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Abstract

Despite the success of self-supervised representation
learning on planar data, to date it has not been studied
on 360° images. In this paper, we extend recent advances
in contrastive learning to learn latent representations that
are sufficiently invariant to be highly effective for spherical
saliency prediction as a downstream task. We argue that
omni-directional images are particularly suited to such an
approach due to the geometry of the data domain. To ver-
ify this hypothesis, we design an unsupervised framework
that effectively maximizes the mutual information between
the different views from both the equator and the poles. We
show that the decoder is able to learn good quality saliency
distributions from the encoder embeddings. Our model com-
pares favorably with fully-supervised learning methods on
the Salient360!, VR-EyeTracking and Sitzman datasets. This
performance is achieved using an encoder that is trained in
a completely unsupervised way and a relatively lightweight
supervised decoder (3.8 × fewer parameters in the case of
the ResNet50 encoder). We believe that this combination of
supervised and unsupervised learning is an important step
toward flexible formulations of human visual attention. The
results can be reproduced on GitHub

1. Introduction

Unlike traditional media, omni-directional images (ODIs)
provide users with the ability to explore different regions of
the viewing sphere. The average person’s head movements
(HM) are typically a good prediction of the most probable
viewport localized within the sphere, while eye movements
(EM) reflect regions-of-interest (RoIs) inside the predicted
viewports. Thus, when predicting the most salient pixels for
360° images, it is necessary to predict both HM and EM [68].
Despite remarkable advances in the field of visual attention
[34, 6, 68], existing approaches for 360° saliency prediction
are still limited in scope/power for two main reasons.

First, all previous state-of-the-art 360° saliency static

*Equal contribution.

Figure 1. Given a set of 360° images and associated projections, a
deep representation is learnt by maximizing the mutual information
between views of the same scene in the embedding space, while
discarding views of different scenes.

approaches are trained end-to-end in a supervised manner.
This limits their capacity to leverage unlabelled data. Com-
pared to the large-scale 2D video/image saliency datasets
[6] (i.e., up to 10000 images / 1000 video sequences), 360°
video/image HM/EM datasets are rather small. This is due
to the complex annotation process, which limits the capacity
of the fully supervised approaches. Therefore, exploiting
unlabelled data for learning better features is critical, and
intuitively a good design to follow. Second, most previous
approaches apply a CNN on each patch/cube resulting from
the equi-rectangular (ERP) and cube map (CMP) projections.
The former suffer from geometric distortions near the poles,
whereas the latter stretch the salient regions into different
cube faces, forcing the model to lose the global contextual
information. These methods are also of high computational
complexity, which may limit their applicability.

Modeling visual attention in ODIs using a representation
learning function (an encoder) has the core objective of dis-
covering useful representations conditioned by the spherical
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domain definition of the input. Using a simple convolutional
encoder applied on non-euclidean data is often insufficient
for learning good quality representations. Indeed the fil-
ters will produce a weak response to the signal associated
with distorted regions, mostly in the poles (i.e. the Zenith
and Nadir), decreasing the prediction ability. We leverage
the mutual information (MI) maximization approach and
show that maximizing average MI between the representa-
tion and local regions of the input (e.g. projections related
to the poles) improves the expressive power of the encoding
function for the downstream task of saliency prediction.

A powerful recent paradigm for estimating MI is con-
trastive learning based on noise contrastive estimation (NCE)
[28], where multiple views of the same scene are brought to-
gether in embedding space, while pushing apart views from
different scenes. Additionally, as the choice of the views is
important for contrastive learning, 360° data offers a new set
of choices for more effective MI estimation. The projections
used in the scope of this work are task-relevant, but also,
make the optimization problem harder, since they are not as
susceptible to optimization short-cuts [22] as simple augmen-
tations like color jitter and horizontal flips. This improves
the expressive power of the encoder. This also motivates us
to discard the use of CMP at training/inference, as we argue
that the encoder is inherently sensitive to the signal coming
from the Zenith and Nadir regions.

Our goal in this paper is to learn representations that cap-
ture signal shared between a support image V1 and its corre-
sponding projections V2 and V3 as shown in Figure 1. This is
achieved by maximizing the agreement between global and
local representations of support images and its projections
respectively. The approach is inspired from the notion of
mutual information (MI) maximization as proposed in Deep
Info Max (DIM) [32] and Augmented Multi-scale DIM [3];
however, we introduce some important differences. First, we
add self-attention to induce a soft feature selection mecha-
nism over local representations (i.e. intermediate activation
maps). Second, we formulate the total loss (Section 3.2)
in a way to induce invariance to projections as in [49] and
maximize the MI across different augmented (projected)
views. Finally, unlike (AMDIM), instead of relying on batch
sizes for negative samples, a memory bank is adopted for
computational efficiency. Our contributions are as follows:

• We propose a framework to extend the idea of
contrastive/self-supervised learning to a new data do-
main, specifically 360° images, and show how it can be
effectively used for a regression downstream task rather
than a simple recognition task.

• Through extensive evaluation as shown in Table 1, we
show that contrastive learning can be exploited for
saliency prediction, and furthermore that it performs on
par with fully supervised methods.

• Our approach addresses one of the key challenges en-
countered when predicting 360° saliency by excluding
any use of CMP. The design implicitly embeds the geo-
metric specifications in the model weights.

• A single subsequent stream of learning on the equi-
rectangular projection (ERM) images significantly re-
duces the computational cost (8× faster than the most
efficient model among other 360° saliency approaches).

2. Related Work
This section reviews important works related to atten-

tion modelling for 360° images, and contrastive learning in
general. For the former, we focus on works related to the pre-
diction of the HM/EM saliency maps in 360° images, which
can be grouped into heuristic and data-driven approaches.

Visual attention modelling for ODIs. The authors of
[21] introduced the fused saliency map (FSM) approach for
HM saliency prediction to ODIs, where the input 360° im-
age is rotated by several angles and then projected as a set
of 2D patches using the ERP. SALICON [36] (a SoTA 2D
image saliency prediction model) is applied to each patch
separately and the FSM approach fuses local saliency maps
to generate the final prediction. The motivation of the ap-
proach introduced in [47] is to reduce the border artifact
after sphere-to-plane projection. The authors applied a 2D
saliency model on two CMPs:

wface(iface, jface) =
1

1 +
(

max{iface,jface}2

0.3Lface

)10 , (1)

where (iface, jface) is the pixel coordinate representing the
origin at the center of the cube face and Lface is the width
of the cube face. The final prediction is a weighted average
of the saliency maps produced from each cube.

Unlike previous approaches, [59] combined both the ERP
and CMP, for better reducing the negative impact of border
artifacts. The former swaps the left and right halves of the
image to reduce the distortions on the vertical sides. 2D
saliency prediction approaches are applied to obtain two
saliency maps, corresponding to the top and bottom faces of
the cube, after incorporating CMP. The final saliency map is
obtained by pixel-wise maximum multiplication as a method
for fusing the two ERP and CMP generated maps.

Other approaches [39, 44, 19], adjusted predictions on
the extracted view-ports rather than ERP/CMP projections,
assuming that view-ports feature fewer geometric distortions.
The main challenge is how to project several view-ports back
into the final spherical saliency map. Rather than adapting
2D saliency prediction approaches on ODIs, some works
[1, 61, 74, 26, 4] proposed the extraction of handcrafted low-
level features such as hue, saturation, luminance, texture,
color channels, boundary connectivity, but also high-level
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features such as skin, faces, and cars. The low- and high-
level maps are integrated to obtain the final saliency map.

Few end-to-end learning models have been proposed for
360° saliency. The SaltiNet [2] model is initialized with
the pre-trained parameters of SalNet [54], and then trained
over the Salient360! dataset using the binary cross entropy
(BCE) loss. The SalNet360 [50] approach trained SalNet
on the cube faces of a 360° image under CMP. Then, a fully
convolutional network (FCN) is adapted to fuse the spherical
coordinates of the cube faces with the extracted saliency
maps. The work in [12] proposed rotating the 360° image
at different CMPs with several angles, then SalGAN [53] is
fine-tuned on the Salient360! dataset using these projections.
Unlike previous DNN approaches, [60] explicitly learns the
equator bias with a layer in the proposed CNN architecture,
which acts on the viewports for generating the final saliency
map of the 360° image. ATSAL [20] combines a latent
attention mechanism that allows the network to focus on the
most relevant parts of the input space, with expert instances
of SalEMA [42] for each patch location produced by the
CMP, to learn effective features for saliency modelling.

It is clear from the above review that the models targeting
HM/EM 360° image visual attention modeling share the
same core concept of applying a CNN on patches from
ERP/CMP projections. As outlined above, this design is
conceptually limited, and is computationally demanding at
the inference stage. The contributions of this paper attempt
to better address these limitations.

Contrastive learning has become prominent in recent
years due to its ability to exploit large-scale unlabelled data.
Contrastive learning [38, 35] refers to learning by compari-
son where the final objective is based on some variations of
Noise Contrastive Estimation [28, 29]. Based on this idea of
contrastive similarity, the authors in [17] learn a face embed-
ding for a facial verification task, which was then referred
to as pair loss as it required distance between negative pairs
to be larger than a fixed margin (m). The authors in [14, 65]
proposed the triplet loss to further fuse similarity and dissim-
ilarity among positive and negative pairs forming a triplet.
Later, Exemplar CNNS [24] introduced surrogate labels de-
rived through heavy augmentation (distortion) where the
pretext task was to discriminate between a set of surrogate
labels i.e. enforcing invariance to specified transformations.
Similarly, NPID [66] formulated an instance classification
task via discriminative learning using non-parametric soft-
max to encode instance similarity while increasing the num-
ber of contrastive negative samples by introducing memory
banks. Later CPC [52] showed that minimizing an NCE
objective is equivalent to maximizing mutual information
(MI), which they termed InfoNCE. CMC [62] builds upon
this notion of MI maximization and extends it to an arbitrary
collection of views. Independently, DIM [32, 3] formulated
contrastive learning as a MI maximization problem between

local and global representations. Taking cues from previous
approaches, authors in [15] proposed a much simpler frame-
work (SimCLR), which relies on maximizing the agreement
between augmented views of the same data. To reduce the
reliance on offline-representations (memory banks), MoCo
[30, 16] looked at contrastive learning as a dynamic dic-
tionary with a queue and a moving-averaged encoder (for
offline representation). In summary, all these models try to
enforce invariance to geometric distortions (augmentation)
through instance classification (or maximizing agreement)
and, in doing so, they exploit semantic (context) similar-
ity and spatial structure among different variations of data
samples to learn better representations.

There has been tremendous progress in this direction of
unsupervised learning [11, 27, 10, 49, 5] in recent times.
However, the scope of most of these methods has been lim-
ited to recognition as a downstream task (refer to [38, 35]
for an extensive review). In this work, we take a step for-
ward and extend the approach of MI estimation to regression,
specifically to the task of saliency prediction, which is more
fine-grained than recognition. Given that this domain of 360o

data conceptually provides new sets of choices i.e. signals
for Zenith and Nadir regions, makes it particularly suited for
contrastive learning (for MI maximization).

3. Method
Our algorithm takes advantage of the geometric flexi-

bility of the 360° data definition domain i.e. the spherical
representation, where the different projections represent ro-
bust views for training a differentiable parametric function
fθ : x 7→ Λ, with parameters θ (e.g. neural network) to
maximize the mutual information among the views without
any further supervision. The encoder is optimized to detect
the polar regions, i.e. views, pushing the convolution filters
to exploit larger groups of symmetries, including spheri-
cal transformations and rotations, because the translation
symmetry preserved by a CNN is not enough to detect the
distorted objects in the polar regions. We argue that the
only information shared between the views is task-relevant,
and there is no irrelevant noise, as the three views can fully
reconstruct the sphere. Furthermore, we rely on exploiting
contrastive learning-based approaches [38] to learn optimal
and robust representations for 360° data. To further measure
the quality of the latent representations, a separate paramet-
ric function gϕ : Λ 7→ y (decoder), is able to decode good
quality saliency maps for the downstream task. It is worth
mentioning that the two stages are asynchronous.

3.1. Overview of the Approach

Suppose we are given a 360° image dataset, D =
{x1, ....,x|D|} where xi ∈ R3×H×W , and a set of trans-
formations T and projections P , with empirical probability
distribution p(X). The set T contains standard transfor-
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Figure 2. Complete pipeline for training. The contrastive module is composed of sub-functions which consist of an encoder fθ , a global
module Σσ , self-attention φβ , and local module Ωω parameterised by θ,σ,β,ω respectively. Decoder gϕ is trained to optimize ϕ, keeping
the encoder fixed (no gradient flow). Inference can be performed to predict the saliency on unseen test data. Different colored frames
([Conv2D → ReLU]) and circles ([Linear → ReLU]) represents different weight instances i.e. they don’t share weights.

mations and specifically small random crops (<5% of the
image size; large crops can affect saliency [13]), random jit-
ter in color space, random conversion to gray-scale, random
horizontal flips. The set P specifically contains projections
top-to-front (tf ) and bottom-to-front (bf ), from the sphere-
to-plane, using the ERP projection. The aim is to learn
representations that maximize the agreement between global
representations of x (source view) and local spatial patches
of xt ∼ T (P(x) ∼ U(tf(x), bf(x))) (augmented view) as
in [32, 3]. However, there are some significant differences
that distinguish our approach from previous works. As we
are mainly inferring for a regression downstream task, we
are not concerned with the exact value of the MI, as minimiz-
ing further the contrastive objective encourages clusters to
form in the representation space. Thus, we aim at optimizing
the feature maps across spatial locations to capture enough
symmetries about the input data, with the use of both the
local to global approach and the self-attention module.

3.2. Unsupervised Contrastive Module

Base encoder (fθ). Learns a network f : x 7→ Λ parame-
terised by θ, where x ∈ R3×160×320 and Λ ∈ R512×10×20.
To be precise x1 is the whole panorama and xt is perspective
image with augmentations as depicted in Figure 2 with fθ(x)
and fθ(xt) representing their local latent representations2.
We report findings for VGG16 [56] and ResNet50 [31] as

1Source view
2fθ(xt), fθ(x) ∈ Λ

encoders. For complete architectural details see Section A.1
and A.2 in supplementary.

Global module (Σσ). Learns a mapping Σ : fθ(x) 7→
vx

3 parameterised by σ, where vx ∈ R512. This module
provides a compact/global representation of x as shown in
Figure 24. This module can also be understood as a projec-
tion layer often used in self-supervised literature but in this
case it is asymmetric5. More details can be found in Section
A.1 and A.2 in supplementary.

Self-attention module (φβ). This serves as a medium
to build spatial relationship between local representations
fθ(x) and fθ(xt). Architecture is similar to [64, 72] but
unlike query and key are derived from fθ(x) and fθ(xt)
respectively6. Refer Section A.3 in supplementary for more
intuition and details.

Local module (Ωω) is again a non-linear mapping
Ω : Υxt

7→ Ψxt
parameterised by ω, where Ψxt

∈
R512××10×20. The architecture of the local module con-
sist of 2×[Conv2d → ReLU] followed by a BatchNorm2D
and is fixed for both VGG16 and ResNet50.

Loss function. We minimize a NCE [28] based objective

3x always represents a panorama image
4In Figure 2 global module corresponds to VGG16 encoder
5i.e not applied to fθ(xt)
6Usually key and query are linear projections of same representations.
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as in [62]:

LNCE(x,xt) = − E
x∼p(x)

{
E

xt∼p(.|x)

[
log

(
P (D = 1|xt,x)

)]
+mE

xn∼pn(.|x)

[
log(P (D = 0|xn,x))

]}
.

(2)
Optimizing LNCE(x,xt) is simply minimizing the negative
log-posterior probability of label D to distinguish “positive
pair” (x,xt) (D = 1) from “negative pair” (x,xn) (D =
0) where xn is often referred to as a negative sample. A
negative sample is any sample that is not typically derived
from x and its distortion/augmentation. p(x) and pn(.) in
Equation 2 is the empirical data distribution and distribution
of noisy samples respectively. The posterior distribution
with m noise sample is given by:

P (D = 1|xt,x) =
p(xt|x)

p(xt|x) +mpn(xn|x)
, (3)

with p(xt|x) being the true unknown distribution, which is
approximated by a score function s(xt,x) = exp

(
xT
t x/τ

)
,

where τ is the temperature hyper-parameter (fixed to 0.07)
that modulates the distribution. This function assumes L2

normalized vectors. Refer to [62, 29] for further details on
the derivation of the NCE loss.

Memory bank (M). Following [66, 49], we maintain a
memory bank to retrieve m ∼ M negative samples. These
samples are exponential moving average of feature represen-
tations vx that were computed in prior epochs. A sample
from memory bank corresponding to vx is denoted by mx.

The final objective is defined as a convex combination
of both the global(LG) and local(LL) NCE losses:

L(x,xt) = λLL(mx,Ψxt
) + (1− λ)LG(mx,vx). (4)

Note we do not directly minimize the NCE between global
and local representations but instead rely on representations
from memory bank M (mx). Firstly, this encourages sim-
ilarity to memory representations encoding invariances as
shown in [49], and secondly it directly maximizes the MI
between global and local representations via memory repre-
sentations.

LG is the global NCE between two feature vectors mx

and vx (each ∈ R512), while LL is the local NCE between
a vector mx and feature map Ψxt

∈ R512×10×20. In this
later case the dot product in s(mx,Ψxt

) is calculated as
1
hw

∑h
i=0

∑w
j=0 m

T
xΨ(:, i, j), which is referred to as local-

dot encode in [32]. Recall that the dot-product in the scor-
ing function assumes L2 normalized vectors, so Ψxt

is L2

normalized along each location i.e. across Ψ(:, i, j). The
dimensions (c, h, w) = (512, 10, 20) stay fixed across all
settings.

3.3. Supervised Module

Problem formulation. Visual attention modelling for
ODIs is the downstream task chosen to measure the quality
of the representations. The motivation lies with the difficulty
of the task, and the availability of benchmarks. It consists of
predicting an (head+eye) based ERP-saliency map from the
input 360° image. In this setting, the ground truth saliency
maps are computed by convolving each fixation or trajectory
points (for all observers of one image), defined as:

FMij =

{
1 if location (i, j) is a fixation
0 otherwise,

with a Gaussian or Kent kernel. The resulting saliency map
P ∈ [0, 1]W×H can be treated as a multivariate Bernoulli
distribution where each pixel is Bernoulli distributed, with a
probability p to be attended, and (1− p) to be discarded.

Decoder module. Human attention is driven by both
global and local features. In ODIs, the CMP forces the
model to lose the global contextual information while con-
sidering each cube face separately. Through the contrastive
encoder, more explicit global features are learned inherently
as a super-position in the encoding function weights [23].
Thus, the convolution filters are more responsive to the sig-
nal connected to the poles. Therefore, we argue that the
latent representations Λ ∈ R512×10×20 lie within a feasible
manifold to be decoded into saliency maps. The decoder
architecture is inspired from SalGAN; however, we only
kept one single convolution layer per block, rather than three
layers as in the original SalGAN. The main motivation for
this is to avoid over-parametrization, and to show that a less
complex function is able to decode the representations and
provide evidence of the generality and robustness of Ψ.

Saliency loss function. The saliency task can be seen
as a distance measure between the predicted saliency dis-
tribution Y ∈ [0, 1]W×H , and the continuous ground truth
P ∈ [0, 1]W×H . The objective function must be designed to
maximise the in-variance of predictive maps and give higher
weights to locations with higher fixation probability. Thus,
the decoder is trained to minimize the Kullback-Leibler Di-
vergence (KLD), widely adopted for benchmarking saliency
models [9], the KLD between Y and P is given by:

LKLD(Y, P ) =

W×H∑
i=1

Pi log

(
ϵ+

Pi

ϵ+ Yi

)
, (5)

4. Experimental Setup and Results
Training. We first train the encoder following the un-

supervised scheme. Contrastive learning requires a large
amount of unlabelled data to be trained effectively. Due to
the unavailability of large-scale 360° images datasets, we had
to gather a new one with 90K ODIs from multiple sources.
The dataset comprises the following:
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Table 1. Comparative performance study on: Salient360! and VR-EyeTracking datasets. Training setting (i): trained w/o self-attention,
Training setting (ii): trained with self attention. The best scores are marked in bold and second best in blue.

Model Salient360! VR-EyeTracking+Sitzman
AUC-J ↑ NSS ↑ CC ↑ SIM ↑ KLD ↓ AUC-J ↑ NSS ↑ CC ↑ SIM ↑ KLD ↓

Baseline: infinite humans 0.788 2.09 1.0 1.0 0.0 0.985 3.421 1.0 1.0 0.0

2D models
UNISAL [25] 0.701 1.404 0.389 0.435 2.519 0.783 1.918 0.276 0.242 9.044
SalGAN [53] 0.701 1.398 0.377 0.483 1.544 0.718 1.023 0.145 0.152 10.195

360° models
ATSAL [20] 0.777 1.638 0.642 0.639 0.761 0.822 1.613 0.239 0.191 9.796
SalGAN360 [12] 0.831 1.598 0.639 0.611 0.798 0.704 1.267 0.226 0.218 7.938
SaltiNet [2] 0.702 1.057 0.536 0.541 1.098 0.674 0.967 0.186 0.198 9.938

Training setting (i)
VGG 0.758 1.557 0.553 0.585 0.909 0.841 1.583 0.246 0.221 7.965
ResNet 0.756 1.524 0.520 0.54 1.039 0.833 1.545 0.232 0.203 8.574

Training setting (ii)
VGG 0.760 1.548 0.538 0.569 0.922 0.867 1.880 0.308 0.234 7.583
ResNet 0.769 1.601 0.584 0.591 0.849 0.869 2.089 0.329 0.248 7.110

• PVS: HMEM [69] contains 76 panoramic videos, im-
ages were sampled at a rate of 1 frame per second (fps).

• 360-Indoor [18] contains 3024 complex indoor scenes
containing common objects.

• VR-VQA [67], a quality assessment dataset, comprises
48 ODVs from 8 classes: sport, movies, etc.

• Videos gathered from YouTube playlists7 (1 fps).

Furthermore, evaluation of these representations relies
on the downstream task. Often, classification accuracy is
used as a proxy for correlation between representations and
class labels. Clearly, as the symmetries and invariances
encoded in the representation are abstract, a more granular
regression proxy task such as saliency prediction reveals
more insights. Thus, we evaluate the unsupervised module’s
representational properties on three saliency datasets:

• Salient360! images [55]: a small-scale dataset, con-
sisting of (80/23) images for training and validation
respectively, each recorded for at least 40 observers.
It provides the head-eye saliency map obtained jointly
from eye tracking and head positions in the ERP format.

• Due to the small amount of labelled static data (103
ODIs), we sampled at a rate of 1 fps from the large-scale
video dataset VR-EyeTracking [70]. The resulting set
contains (4700/1300) 360° images.

• Sitzmann [57] containing a total of (14/11) train-
ing/validation ODIs; the authors captured and analyzed
gaze and head orientation data of 169 users.

It is worth mentioning that the unsupervised encoder
weights were not fine-tuned on the downstream task; only the

7Playlist 1, Playlist 2, Playlist 3

randomly initialized decoder is trained on top of the frozen
encoder. The main motivation for this is to set a robust
evaluation procedure and to prevent the encoder adapting its
parameters to saliency specific requirements.

Our approach is experimentally compared to five mod-
els, two state-of-the-art 2D static saliency models, UNISAL
[25] and SalGAN, and three 360° specific models: ATSAL
[20], SalGAN360 [12] and SaltiNet [2]. This choice is moti-
vated by the availability of the source code. All approaches
were evaluated according to five different saliency metrics:
Normalized Scanpath Saliency (NSS), Kullback-Leibler Di-
vergence (KLD), Similarity (SIM), Linear Correlation Coef-
ficient (CC), and AUC-Judd (AUC-J). Please refer to [9] for
an extensive review of these metrics.

Technical details. Both the contrastive encoder and
the supervised decoder were implemented in PyTorch, and
trained using two GPUs (RTX 3090 & RTX 2080). The con-
trastive encoder was optimized using SGD with a learning
rate of 10−2. The encoder was trained for 250 epochs using
the max batch size of 808, with negative samples fixed to
16000, τ = 0.07 and λ = 0.7. Choices about total epochs
and number of negative samples are based on computation
and time constraints. Training for more epochs or with large
negative samples may provide further boost in the perfor-
mance [37, 49]. Adam with a learning rate of 10−4 was used
to train the supervised decoder for 100 epochs.

Table 1 shows the comparative study with the aforemen-
tioned models according to the different saliency metrics
on Salient360! and (VR-EyeTracking+Sitzman) datasets
25/1300 test 360° images. Our model is very competitive
in the two datasets, and exhibits the top score for all met-
rics on VR-EyeTracking+Sitzman. As expected, 2D SoTA
approaches fail to generalize on ODIs, which questions the
effectiveness of the direct transfer of visual attention features
from 2D to 360° data.

8maximum batch size that could be achieved given our constraints
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Table 2. Comparative performance study on: VR-EyeTracking
datasets. VGG (i)/ VGG (ii) following training setting (i)/(ii)

Model VR-EyeTracking+Sitzman
AUC-J ↑ NSS ↑ CC ↑ SIM ↑ KLD ↓

VGG (i)
λ = 0.5 0.852 1.872 0.306 0.237 7.540
λ = 0.7 0.841 1.583 0.246 0.221 7.965
λ = 0.9 0.849 1.825 0.278 0.226 7.875

VGG (ii)
λ = 0.5 0.860 1.894 0.307 0.231 7.648
λ = 0.7 0.867 1.880 0.308 0.234 �7.583
λ = 0.9 0.860 1.894 0.301 0.241 7.648

VR-EyeTracking & Sitzman. The 1300 validation/test
images were sampled from the 75 diverse test ODVs of
the first dataset, mixed up with the 11 images from Sitz-
man, making the prediction task very challenging. It can be
seen that both VGG and ResNet-based models outperform
2D saliency models by a good margin, with a significant
improvement over 360° specialized models, trained in an
end-to-end scheme on supervised data. The ResNet-based
model trained with self-attention achieves the best results
following: (KLD ↓ = 7.110).

Salient360! We used the 25 360° validation images for
testing the model9. The model was not trained on this dataset,
making this an out-of-distribution test. The proposed model
produces a reasonable improvement in accuracy compared to
other models, except SalGAN360 and ATSAL, which were
trained on this specific dataset.

Figure 3 illustrates the prediction task on a sample of 360°
images from two datasets: Salient360! and VR-EyeTracking.
It can be seen that the saliency maps generated by our model
(ResNet-based with self-attention) correlate well with the
ground truth maps in terms of fixation distribution. Other
competitors shown in the same figure overestimate saliency
in general, or overly bias it to the equator/center. Further-
more, the effectiveness of the predictor in capturing the main
objects in the scene can be observed. Another key point is the
model’s capacity to accurately detect saliency in the Zenith
and Nadir without using any form of projections at inference
time (see Figure 2,3 in supplementary ). This demonstrates
the effectiveness of the contrastive encoder in embedding the
views as a superposition in the function weights and biases.

Computational load. As model efficiency is a key factor
for real-world ODIs applications, Table 3 shows a GPU run-
time comparison (processing time per 360° image) of the dif-
ferent competitors on the 4K Salient360! ODIs. Compared
with other 360° specialized models, our model exhibits a
remarkable improvement, being over 8× faster than ATSAL,
which is the fastest model in this category.

9The reserved test set was unavailable due to COVID-19

Table 3. GPU inference time comparison of video saliency pre-
diction methods (NVIDIA RTX 3090). All methods are reported
based on the Salient360! benchmark [70]. The best computational
performance among dedicated 360° models is shown in bold. (*)
2D models.

Model Runtime (s)

SalGAN360 [12] 14.330
ATSAL [20] 0.230
SaltiNet [2] 0.450
(*) SalEMA [25] 0.020
(*) UNISAL [53] 0.010

Ours (ResNet-based) 0.025

Table 4. Results on Salient360! validation images for a model based
on a contrastive encoder trained with/without projections.

Salient360!
AUC-J ↑ NSS ↑ CC ↑ SIM ↑ KLD ↓

ResNet w/o 0.736 1.524 0.479 0.536 0.999
ResNet w/ 0.769 1.601 0.584 0.591 0.849

5. Ablations

In this section we justify the choices by ablating key
features of the procedure.

What is the effect of λ in the loss functions? The total
loss is a convex combination with a hyper-parameter λ, that
trade-offs between the two NCE losses namely global (LG)
and local (LL) NCE. As depicted in Table 2 we varied λ to
0.5, 0.7, and 0.9. As the results suggests increasing λ im-
proves the performance on the downstream task. Intuitively
if we look closely in Equation 4, giving more emphasis to
LG biases the function to learn trivial solution as mx is mov-
ing average of vx, as result this leads to much easier clas-
sification task. However, more emphasis on LL makes the
classification task (NCE optimization) more difficult because
the optimizer is maximizing the agreement from different
view of the same scene (object) and that too locally. This
leads to better expressive power and generalisation capability.
We chose λ = 0.7 for all our previous evaluations.

Training with/without self attention: We evaluate the
models to observe the effect of self-attention in the learning
regime. Table 2 compares the VGG-based model trained
with and without self-attention. A performance boost is ob-
served irrespective of λ when using self-attention. Table 1
also shows results for models trained with and without atten-
tion. Self-attention/attention is intuitively motivated by how
we humans pay attention to specific regions or parts of im-
ages and try to correlate among them. At the same time, this
correlation can be extended to different images/patches of
same view. In summary, it helps to infer a patch/region in an
image based on this correlation (importance vectors). Given
that the objective is to maximize the agreement between two
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Figure 3. Qualitative results of our model and four other competitors on sample images from VR-EyeTracking and Salient360! datasets. It
can be observed that the proposed approach is able to handle various challenging scenes well and produces consistent saliency maps.

views, the self-attention module serves as a mode of finding
the best correlation in the two views in terms of information
shared among them by performing this soft feature selection
mechanism across the views.

Training with/without projections: To further show-
case the importance of projections, we trained a model with-
out any projections (only augmentations). One could also
argue training without augmentations and projections but
this will lead us to NPID [66] (λ = 0) and this is not our
objective. Table 4 depicts the results for this setting. Per-
formance drops when projections are removed, validating
the hypothesis that using different projections in addition
to augmentation is natural for 360° images and produces
representations that are more effective in downstream tasks.
Intuitively by removing projections we make the feature ex-
tractor fθ prone to exploiting low-level visual features such
as color aberrations as observed in [22, 51], and not learning
useful semantic representations, resulting in a performance
drop on the downstream task. This phenomenon of relying
on low-level features given large unlabelled datasets is often
referred to as short-cuts in the unsupervised learning litera-
ture [48, 15]. Finally, this experiment further validates our
hypotheses of exploiting the top/bottom to equator projec-
tions for contrastive learning.

6. Discussion
2D vs 360° models. Deep learning based saliency mod-

els [2, 54, 12, 60] trained end-to-end on 360° datasets show
remarkable improvements over early models adapting 2D
approaches on ODIs [21, 47, 59, 39, 19, 44]. This demon-
strates the new constraints imposed by the spherical domain
when modelling visual attention.

Supervised vs Unsupervised learning. To the best of
our knowledge, we are the first to design an unsupervised
learning approach for saliency prediction. Our approach is
an opening for a new line of research exploring the subtle
definition of gaze policy naturally embedded in the brain. In
fact, the early research into how the human visual system
functions, produced many interesting results, demonstrating
that visual attention could be influenced by regions that
maximize a reward in a task-driven scenario [58], which are
typically the most informative regions [33, 8]. This suggests
that saliency can be disentangled into low-level (e.g. color,

intensity, etc.) and high-level (e.g. human faces) features
[34, 7]. Research in cognitive science (e.g. [71, 41, 63])
indicates that low-level saliency in both humans and animals
happens early in the primary visual cortex, suggesting that it
can potentially be learned without supervision. We believe
this could be an important future research direction.

Generalization to other 360° downstream tasks. The
last decade has witnessed many works on 360° video/image
processing including, visual attention, visual quality assess-
ment (VQA), and compression [68]. Visual attention can
serve as a tool for compression approaches (e.g. saliency-
aware adaptive coding [73, 44, 43]). Perceptual approaches
for VQA require predicted saliency maps as weight maps
[45, 46, 40]. Generally, the spherical characteristics of the
input data means that many of these tasks face the challenges
addressed in this work. Thus, we suspect that the contrastive
encoder can be indeed exploited for VQA and compression.

7. Conclusion
We introduced a method for modelling human visual

attention with contrastive self-supervised learning, which
improves the generalization and expressive power of the
model. The approach exploits the geometric flexibility of the
spherical data to learn representations that contain locally-
consistent information across the views. The qualitative
and quantitative results on the downstream saliency task
have demonstrated the competitiveness of the approach. We
believe this is an important step towards better human visual
attention modelling using unsupervised methods.
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