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Abstract

We propose a novel framework for image clustering that
incorporates joint representation learning and clustering.
Our method consists of two heads that share the same back-
bone network - a “representation learning” head and a
“clustering” head. The “representation learning” head
captures fine-grained patterns of objects at the instance
level which serve as clues for the “clustering” head to ex-
tract coarse-grain information that separates objects into
clusters. The whole model is trained in an end-to-end
manner by minimizing the weighted sum of two sample-
oriented contrastive losses applied to the outputs of the
two heads. To ensure that the contrastive loss correspond-
ing to the “clustering” head is optimal, we introduce a
novel critic function called “log-of-dot-product”. Exten-
sive experimental results demonstrate that our method sig-
nificantly outperforms state-of-the-art single-stage cluster-
ing methods across a variety of image datasets, improving
over the best baseline by about 5-7% in accuracy on CI-
FAR10/20, STL10, and ImageNet-Dogs. Further, the “two-
stage” variant of our method also achieves better results
than baselines on three challenging ImageNet subsets.

1. Introduction
The explosion of unlabeled data, especially visual con-

tent in recent years has led to the growing demand for
effective organization of these data into semantically dis-
tinct groups in an unsupervised manner. Such data clus-
tering facilitates downstream machine learning and reason-
ing tasks. Since labels are unavailable, clustering algo-
rithms are mainly based on the similarity between sam-
ples to predict the cluster assignment. However, common
similarity metrics such as cosine similarity or (negative)
Euclidean distance are ineffective when applied to high-
dimensional data like images. Modern image clustering
methods [7, 17, 18, 37, 40, 41], therefore, leverage deep
neural networks (e.g., CNNs, RNNs) to transform high-
dimensional data into low-dimensional representation vec-
tors in the latent space and perform clustering in that space.

Ideally, a good clustering model assigns data to clusters
to keep inter-group similarity low while maintaining high
intra-group similarity. Most existing deep clustering meth-
ods do not satisfy both of these properties. For example,
autoencoder-based clustering methods [19, 40, 42] often
learn representations that capture too much information in-
cluding distracting information like background or texture.
This prevents them from computing proper similarity scores
between samples at the cluster-level. Autoencoder-based
methods have only been tested on simple image datasets
like MNIST. Another class of methods [7, 17, 18] directly
use cluster-assignment probabilities rather than represen-
tation vectors to compute the similarity between samples.
These methods can only differentiate objects belonging to
different clusters but not in the same cluster, hence, may in-
correctly group distinct objects into the same cluster. This
leads to low intra-group similarity.

To address the limitations of existing methods, we pro-
pose a novel framework for image clustering called Con-
trastive Representation Learning and Clustering (CRLC).
CRLC consists of two heads sharing the same backbone net-
work: a “representation learning” head (RL-head) that out-
puts a continuous feature vector, and a “clustering” head (C-
head) that outputs a cluster-assignment probability vector.
The RL-head computes the similarity between objects at the
instance level while the C-head separates objects into dif-
ferent clusters. The backbone network serves as a medium
for information transfer between the two heads, allowing
the C-head to leverage disciminative fine-grained patterns
captured by the RL-head to extract correct coarse-grained
cluster-level patterns. Via the two heads, CRLC can ef-
fectively modulate the inter-cluster and intra-cluster simi-
larities between samples. CRLC is trained in an end-to-
end manner by minimizing a weighted sum of two sample-
oriented contrastive losses w.r.t. the two heads. To ensure
that the contrastive loss corresponding to the C-head leads
to the tightest InfoNCE lower bound [30], we propose a
novel critic called “log-of-dot-product” to be used in place
of the conventional “dot-product” critic.

In our experiments, we show that CRLC signifi-
cantly outperforms a wide range of state-of-the-art single-
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stage clustering methods on five standard image clus-
tering datasets including CIFAR10/20, STL10, Ima-
geNet10/Dogs. The “two-stage” variant of CRLC also
achieves better results than SCAN - a powerful two-stage
clustering method on three challenging ImageNet subsets
with 50, 100, and 200 classes. When some labeled data are
provided, CRLC, with only a small change in its objective,
can surpass many state-of-the-art semi-supervised learning
algorithms by a large margin.

In summary, our main contributions are:

1. A novel framework for joint representation learning
and clustering trained via two sample-oriented con-
trastive losses on feature and probability vectors;

2. An optimal critic for the contrastive loss on probability
vectors; and,

3. Extensive experiments and ablation studies to validate
our proposed method against baselines.

2. Preliminaries
2.1. Representation learning by maximizing mutual

information across different views1

Maximizing mutual information across different views
(or ViewInfoMax for short) allows us to learn view-
invariant representations that capture the semantic informa-
tion of data important for downstream tasks (e.g., classifi-
cation). This learning strategy is also the key factor behind
recent successes in representation learning [16, 28, 33, 36].

Since direct computation of mutual information is diffi-
cult [24, 32], people usually maximize the variational lower
bounds of mutual information instead. The most common
lower bound is InfoNCE [30] whose formula is given by:

I(X, X̃) ≥ IInfoNCE(X, X̃) (1)

, Ep(x1:M )p(x̃|x1)

[
log

ef(x̃,x1)∑M
i=1 e

f(x̃,xi)

]
+ logM

(2)

= −Lcontrast + logM (3)

where X , X̃ denote random variables from 2 different
views. x1:M are M samples from pX , x̃ is a sample
from pX̃ associated with x1. (x̃, x1) is called a “positive”
pair and (x̃, xi) (i = 2, ...,M ) are called “negative” pairs.
f(x, y) is a real value function called “critic” that character-
izes the similarity between x and y. Lcontrast is often known
as the “contrastive loss” in other works [8, 33].

Since log ef(x̃,x1)∑M
i=1 e

f(x̃,xi)
≤ 0, IInfoNCE(X, X̃) is upper-

bounded by logM . It means that: i) the InfoNCE bound

1Here, we use “views” as a generic term to indicate different transfor-
mations of the same data sample.

is very loose if I(X, X̃) � logM , and ii) by increasing
M , we can achieve a better bound. Despite being biased,
IInfoNCE(X, X̃) has much lower variance than other unbi-
ased lower bounds of I(X, X̃) [30], which allows stable
training of models.

Implementing the critic In practice, f(x̃, xi) is imple-
mented as the scaled cosine similarity between the repre-
sentations of x̃ and xi as follows:

f(x̃, xi) = f(z̃, zi) = z̃>zi/τ (4)

where z̃ and zi are unit-normed representation vectors of x̃
and xi, respectively; ‖z̃‖2 = ‖zi‖2 = 1. τ > 0 is the “tem-
perature” hyperparameter. Interestingly, f in Eq. 4 matches
the theoretically optimal critic that leads to the tightest In-
foNCE bound for unit-normed representation vectors (de-
tailed explanation in Appdx. A.4)

In Eq. 4, we use f(z̃, zi) instead of f(x̃, xi) to emphasize
that the critic f in this context is a function of representa-
tions. In regard to this, we rewrite the contrastive loss in
Eq. 3 as follows:

LFC = Ep(x1:M )p(x̃|x1)

[
− log

ef(z̃,z1)∑M
i=1 e

f(z̃,zi)

]
(5)

= Ep(x1:M )p(x̃|x1)

[
z̃>z1/τ − log

M∑
i=1

exp(z̃>zi/τ)

]
(6)

where FC stands for “feature contrastive”.

3. Method
3.1. Clustering by maximizing mutual information

across different views

In the clustering problem, we want to learn a parametric
classifier sθ that maps each unlabeled sample xi to a cluster-
assignment probability vector qi = (qi,1, ..., qi,C) (C is
the number of clusters) whose component qi,c characterizes
how likely xi belongs to the cluster c (c ∈ {1, ..., C}). In-
tuitively, we can consider qi as a representation of xi and
use this vector to capture the cluster-level information in xi
by leveraging the “ViewInfoMax” idea discussed in Section
2.1. It leads to the following loss for clustering:

Lcluster = Ep(x1:M )p(x̃|x1)

[
− log

ef(q̃,q1)∑M
i=1 e

f(q̃,qi)

]
− λH(Q̃avg)

(7)

= LPC − λH(Q̃avg) (8)

where λ ≥ 0 is a coefficient; q̃, qi are probability vectors
associated with x̃ and xi, respectively. LPC is the proba-
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Figure 1: Overview of our proposed framework for Contrastive Representation Learning and Clustering (CRLC). Our frame-
work consists of a “clustering” head and a “representation learning” head sharing the same backbone network. x denotes an
input images and T1(x), T2(x) denote two different transformations of x.

bility contrastive loss similar to LFC (Eq. 5) but with fea-
ture vectors replaced by probability vectors. H is the en-
tropy of the marginal cluster-assignment probability q̃avg =

Ep(x1)p(x̃|x1) [q̃]. Here, we maximize H(Q̃avg) to avoid a
degenerate solution in which all samples fall into the same
cluster (e.g., q̃ is one-hot for all samples). However, it is
free to use other regularizers on q̃avg rather than −H(Q̃avg).

Choosing a suitable critic It is possible to use the con-
ventional “dot-product” critic for LPC as for LFC (Eq. 4).
However, this will lead to suboptimal results (Section 5.3)
since LPC is applied to categorical probability vectors rather
than continuous feature vectors. Therefore, we need to
choose a suitable critic for LPC so that the InfoNCE bound
associated with LPC is tightest. Ideally, f(x̃, xi) should
match the theoretically optimal critic f∗(x̃, xi) which is
proportional to log p(x̃|xi) (detailed explanation in Ap-
pdx. A.3). Denoted by ỹ and yi the cluster label of x̃ and xi
respectively, we then have:

log p(x̃|xi) ≈ log

C∑
c=1

p(ỹ = c|yi = c)

∝ log

C∑
c=1

q̃cqi,c = log(q̃>qi) (9)

Thus, the most suitable critic is f(q̃, qi) = log(q̃>qi) which
we refer to as the “log-of-dot-product” critic. This critic
achieves its maximum value when q̃ and qi are the same
one-hot vectors and its minimum value when q̃ and qi are
different one-hot vectors. Apart from this critic, we also list

other nonoptimal critics in Appdx. A.1. Empirical compar-
ison of the “log-of-dot-product” critic with other critics is
provided in Section 5.3.

In addition, to avoid the gradient saturation problem of
minimizingLPC when probabilities are close to one-hot (ex-
planation in Appdx. A.5), we smooth out the probabilities
as follows:

q = (1− γ)q + γr

where r =
(
1
C , ...,

1
C

)
is the uniform probability vector over

C classes; 0 ≤ γ ≤ 1 is the smoothing coefficient set to
0.01 if not otherwise specified.

Implementing the contrastive probability loss To im-
plement LPC, we can use either the SimCLR framework [8]
or the MemoryBank framework [36]. If the SimCLR frame-
work is chosen, both q̃ and qi (i ∈ {1, ...,M}) are computed
directly from x̃ and xi respectively via the parametric clas-
sifier sθ. On the other hand, if the MemoryBank framework
is chosen, we maintain a nonparametric memory bank M
- a matrix of size N × C containing the cluster-assignment
probabilities of all N training samples, and update its rows
once a new probability is computed as follows:

qn,t+1 = αqn,t + (1− α)q̂n (10)

where α is the momentum, which is set to 0.5 in our work if
not otherwise specified; qn,t is the probability vector of the
training sample xn at step t corresponding to the n-th row
of M; q̂n = sθ(xn) is the new probability vector. Then,
except q̃ computed via sθ as normal, all qi in Eq. 7 are sam-
pled uniformly fromM. At step 0, all the rows ofM are
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initialized with the same probability of
(
1
C , ...,

1
C

)
. We also

tried implementing LPC using the MoCo framework [14]
but found that it leads to unstable training. The main reason
is that during the early stage of training, the EMA model in
MoCo often produces inconsistent cluster-assignment prob-
abilities for different views.

3.2. Incorporating representation learning

Due to the limited representation capability of categor-
ical probability vectors, models trained by minimizing the
lossLcluster in Eq.7 are not able to discriminate objects in the
same cluster. Thus, they may capture suboptimal cluster-
level patterns, which leads to unsatisfactory results.

To overcome this problem, we propose to combine clus-
tering with contrastive representation learning into a unified
framework called CRLC2. As illustrated in Fig. 1, CRLC
consists of a “clustering” head (C-head) and a “representa-
tion learning” head (RL-head) sharing the same backbone
network. The backbone network is usually a convolutional
neural network which maps an input image x into a hidden
vector h. Then, h is fed to the C-head and the RL-head to
produce a cluster-assignment probability vector q and a con-
tinuous feature vector z, respectively. We simultaneously
apply the clustering loss Lcluster (Eq. 8) and the feature con-
trastive loss LFC (Eq. 6) on q and z respectively and train
the whole model with the weighted sum of Lcluster and LFC
as follows:

LCRLC = Lcluster + λLFC

= LPC − λ1H(Q̃avg) + λ2LFC (11)

where λ1, λ2 ≥ 0 are coefficients.

3.3. A simple extension to semi-supervised learning

Although CRLC is originally proposed for unsupervised
clustering, it can be easily extended to semi-supervised
learning (SSL). There are numerous ways to adjust CRLC
so that it can incorporate labeled data during training. How-
ever, within the scope of this work, we only consider a sim-
ple approach which is adding a crossentropy loss on labeled
data to LCRLC. The new loss is given by:

LCRLC-semi = LCRLC + λE(xl,yl)∼Dl
[− log p(yl|xl)]

= LPC − λ1H(Q̃avg) + λ2LFC + λ3Lxent (12)

We call this variant of CRLC “CRLC-semi”. Despite its
simplicity, we will empirically show that CRLC-semi out-
performs many state-of-the-art SSL methods when only few
labeled samples are available. We conjecture that the clus-
tering objective arranges the data into disjoint clusters, mak-
ing classification easier.

2CRLC stands for Contrastive Representation Learning and Clustering.

4. Related Work
There are a large number of clustering and representation

learning methods in literature. However, within the scope
of this paper, we only discuss works in two related topics,
namely, contrastive learning and deep clustering.

4.1. Contrastive Learning

Despite many recent successes in learning representa-
tions, the idea of contrastive learning appeared long time
ago. In 2006, Hadsell et. al. [13] proposed a max-margin
contrastive loss and linked it to a mechanical spring sys-
tem. In fact, from a probabilistic view, contrastive learn-
ing arises naturally when working with energy-based mod-
els. For example, in many problems, we want to maximize
log p(y|x) = log ef(y,x))∑

y′∈Y e
f(y′,x) where y is the output as-

sociated with a context x and Y is the set of all possible
outputs or vocab. This is roughly equivalent to maximiz-
ing f(y, x) and minimizing f(y′, x) for all y′ 6= y but in a
normalized setting. However, in practice, the size of Y is
usually very large, making the computation of p(y|x) ex-
pensive. This problem was addressed in [27, 36] by using
Noise Contrastive Estimation (NCE) [12] to approximate
p(y|x). The basic idea of NCE is to transform the den-
sity estimation problem into a binary classification prob-
lem: “Whether samples are drawn from the data distribu-
tion or from a known noise distribution?”. Based on NCE,
Mikolov et. al. [25] and Oord et. al. [28] derived a
simpler contrastive loss which later was referred to as the
InfoNCE loss [30] and was adopted by many subsequent
works [8, 11, 14, 26, 33, 43] for learning representations.

Recently, there have been several attempts to leverage
inter-sample statistics obtained from clustering to improve
representation learning on a large scale [1, 4, 47]. PCL [22]
alternates between clustering data via K-means and con-
trasting samples based on their views and their assigned
cluster centroids (or prototypes). SwAV [5] does not con-
trast two sample views directly but uses one view to pre-
dict the code of assigning the other view to a set of learn-
able prototypes. InterCLR [38] and ODC [45] avoid offline
clustering on the entire training dataset after each epoch by
storing a pseudo-label for every sample in the memory bank
(along with the feature vector) and maintaining a set of clus-
ter centroids. These pseudo-labels and cluster centroids are
updated on-the-fly at each step via mini-batch K-means.

4.2. Deep Clustering

Traditional clustering algorithms such as K-means or
Gaussian Mixture Model (GMM) are mainly designed for
low-dimensional vector-like data, hence, do not perform
well on high-dimensional structural data like images. Deep
clustering methods address this limitation by leveraging the
representation power of deep neural networks (e.g., CNNs,

9931



RNNs) to effectively transform data into low-dimensional
feature vectors which are then used as inputs for a cluster-
ing objective. For example, DCN [40] applies K-means to
the latent representations produced by an auto-encoder. The
reconstruction loss and the K-means clustering loss are min-
imized simultaneously. DEC [37], by contrast, uses only an
encoder rather than a full autoencoder like DCN to compute
latent representations. This encoder and the cluster cen-
troids are learned together via a clustering loss proposed by
the authors. JULE [41] uses a RNN to implement agglom-
erative clustering on top of the representations outputted by
a CNN and trains the two networks in an end-to-end man-
ner. VaDE [19] regards clustering as an inference problem
and learns the cluster-assignment probabilities of data using
a variational framework [20]. Meanwhile, DAC [7] treats
clustering as a binary classification problem: “Whether a
pair of samples belong to the same cluster or not?”. To ob-
tain a pseudo label for a pair, the cosine similarity between
the cluster-assignment probabilities of the two samples in
that pair is compared with an adaptive threshold. IIC [18]
learns cluster assignments via maximizing the mutual in-
formation between clusters under two different data aug-
mentations. PICA [17], instead, minimizes the contrastive
loss derived from the the mutual information in IIC. While
the cluster contrastive loss in PICA is cluster-oriented and
can have at most C negative pairs (C is the number of
clusters). Our probability contrastive loss, by contrast, is
sample-oriented and can have as many negative pairs as
the number of training data. Thus, in theory, our proposed
model can capture more information than PICA. In real im-
plementation, in order to gain more information from data,
PICA has to make use of the “over-clustering” trick [18].
It alternates between minimizing LPICA for C clusters and
minimizing LPICA for kC clusters (k > 1 denotes the “over-
clustering” coefficient). DRC [46] and CC [23] enhances
PICA by combining clustering with contrastive represen-
tation learning, which follows the same paradigm as our
proposed CRLC. However, like PICA, DRC and CC uses
cluster-oriented representations rather than sample-oriented
representations.

In addition to end-to-end deep clustering methods, some
multi-stage clustering methods have been proposed recently
[29, 34]. The most notable one is SCAN [34]. This method
uses representations learned via contrastive learning during
the first stage to find nearest neighbors for every sample in
the training set. In the second stage, neighboring samples
are forced to have similar cluster-assignment probabilities.
Our probability contrastive loss can easily be extended to
handle neighboring samples (see Section 5.1.2).

5. Experiments
Dataset We evaluate our proposed method on 5 stan-
dard datasets for image clustering which are CIFAR10/20

[21], STL10 [9], ImageNet10 [10, 7], and ImageNet-
Dogs [10, 7], and on 3 big ImageNet subsets namely Im-
ageNet50/100/200 with 50/100/200 classes, respectively
[10, 34]. A description of these datasets is given in Ap-
pdx. A.6. Our data augmentation setting follows [14, 36].
We first randomly crop images to a desirable size (32×32
for CIFAR, 96×96 for STL10, and 224×224 for Ima-
geNet subsets). Then, we perform random horizontal flip,
random color jittering, and random grayscale conversion.
For datasets which are ImageNet subsets, we further apply
Gaussian blurring at the last step [8]. Similar to previous
works [7, 18, 17], both the training and test sets are used
for CIFAR10, CIFAR20 and STL10 while only the training
set is used for other datasets. We also provide results where
only the training set is used for CIFAR10, CIFAR20 and
STL10 in Appdx. A.8. For STL10, 100,000 auxiliary unla-
beled samples are additionally used to train the “represen-
tation learning” head. However, when training the “cluster-
ing” head, these auxiliary samples are not used since their
classes may not appear in the training set.

Model architecture and training setups Following pre-
vious works [17, 18, 34, 46], we adopt ResNet34 and
ResNet50 [15] as the backbone network when working on
the 5 standard datasets and on the 3 big ImageNet subsets,
respectively. The “representation learning” head (RL-head)
and the “clustering” head (C-head) are two-layer neural net-
works with ReLU activations. The length of the output
vector of the RL-head is 128. The temperature τ (Eq. 5)
is fixed at 0.1. To reduce variance in learning, we train
our model with 10 C-subheads3 similar to [18]. This only
adds little extra computation to our model. However, unlike
[17, 18, 46], we do not use an auxiliary “over-clustering”
head to exploit additional information from data since we
think our RL-head can do that effectively.

Training setups for end-to-end and two-stage clustering
are provided in Appdx. A.7.

Evaluation metrics We use three popular clustering met-
rics namely Accuracy (ACC), Normalized Mutual Informa-
tion (NMI), Adjusted Rand Index (ARI) for evaluation. For
unlabeled data, ACC is computed via the Kuhn-Munkres al-
gorithm. All of these metrics scale from 0 to 1 and higher
values indicate better performance. In this work, we convert
the [0, 1] range into percentage.

5.1. Clustering

5.1.1 End-to-end training

Table 1 compares the performance of our proposed CRLC
with a wide range of state-of-the-art deep clustering meth-
ods. CRLC clearly outperforms all baselines by a large

3The finalLcluster in Eq. 8 is the average ofLcluster of these C-subheads.
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Dataset CIFAR10 CIFAR20 STL10 ImageNet10 ImageNet-Dogs
Metric ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

JULE [41] 27.2 19.2 13.8 13.7 10.3 3.3 27.7 18.2 16.4 30.0 17.5 13.8 13.8 5.4 2.8
DEC [37] 30.1 25.7 16.1 18.5 13.6 5.0 35.9 27.6 18.6 38.1 28.2 20.3 19.5 12.2 7.9
DAC [7] 52.2 39.6 30.6 23.8 18.5 8.8 47.0 36.6 25.7 52.7 39.4 30.2 27.5 21.9 11.1
DDC [6] 52.4 42.4 32.9 - - - 48.9 37.1 26.7 57.7 43.3 34.5 - - -

DCCM [35] 62.3 49.6 40.8 32.7 28.5 17.3 48.2 37.6 26.2 70.1 60.8 55.5 38.3 32.1 18.2
IIC [18] 61.7 - - 25.7 - - 61.0 - - - - - - - -

MCR2 [44] 68.4 63.0 50.8 34.7 36.2 16.7 49.1 44.6 29.0 - - - - - -
PICA [17] 69.6 59.1 51.2 33.7 31.0 17.1 71.3 61.1 53.1 87.0 80.2 76.1 35.2 35.2 20.1
DRC [46] 72.7 62.1 54.7 36.7 35.6 20.8 74.7 64.4 56.9 88.4 83.0 79.8 38.9 38.4 23.3

C-head only 66.9 56.9 47.5 37.7 35.7 21.6 61.2 52.7 43.4 80.0 75.2 67.6 36.3 37.5 19.8
CRLC 79.9 67.9 63.4 42.5 41.6 26.3 81.8 72.9 68.2 85.4 83.1 75.9 46.1 48.4 29.7

Table 1: End-to-end clustering results on 5 standard image datasets. Due to space limit, we only show the means of the
results. For the standard deviations, please refer to Appdx. A.8.

ImageNet 50 classes 100 classes 200 classes

Metric ACC ACC5 NMI ARI ACC ACC5 NMI ARI ACC ACC5 NMI ARI

K-means [34] 65.9 - 77.5 57.9 59.7 - 76.1 50.8 52.5 - 75.5 43.2

SCAN [34] 75.1 91.9 80.5 63.5 66.2 88.1 78.7 54.4 56.3 80.3 75.7 44.1

two-stage CRLC 75.4 93.3 80.6 63.4 66.7 88.3 79.2 55.0 57.9 80.6 76.4 45.9

Table 2: Two-stage clustering results on ImageNet50/100/200.

margin on most datasets. For example, in term of clus-
tering accuracy (ACC), our method improves over the best
baseline (DRC [46]) by 5-7% on CIFAR10/20, STL10, and
ImageNet-Dogs. Gains are even larger if we compare with
methods that do not explicitly learn representations such as
PICA [17] and IIC [18]. CRLC only performs worse than
DRC on ImageNet10, which we attribute to our selection
of hyperparameters. In addition, even when only the “clus-
tering” head is used, our method still surpasses most of the
baselines (e.g., DCCM, IIC). These results suggest that: i)
we can learn semantic clusters from data just by minimiz-
ing the probability contrastive loss, and ii) combining with
contrastive representation learning improves the quality of
the cluster assignment.

To have a better insight into the performance of CRLC,
we visualize some success and failure cases in Fig. 2 (and
also in Appdx. A.11). We see that samples predicted cor-
rectly with high confidence are usually representative for
the cluster they belong to. It suggests that CRLC has
learned coarse-grained patterns that separate objects at the
cluster level. Besides, CRLC has also captured fine-grained
instance-level information, thus, is able to find nearest
neighbors with great similarities in shape, color and texture
to the original image. Another interesting thing from Fig. 2
is that the predicted label of a sample is often strongly cor-
related with that of the majority of its neighbors. It means

that: i) CRLC has learned a smooth mapping from images
to cluster assignments, and ii) CRLC tends to make “collec-
tive” errors (the first and third rows in Fig. 2c). Other kinds
of errors may come from the closeness between classes
(e.g., horse vs. dog), or from some adversarial signals in
the input (e.g., the second row in Fig. 2b). Solutions for
fixing these errors are out of scope of this paper and will be
left for future work.

5.1.2 Two-stage training

Although CRLC is originally proposed as an end-to-end
clustering algorithm, it can be easily extended to a two-
stage clustering algorithm similar to SCAN [34]. To do
that, we first pretrain the RL-head and the backbone net-
work with LFC (Eq. 6). Next, for every sample in the train-
ing data, we find a set of K nearest neighbors based on the
cosine similarity between feature vectors produced by the
pretrained network. In the second stage, we train the C-
head by minimizing Lcluster (Eq. 8) with the positive pair
consisting of a sample and its neighbor drawn from a set of
K nearest neighbors. We call this variant of CRLC “two-
stage” CRLC. In fact, we did try training both the C-head
and the RL-head in the second stage by minimizing LCRLC
but could not achieve good results compared to training only
the C-head. We hypothesize that finetuning the RL-head
causes the model to capture too much fine-grained informa-
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(a) correct (b) false negative (c) false positive

Figure 2: STL10 samples of 5 classes correctly (green) and incorrectly (red) predicted by CRLC. For each subplot, we show
reference samples on the leftmost column and their nearest neighbors on the right. Neighbors are retrieved based on the
normalized cosine similarity (“s”) between the feature vectors of two samples. “p” denotes the confidence probability.

Dataset CIFAR10

Labels 10 20 40

MixMatch [3] - - 47.54±11.50

UDA [39] - - 29.05±5.93

ReMixMatch [2] - - 19.10±9.64

ReMixMatch†4 59.86±9.34 41.68±8.15 28.31±6.72

CRLC-semi 46.75±8.01 29.81±1.18 19.87±0.82

Table 3: Classification errors on CIFAR10. Lower values
are better. Results of baselines are taken from [31]. †: Re-
sults obtained from external implementations of models.

tion and ignore important cluster-level information, which
hurts the clustering performance.

In Table 2, we show the clustering results of “two-stage”
CRLC on ImageNet50/100/200. Results on CIFAR10/20
and STL10 are provided in Appdx. A.9. For fair comparison
with SCAN, we use the same settings as in [34] (details in
Appdx. A.7). It is clear that “two-stage” CRLC outperforms
SCAN on all datasets. A possible reason is that besides
pushing neighboring samples close together, our proposed
probability contrastive loss also pulls away samples that are
not neighbors (in the negative pairs) while the SCAN’s loss
does not. Thus, by experiencing more pairs of samples, our
model is likely to form better clusters.

4https://github.com/google-research/remixmatch

5.2. Semi-supervised Learning

Given the good performance of CRLC on clustering, it
is natural to ask whether this model also performs well on
semi-supervised learning (SSL) or not. To adapt for this
new task, we simply train CRLC with the new objective
LCLRC-semi (Eq. 12). The model architecture and training
setups remain almost the same (changes in Appdx. A.13).

From Table 3, we see that CRLC-semi, though is
not designed especially for SSL, significantly outperforms
many state-of-the-art SSL methods (brief discussion in Ap-
pdx. A.12). For example, CRLC-semi achieves about 30%
and 10% lower error than MixMatch [3] and UDA [39] re-
spectively on CIFAR10 with 4 labeled samples per class.
Interestingly, the power of CRLC-semi becomes obvious
when the number of labeled data is pushed to the limit.
While most baselines cannot work with 1 or 2 labeled sam-
ples per class, CRLC-semi still performs consistently well
with very low standard deviations. We hypothesize the rea-
son is that CRLC-semi, via minimizing LFC, models the
“smoothness” of data better than the SSL baselines. For
more results on SSL, please check Appdx. A.14.

5.3. Ablation Study

Comparison of different critics in the probability con-
trastive loss In Fig. 3 left, we show the performance of
CRLC on CIFAR10 and CIFAR20 w.r.t. different critic
functions. Apparently, the theoretically sound “log-of-dot-
product” critic (Eq. 9) gives the best results. The “negative-
L2-distance” critic is slightly worse than the “log-of-dot-
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Figure 3: Left: Clustering accuracies of CRLC w.r.t. different critics on CIFAR10/20 (training set only). Middle, Right:
Accuracy and LPC curves of CRLC on CIFAR20 w.r.t. different coefficients of LFC (λ2 in Eq. 11).

Figure 4: Left: Clustering accuracies of CRLC w.r.t. SimCLR [8] and MemoryBank [36] implementations. For CIFAR10/20,
only the training set is used. Middle, Right: tSNE visualizations of the feature vectors learned by CRLC and SimCLR on
the ImageNet10 train set, repectively.

product” critic while the “dot-product” and the “negative-
JS-divergence” critics are the worst.

Contribution of the feature contrastive loss We investi-
gate by how much our model’s performance will be affected
if we change the coefficient of LFC (λ2 in Eq. 11) to differ-
ent values. Results on CIFAR20 are shown in Fig. 3 middle,
right. Interestingly, minimizing both LPC and LFC simulta-
neously results in lower values of LPC than minimizing only
LPC (λ2 = 0). It implies that LFC provides the model with
more information to form better clusters. In order to achieve
good clustering results, λ2 should be large enough relative
to the coefficient of LPC which is 1. However, too large λ2
results in a high value of LPC, which may hurts the model’s
performance. For most datasets including CIFAR20, the op-
timal value of λ2 is 10.

Nonparametric implementation of CRLC Besides us-
ing SimCLR [8], we can also implement the two con-
trastive losses in CRLC using MemoryBank [36] (Sec-
tion 3.1). This reduces the memory storage by about 30%
and the training time by half (on CIFAR10 with ResNet34
as the backbone and the minibatch size of 512). How-
ever, MemoryBank-based CRLC usually takes longer time
to converge and is poorer than the SimCRL-based counter-
part as shown in Fig. 4 left. The contributions of the number
of negative samples and the momentum coefficient to the

performance of MemoryBank-based CRLC are analyzed in
Appdx. A.10.2.

Mainfold visualization We visualize the manifold of the
continous features learned by CRLC in Fig. 4 middle.
We observe that CRLC usually groups features into well-
separate clusters. This is because the information captured
by the C-head has affected the RL-head. However, if the
RL-head is learned independently (e.g., in SimCLR), the
clusters also emerge but are usually close together (Fig. 4
right). Through both cases, we see the importance of con-
trastive representation learning for clustering.

6. Conclusion

We proposed a novel clustering method named CRLC
that exploits both the fine-grained instance-level informa-
tion and the coarse-grained cluster-level information from
data via a unified sample-oriented contrastive learning
framework. CRLC showed promising results not only in
clustering but also in semi-supervised learning. In the fu-
ture, we plan to enhance CRLC so that it can handle neigh-
boring samples in a principled way rather than just views.
We also want to extend CRLC to other domains (e.g.,
videos, graphs) and problems (e.g., object detection).
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