimizer with the learning rate λ = 0.001. With the
shallow transformer architecture, we are able to train the
model with a large batch size of 32 per GPU with 32GB
VRAM.

Metrics. We use two metrics for experiments: mask IoU
and Precision@X . The IoU metrics show the quality of
the output mask which reflects the overall performance of
the methods, including both targeting and mask generating
abilities. The Precision@X reports the successful targeting
rate at the IoU threshold X , which focuses on the targeting
ability of the method.

4.2. Datasets

We evaluate our approach on three commonly used
datasets: RefCOCO, RefCOCO+ [30] and G-Ref [21, 23].

RefCOCO & RefCOCO+ (UNC/UNC+) [30] are two
of the largest and most commonly used datasets for re-
ferring segmentation. The RefCOCO dataset has 19,994
images with 142,209 referring expressions for 50,000 ob-
jects while the UNC+ dataset contains 19,992 images with
141,564 expressions for 49,856 objects. Some kinds of
words, e.g., words about absolute locations, are “forbidden”

1 2 4 8 16 32
Query Number

46

48
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54

56

IoU
Prec@0.5

Figure 7. Performance gain by increasing the query number Nq .
The gray points are performance without the Query Balance
Module (QBM).

in the RefCOCO+ dataset, thus it is considered to be more
challenging than the RefCOCO dataset.

G-Ref [21, 23] is another commonly used dataset. It
contains 26,711 images with 104,560 expressions referring
to 54,822 objects. Compared to RefCOCO and RefCOCO+,
the G-Ref has a longer average sentence length and richer
word usage. Notably, there are two partitionings for
this dataset: the Google partitioning [21] and the UMD
partitioning [23]. The UMD partitioning has both validation
set and test set, but the test set of the Google partitioning is
not publicly released. We report the performance of our
method on both kinds of partitioning.

4.3. Ablation Study

To better demonstrate the performance of our model on
hard and complex scenarios, we do the ablation study on a
more difficult dataset, the testB split of the RefCOCO+.

Parameter Size. We show that only a tiny transformer
network can be an alternative to convolution networks
while achieving better performance in our framework. In
order to show the scale of our network and prove the
effectiveness of the transformer module, we compare the
performance and parameter size of our method with regular
conv-nets in Table 1. In the experiment, we replace the
whole attention-based modules, including the transformer
module, the Query Generation Module, and the Query
Balance Module with stacked 3× 3 convolution layers that
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Table 3. Influence of Query Numbers. ∗: without Query Balance Module
Nq IoU Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9

1 44.83 50.17 43.94 34.75 21.64 4.66
2 47.07 52.85 47.31 39.66 28.90 8.30
4 46.79 53.06 47.54 40.38 28.23 8.92
8 49.04 55.57 50.58 44.24 32.99 12.62

16 49.36 55.84 50.79 41.68 29.96 10.76
32 49.27 55.57 50.48 44.43 33.87 12.50

16∗ 48.94 55.41 50.32 43.84 32.56 12.99

Table 4. Experimental results of the IoU metric, and comparison of other methods with ours. U: UMD split. G: Google split.
RefCOCO RefCOCO+ G-Ref

val test A test B val test A test B val (U) test (U) val(G)
DMN [22] 49.78 54.83 45.13 38.88 44.22 32.29 - - 36.76
RRN [15] 55.33 57.26 53.93 39.75 42.15 36.11 - - 36.45
MAttNet [29] 56.51 62.37 51.70 46.67 52.39 40.08 47.64 48.61 -
CMSA [28] 58.32 60.61 55.09 43.76 47.60 37.89 - - 39.98
BRINet [11] 60.98 62.99 59.21 48.17 52.32 42.11 - - 48.04
CMPC [12] 61.36 64.53 59.64 49.56 53.44 43.23 - - 39.98
LSCM [13] 61.47 64.99 59.55 49.34 53.12 43.50 - - 48.05
MCN [19] 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40 -
CGAN [18] 64.86 68.04 62.07 51.03 55.51 44.06 51.01 51.69 46.54
VLT (ours) 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65 49.76
Prec@0.5 76.20 80.31 71.44 64.19 68.40 55.84 61.03 60.24 56.65

have similar parameter sizes. It shows that the parameter
size of our attention-based module only roughly equivalent
to 7 convolutional layers while having a much superior
performance. The transformer module outperforms the
7 Conv module with over 5% margin in IoU, and 7%
margin in Prec@0.5. This proves the effectiveness of the
transformer module.

Query Generation. In this section, we compare the
Query Generation Module with other methods for generat-
ing query vectors. The results are reported in Table 2. The
Query Generation Module outperforms both methods with
a large margin at about 3% - 6%. In the first experiment,
we directly send the language features into the transformer
decoder as the query. Specifically speaking, the input
language expression is processed by an RNN network, then
the output for each word is used as one query vector. It can
be seen that because that information between words is not
sufficiently exchanged, its performance is not so satisfying.
This shows that the Query Generation Module effectively
understands the sentence and generates valid attended lan-
guage features guided by vision information. Secondly, we
use the most common method, i.e. the query vectors are
learned during training and fixed during inference. In the
experiment, at the beginning of the training, we set 16 query
vectors that are initialized with uniform distribution, and
train them together with other parts of the network. It is
shown that the learned fixed query vector cannot represent
the target object as effectively as online produced queries
by the Query Generation Module.

Query Number. To show the influence of the query

number Nq , we report the network’s performance with dif-
ferent numbers of queries in Fig. 7 and Table. 3. The result
shows that though only one mask is output, multiple queries
are still desired for the transformer network. From the
results, a larger query number brings a notable performance
gain of about 5% from 1 query to 16 queries. Though
the IoU performance of 4 queries is slightly lower than 2
queries, from the Pr@0.5 it can be seen that its detection
performance is still higher. The performance gain slows
down after the query number is larger than 8, thus we
choose 16 as the default query number in our implemen-
tation. This also shows that multiple queries generated by
the Query Generation Module represent different aspects
of information. Also, when the Query Balance Module is
removed, there is a performance loss of ∼ 1%, proving the
effectiveness of the Query Balance Module.

4.4. Comparison with State-of-the-art

In Table 4, we compare our proposed Vision-Language
Transformer (VLT) approach with previous state-of-the-art
methods on three widely-used datasets. It can be seen that
our method outperforms other methods on all datasets. On
the RefCOCO dataset, the IoU performance of our method
is higher than other methods with ∼1% gain. Furthermore,
on the more difficult and complex dataset RefCOCO+,
our method achieves a more notable performance gain of
around 5%, especially on the testB split. On another
hard dataset G-Ref where the average length of language
expression is longer, our method also achieves a higher
IoU with a margin of about 2%-5%. This shows that the

16327



Image (a) Image (b)

Image (c)
Image (d)

Image (e) Image (f)

"White bowl on corner" "Bowl of carrots" "Black cat" "Lighter color cat"

"Guy with stripes" "White shirt"
"Floral pattern" "Green shirt"

"Curled tail" "Elephant with rider" "woman at 9 o'clock with 
white coat" "Man kneeling in gray suit"

Figure 8. (Best viewed in color) Example outputs. For each set of images, the first one shows the input image, and captions under other
images shows the input language expressions.

P P

(a) (b)

Figure 9. Visualizations of: (a). the attention map of point P in
the transformer encoder; (b). different query vectors Fq .

proposed approach has good abilities on hard cases and
long expressions. We assume the reason is that, on the
one hand, long and complex sentences usually contain more
information and more emphasis, and our Query Generation
and Balance Module can detect multiple emphasis and find
the more informative ones. On the other hand, harder cases
also may contain complex scenarios where needs a global
view, and the multi-head attention is more suitable for this
problem as a global operator.

4.5. Visualization and Qualitative Results

We demonstrate example outputs of the method in Fig. 8.
To clearly show the identifying ability of the method, for
each example set, we show the segmentation results of one
image with different input query expressions. Image (a)
and (b) are two direct cases where the language expression
describes the location or color of the target. From the
second expression of Image (b), it can be seen that our
method is able to process the comparative words (lighter).
Image (c) and (d) show the method’s ability on understand-
ing the attribute words such as “stripes” and relatively rarer
words, e.g. “floral”. In Image (e), the method successfully

identifies the target by expression describing the interaction
between objects, i.e. “Elephant with rider”. The Image (f) is
a photo of a group of people, where all instances distribute
densely in the image in a complicated layout. Our method
still managed to extract the target with difficult language
expressions that contain multiple aspects of information,
such as direction (9 o’clock), attributes (white coat) and
posture (kneeling).

Next, we extract an attention map from the second
layer of the transformer encoder of one point, as shown
in Fig. 9(a). It can be seen that the point from one
instance attends to other related instances across the image,
showing that the transformer successfully extracts long-
range dependencies in one single layer. Fig. 9(b) shows
some query vectors Fq (see Fig. 3 and Eq. (3)), which
illustrates the diversity of query vectors.

5. Conclusion

In this paper, we address the difficult task of referring
segmentation by using the attention networks to alleviate
the global information exchange problem in conventional
convolutional networks. We reformulate the task to an
attention problem and propose a framework that exploits
the transformer to perform attention operations. To solve
the problem of ambiguous referring sentence due to the un-
known emphasis, we propose a Query Generation Module
and a Query Balance Module to comprehend the referring
sentence with the help of the referred image. The proposed
model outperforms other methods with a large margin on
three widely used datasets.
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