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Abstract

Although deep neural networks (DNNs) have made rapid
progress in recent years, they are vulnerable in adversarial
environments. A malicious backdoor could be embedded in
a model by poisoning the training dataset, whose intention
is to make the infected model give wrong predictions during
inference when the specific trigger appears. To mitigate the
potential threats of backdoor attacks, various backdoor de-
tection and defense methods have been proposed. However,
the existing techniques usually require the poisoned training
data or access to the white-box model, which is commonly
unavailable in practice. In this paper, we propose a black-
box backdoor detection (B3D) method to identify backdoor
attacks with only query access to the model. We introduce
a gradient-free optimization algorithm to reverse-engineer
the potential trigger for each class, which helps to reveal the
existence of backdoor attacks. In addition to backdoor de-
tection, we also propose a simple strategy for reliable pre-
dictions using the identified backdoored models. Extensive
experiments on hundreds of DNN models trained on several
datasets corroborate the effectiveness of our method under
the black-box setting against various backdoor attacks.

1. Introduction

Despite the unprecedented success of Deep Neural Net-
works (DNNs) in various pattern recognition tasks [17], the
reliability of these models has been significantly challenged
in adversarial environments [2, 5], where an adversary can
cause unintended behavior of a victim model by malicious
attacks. For example, adversarial attacks [4, 13, 18, 42] ap-
ply imperceptible perturbations to natural examples with the
purpose of misleading the target model during inference.

Different from adversarial attacks, backdoor (Trojan) at-
tacks [9, 19, 33] aim to embed a backdoor in a DNN model
by injecting poisoned samples into its training data. The in-
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Figure 1: Illustration of backdoor attack and detection. By speci-
fying the target class and the trigger pattern, the adversary poisons
a portion of training data to have the trigger stamped and the label
changed to the target. During inference, the model predicts nor-
mally on clean inputs but misclassifies the triggered inputs as the
target class. Our detection method reverse-engineers the potential
trigger for each class and judges whether any class induces a much
smaller trigger, which can be used to detect backdoor attacks.

fected model performs normally on clean inputs, but when-
ever the embedded backdoor is activated by a backdoor trig-
ger, such as a small pattern in the input, the model will out-
put an adversary-desired target class, as illustrated in Fig. 1.
As many users with insufficient training data and computa-
tional resources would like to outsource the training proce-
dure or utilize commercial APIs from third parties for solv-
ing a specific task, the vendors of machine learning services
with malicious purposes can easily exploit the vulnerability
of DNN s to insert backdoors [9, 19]. From the industry per-
spective, backdoor attacks are among the most worrisome
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Accessibilit Training-stage Inference-stage
Y [6, 7, 43, 47] [ [32,35,49] | [ , 36, 45] l [8, 10, 11] l B3D (Ours) l B3D-SS (Ours)
White-box model v v v v X X
Poisoned training data v X X X X X
Clean validation data X v v X v X

Table 1: Model and data accessibility required by various backdoor defenses. We detail on some most related defenses in Sec. 2.

security threats when using machine learning systems [29].

Due to the threats, tremendous effort has been made to
detect or defend against backdoor attacks [7, 14, 16, 20, 27,

, 30, 43, 45]. Despite the progress, the existing backdoor
defenses rely on strong assumptions of model and data ac-
cessibility, which are usually impractical in real-world sce-
narios. Some training-stage defenses [7, 43] aim to identify
and remove poisoned samples in the training set to mitigate
their effects on the trained models. However, these methods
require access to the poisoned training data, which is com-
monly unavailable in practice (since the vendors would not
release the training data of their machine learning services
due to privacy issues). On the other hand, some inference-
stage defenses [8, 20, 36, 45] attempt to reverse-engineer
the trigger through gradient-based optimization approaches
and then decide whether the model is normal or backdoored
based on the reversed triggers. Although these methods do
not need the poisoned training data and could be applied to
any pre-trained model, they still require the gradients of the
white-box model to optimize the backdoor trigger. In this
work, we focus on a black-box setting, in which neither the
poisoned training data nor the white-box model can be ac-
quired, while only query access to the model is attainable.

Justification of the black-box setting. Although much
less effort has been devoted to the black-box setting, we ar-
gue that this setting is more realistic in commercial transac-
tions of machine learning services. For example, a lot of or-
ganizations (e.g., governments, hospitals, banks) purchase
machine learning services that are applied to some safety-
critical applications (e.g., face recognition, medical image
analysis, risk assessment) from vendors. These systems po-
tentially contain backdoors injected by either the vendors,
the participants in federated learning, or even someone who
posts the poisoned data online [!, 19]. Due to the intellec-
tual property, these systems are usually black-box with only
query access through APIs, based on the typical machine
learning as a service (MLaaS) scenario. Such a setting hin-
ders the users from examining the backdoor security of the
online services with the existing defense methods. Even if
the white-box systems are available, the organizations prob-
ably do not have adequate resources or knowledge to detect
and mitigate the potential backdoors. Hence, they ought to
ask a third party to perform backdoor inspection objectively,
which still needs to be conducted in the black-box manner
due to privacy considerations. Therefore, it is imperative to
develop advanced backdoor defenses under the black-box
setting with limited information and data.

In this paper, we propose a black-box backdoor detec-
tion (B3D) method. Similar to [45], B3D formulates back-
door detection as an optimization problem, which is solved
using clean data to reverse-engineer the potential trigger for
each class, as illustrated in Fig. 1. Differently, we solve the
problem by adopting a gradient-free algorithm, which min-
imizes the objective function through model queries solely.
Moreover, we demonstrate the applicability of B3D when
using synthetic samples (denoted as B3D-SS) in the case
that the clean samples for optimization are unavailable. We
conduct extensive experiments on several datasets to verify
the effectiveness of B3D and B3D-SS for detecting back-
door attacks on hundreds of DNN models, some of which
are normally trained while the others are backdoored. Our
methods achieve comparable and even better backdoor de-
tection accuracy than the previous methods based on model
gradients, due to the appropriate problem formulation and
efficient optimization procedure, as detailed in Sec. 3.

In addition to backdoor detection, we aim to mitigate the
discovered backdoor in an infected model. Under the black-
box setting, the typical re-training or fine-tuning [32, 43, 45]
strategies cannot be adopted since we are unable to modify
the black-box model. Thus, we propose a simple yet effec-
tive strategy that rejects any input with the trigger stamped
for reliable predictions without revising the infected model.

2. Related Work

Backdoor attacks. The security threat of backdoor at-
tacks is first investigated in BadNets [19], which contami-
nates training data by injecting a trigger into some samples
and changing the associated label to a specified target class,
as shown in Fig. 1. Chen et al. [9] study backdoor attacks
under a weak threat model, in which the adversary has no
knowledge of the training procedure and the trigger is hard
to notice. Trojaning attack [33] generates a trigger by max-
imizing the activations of some chosen neurons. Recently,
a lot of backdoor attacks [34, 39, 44, 48, 50] have been pro-
posed. There are other methods [15, 37] that modify model
weights instead of training data to embed a backdoor.

Backdoor defenses. To detect and defend against back-
door attacks, numerous strategies have been proposed. For
example, Liu et al. [32] employ pruning and fine-tuning to
suppress backdoor attacks. Several training-stage methods
aim to distinguish poisoned samples from clean samples in
the training dataset [43]. Tran et al. [43] perform singular
value decomposition on the covariance matrix of the feature
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representation based on the observation that backdoor at-
tacks tend to leave behind a spectral signature in the covari-
ance. Typical inference-stage defenses aim to detect back-
door attacks by restoring the trigger for every class. Neural
Cleanse (NC) [45] and some subsequent methods [20, 22]
formulate an optimization problem to generate the “mini-
mal” trigger and detects outliers based on the L; norm of
the restored triggers. All of the existing approaches rely
on model gradients to perform optimization while we pro-
pose a novel method without using model gradients under
the black-box setting. A recent work [8] also claimed to
perform “black-box” backdoor detection. Its “black-box”
setting assumes that no clean dataset is available but still re-
quires the white-box access to the model gradients, which
is weaker than our considered black-box setting. We sum-
marize the model and data accessibility required by various
backdoor defenses in Table 1. A survey of backdoor learn-
ing can be founded in [31].

3. Methodology

We first present the threat model and the problem formu-
lation. Then we detail the proposed black-box backdoor
detection (B3D) method. We finally introduce a simple and
effective strategy for mitigating backdoor attacks in Sec. 5.

3.1. Threat Model

To provide a clear understanding of our problem, we in-
troduce the threat model from the perspectives of both the
adversary and the defender. The threat model of the adver-
sary is similar to previous works [19, 27, 43, 45].

Adversary: As the vendor of machine learning services,
the adversary can embed a backdoor in a DNN model during
training. Given a training dataset D = {(x;,y;)}, in which
x; € [0,1]% is an image and y; € {1, ...,C} is the ground-
truth label, the adversary first modifies a proportion of train-
ing samples and then trains a model on the poisoned dataset.
In particular, the adversary can insert a specific trigger (e.g.,
a patch) into a clean image x using a generic form [45] as

' =A@x,mp)=1-m) z+m-p, (1

where A is the function to apply the trigger, m € {0, 1}¢
is the binary mask to decide the position of the trigger, and
p € [0,1]% s the trigger pattern. The adversary takes a sub-
set D’ C D containing r% of the training samples and cre-
ates poisoned data D), = {(z},y;)|z; = A(zi, m,p),y; =
y', (xi,y;) € D'}, where y' is the adversary-specified tar-
get class. Finally, a classification model f(x) is trained on
the poisoned training dataset (D \ D’) U D,,. The backdoor
attack is considered successful if the model can classify the
triggered images as the target class with a high success rate,
while its accuracy on clean testing images is on a par with
the normal model. Although we introduce the simplest and

most studied setting, our method can also be used under var-
ious threat models with experimental supports (Sec. 4.4).

Defender: We consider a more realistic black-box set-
ting for the defender, in which the poisoned training dataset
and the white-box model cannot be accessed. The defender
can only query the trained model f (x) as an oracle to obtain
its predictions, but cannot acquire its gradients. We assume
that f () outputs predicted probabilities over all C' classes.
The goal of the defender is to distinguish whether f(x) is
normal or backdoored given a set of clean validation images
or using synthetic samples in the case that the clean images
are unavailable.

3.2. Problem Formulation

As discussed in [45], a model is regarded as backdoored
if it requires much smaller modifications to cause misclas-
sification to the target class than other uninfected ones. The
reason is that the adversary usually wants to make the back-
door trigger inconspicuous. Thus, the defender can detect a
backdoored model by judging whether any class needs sig-
nificantly smaller modifications for misclassification.

Since the defender has no knowledge of the trigger pat-
tern (m, p) and the true target class y*, the potential trigger
for each class c can be reverse-engineered [45] by solving

min > {ee f(Amim,p)) + A Im[}, (@)

x, X

where X is the set of clean images to solve the optimization
problem, £(-, -) is the cross-entropy loss, and X is the balanc-
ing parameter. The optimization problem (2) seeks to simul-
taneously generate a trigger (m, p) that leads to misclassi-
fication of clean images to the target class ¢ and minimize
the trigger size measured by the L; norm of m'. Neural
Cleanse (NC) [45] relaxes the binary mask m to be continu-
ous in [0, 1]¢ and solves the problem (2) by Adam [26] with
A tuned dynamically to ensure that more than 99% clean
images can be misclassified. The optimization problem (2)
is solved for each class ¢ € {1, ..., C'} sequentially.

After obtaining the reversed triggers for all classes, we
can identify whether the model has been backdoored based
on outlier detection methods, which regard a class to be an
infected one if the optimized mask m has much smaller L,
norm. If all classes induce similar L; norm of the masks,
the model is regarded to be normal. The Median Absolute
Deviation (MAD) is adopted in NC. Although recent meth-
ods belonging to this defense category [8, 20, 22, 36] have
been proposed for better trigger restoration and outlier de-
tection, all of these methods need access to model gradients
for optimizing the triggers. In contrast, we propose an inno-
vative method to solve the optimization problem (2), which
can operate in the black-box manner without gradients.

"Most of the previous backdoor attacks adopt a small patch as the back-
door trigger. Thus, the L1 norm is an appropriate measure of trigger size.
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3.3. Black-box Backdoor Detection (B3D)

We let F(m, p; ¢) denote the loss function in Eq. (2) for
notation simplicity. Under the black-box setting, the goal is
to minimize F (m, p; ¢) without accessing model gradients.
By sending queries to the trained model f(x) and receiving
its predictions, we can only obtain the value of F(m, p; c).
Our proposed algorithm is motivated by Natural Evolution
Strategies (NES) [46], an effective gradient-free optimiza-
tion method. Similar to NES, the key idea of our algorithm
is to learn a search distribution by using an estimated gra-
dient on its parameters towards better loss value of interest.
But differently, we do not adopt natural gradients” and the
optimization involves a mixture of discrete and continuous
variables (i.e., m and p), which is hard to solve [21]. To
address this problem, we propose to utilize a discrete distri-
bution to model m along with a continuous one to model p,
leading to a novel algorithm for optimization.

In particular, instead of minimizing F (m, p; ¢), we min-
imize the expected loss under the search distribution as

emin J(0m,0,) =E

m,,Up

ﬂ—(mvplonzvep)[f(m’p; C)]? (3)

where w(m, p|0,,,0),) is a distribution with parameters 8,
and 6,,. To define a proper distribution 7 over m € {0, 1}¢
and p € [0,1]%, we let g(-) = % (tanh(-) + 1) denote a nor-
malization function and take the transformation of variable
approach (inspired by adversarial attacks [4, 12, 30]) as

p=g(P), P ~N(0,,0%), 4

where 0,,,0, € R?, Bern(-) is the Bernoulli distribution,
and N (-,-) is the Gaussian distribution with o being its
standard deviation. By adopting the formulation in Eq. (4),
the constraints on m and p are satisfied while the optimiza-
tion variables 6,, and 8, are unconstrained. Therefore, we
do not need to relax m to be continuous in [0, 1]¢ as the pre-
vious methods [20, 45] do and can perform optimization in
the discrete domain. The experiments also reveal different
behaviors between our method and baselines.

To solve the optimization problem (3), we need to esti-
mate its gradients. Note that m and p are independent, thus
we can represent their joint distribution 7(m,p|0,,,6))
by m1(m|6,,)m2(p|6,), in which 71(m|6,,) denotes the
Bernoulli distribution of m and 7 (p|@,) denotes the trans-
formation of Gaussian of p, as defined in Eq. (4). Hence, we
can estimate the gradients of 7 (0,,, 8,) with respect to 8,
and 6, separately. To calculate Vg, J(0,,,0),), we denote
Fi(m) = Er,(pla,)[F (m, p; c)]. Then we have

Vo, T (0m,0,) = Ve, Erimplo,..6,) F(m,p;c)]

= Ve, E m(mwm)[fl(m)]
= Er, (mo,,)[F1(m)Ve,, log m1(m|6,,)]

= Er, (m0,,) [F1(m) - 2(m — g(6,,))].

2We explain why we do not adopt natural gradients in Appendix A.

m ~ Bern(g(0,,));

Algorithm 1 Black-box backdoor detection (B3D)

Input: A set of clean images X ; a target class c; the loss function
in Eq. (2) denoted as F (m, p; c); the search distribution 7 de-
fined in Eq. (4); standard deviation of Gaussian o; the number
of samples k; the number of iterations 7"

Output: The parameters 6,,, and 8, of the search distribution 7.

1: Initialize 0., and 6,;

2: fort =1to 7T do

3 gm < 0,g, < 0;

4: Randomly draw a minibatch X from X;

5: for j = 1to k do > Estimate the gradient for 8,,

6‘

7

8

Draw m; ~ Bern(g(0m));
gm — gm + ]:(mj,g(ep); C) : 2(m

: end for
9: for j =1tokdo

i = 9(6m));

> Estimate the gradient for 8,
10: Draw €; ~ N (0,1);
1 9p < Gp + F(9(0m), 9(60p + 0€;); ) - €53
12: end for

13: Update 6., by 0., < Adam.step(Onm, +Gm);
14: Update 6, by 6, < Adam.step(0,, 7= gp);
15: end for

In practice, we can obtain the estimate of the search gradient
by approximating the expectation over m with k samples
my,...,my ~ m1(m|6,,). There is also an expectation in
Fi(m). We approximate it as Fi(m) =~ F(m, g(0));c).
Therefore, the gradient Vg J (0, 0,) can be obtained by

Z}—l m;)-2(m; — g(0m))

k
Z (m;,g(0y);¢)-2(m

As can be seen from Eq. (5), the gradient can be estimated

by evaluating the loss function with random samples, which

can be realized under the black-box setting through queries.
Similarly, we calculate the gradient Vg J (0,,,0,) as

Vepj(en'“ 6]7) = VOP]EWQ(p‘Bp)[‘F2(p)]
€
=Ecnon |F2(9(0p + 0€)) - =

ve,” J 07”7 0
(&)

?v\»—'

where F2(p) = Ex, (m|e,,)[F (m, p; c)]. We reparameter-
ize pby p = g(p') = g(0, + o€), where € follows the
standard Gaussian distribution N (0, I) to make the expres-
sion clearer. We approximate F»(p) by F(g(0m ), p; ¢) and
obtain the estimate of the gradient Vg, 7 (6, 6),) with an-
other k samples €, ..., €, ~ /\/(0 I)as

Vo, T (0m, 0,) ~ —Zfz 9(8, + 0€;))) - €
(6)
Z]—" 0, + o0¢€j);c) - €.

After obtaining the estimated gradients, we can perform
gradient descent to iteratively update the search distribution
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parameters 8,, and 8,. We adopt the same strategy as NC,
that the Adam optimizer is used and the hyperparameter A
in Eq. (2) is adaptively tuned. We outline the proposed B3D
algorithm in Algorithm 1. In Step 4, we draw a minibatch
X, from the set of clean images X and evaluate the loss
function F based on X;. Similar to NC, after we get the re-
versed triggers for every class ¢, we identify outliers based
on the L norm of the masks, and thereafter detect the back-
doored model if any mask exhibits much smaller L1 norm.

3.4. B3D with Synthetic Samples (B3D-SS)

One limitation of the B3D algorithm as well as the pre-
vious methods [20, 45] is the dependence on a set of clean
images, which could be unavailable in practice. To perform
backdoor detection in the absence of any clean data, a sim-
ple approach is to adopt a set of synthetic samples. A good
set of synthetic samples should satisfy that they are misclas-
sified as the target class by adding the true trigger such that
the true trigger is a solution of Eq. (2) and there should not
exist many solutions of Eq. (2) such that we can recover the
true trigger instead of obtaining other incorrect ones.

In practice, the synthetic samples could be drawn from a
random distribution or created by generative models based
on different datasets. Besides, we need to make these sam-
ples well-distributed over all classes when classified by the
model f(x) because in an extreme case that they are mostly
classified as one class ¢, our algorithm would always gen-
erate a very small trigger for class ¢ based on the problem
formulation (2) no matter whether c is the target class or not.
To this end, we draw n random images X © := {x§}}_; for
each class ¢ and minimize ¢(c, f(x$)) with respect to each
image ¢, in which £(-, -) is the cross-entropy loss. There-
fore, the resultant synthetic image § will be classified as c
by f(x). Under the black-box setting, we utilize the NES
gradient estimator similar to Eq. (6) to optimize x{ as

1k
T —xi—n k—z::

where 7 is the learning rate and 41, ..., 0; are drawn from
N(0,1). The synthetic dataset is composed of the resultant

f@s+8;))-8;, (D

images for all classes as X = UcC:1 X ¢, which is further
used for reverse-engineering the trigger by Algorithm 1.

4. Experiments

Datasets. We use CIFAR-10 [28], German Traffic Sign
Recognition Benchmark (GTSRB) [4 1], and ImageNet [38]
datasets to conduct experiments. On each dataset, we train
hundreds of models to perform comprehensive evaluations.
Some of them are normally trained while the others have
been embedded backdoors. We will detail the training and
backdoor attack settings in the following sections and show
the effectiveness of our methods under various settings.

| CIFAR-10 [ GTSRB | ImageNet
NC [45] 95.0% 100.0% 96.0%
TABOR [20] 95.5% 100.0% 95.0%
B3D (Ours) 97.5% 100.0% 96.0%
B3D-SS (Ours) |  97.5% 100.0% 95.5%

Table 2: The backdoor detection accuracy of NC, TABOR, B3D, and B3D-
SS on the CIFAR-10, GTSRB, and ImageNet datasets.

Compared methods. We compare B3D and B3D-SS
with Neural Cleanse (NC) [45] and TABOR [20], which are
typical and state-of-the-art methods based on model gradi-
ents. In B3D and B3D-SS, we set the number of samples
k as 50, the standard deviation of Gaussian ¢ as 0.1, the
learning rate of the Adam optimizer as 0.05. The optimiza-
tion is conducted until convergence. We provide the imple-
mentation details and more analyses on the hyperparame-
ters/complexity in Appendix B. After obtaining the distri-
bution parameters 8,,, and 8, we could generate the mask
by discretization as m = 1[g(0,,) > 0.5] and the pattern
as p = g(0,). To compare with the baselines, we adopt the
“soft” mask ¢(0,,) in experiments. TABOR introduces sev-
eral regularizations to improve the performance of backdoor
detection. Although our algorithm is based on the problem
formulation (2) similar to NC, it can easily be extended to
others (e.g., TABOR), which we leave to future work.

QOutlier detection. Given the reversed triggers for all
classes, we calculate their L; norm and perform outlier de-
tection to identify very small triggers (i.e., outliers). We ob-
serve that the Median Absolute Deviation (MAD) adopted
in NC performs poorly in some cases due to the assumption
of a Gaussian distribution, which does not hold for all cases,
especially when the number of classes C' is small. Hence,
we further add a heuristic rule to identify small triggers by
judging whether the L; norm of any mask is smaller than
one fourth of their median. This method is also applied to
NC to improve the baseline performance.

Evaluations. Table 2 shows the overall backdoor detec-
tion accuracy of all methods on three datasets. Our meth-
ods achieve comparable or even better performance than the
baselines, while rely on weak assumptions (i.e., black-box
setting) for backdoor detection, validating the effectiveness
of our methods. In addition to the coarse results, we further
conduct sophisticated analyses of the performance of differ-
ent methods on each dataset. Specifically, we consider four
cases of backdoor detection for an algorithm A:

* Case I: A successfully identifies a backdoored model
and correctly discovers the true target class without re-
porting other backdoor attacks for uninfected classes.

¢ Case II: A successfully identifies a backdoored model
but discovers multiple backdoor attacks for both the
true target class and other uninfected classes.

e Case III: A wrongly identifies a normal model as
backdoored or wrongly discovers backdoor attacks for
uninfected classes excluding the true target class of a
backdoored model.
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Reversed Trigger Detection Results

Model Accuracy ASR Method L1 norm ASR Casel Casell Caselll CaselV
NC [45] N/A N/A N/A _ N/A 8750 42750

TABOR [20] N/A N/A N/A  N/A 4/50 46/50

Normal 89.30% N/A B3D (Ours) N/A N/A N/A N/A 2/50 48/50
B3D-SS (Ours) N/A N/A N/A  N/A 3/50 47/50

NC [45] 0588 98.76% | 4050 _ 9/50 0750 1750

Backdoored 08355 | 09750 | TABOR[20] 0672 99.11% | 36/50  13/50 0/50 1/50
(1 x 1 trigger) =27 157 | B3D (Ours) 0.820  99.29% | 36/50  12/50 0/50 2/50
B3D-SS (Ours) | 3.734  99.98% | 35/50  15/50 0/50 0/50

NC [45] 1508 98.81% | 47/50  2/50 0750 1750

Backdoored . TABOR [20] 2256 9921% | 44/50  3/50 0/50 3/50
@ x 2trigger) | ooo1% | 100:00% | Bap Ours) 2310 98.94% | 47/50  3/50  0/50 0/50
B3D-SS (Ours) | 2.867  99.13% | 47/50  2/50 0/50 1/50

NC [45] 2264 98.71% | 49/50 1750 0750 0750

Backdoored TABOR [20] 2493 98.84% | 48/50  1/50 0/50 1/50
(3 x 3trigger) | S0>7% | 100.00% | ga3py Ours) 3521 98.87% | 47/50  2/50 0/50 1/50
B3D-SS (Ours) | 3.856  96.97% | 47/50  2/50 0/50 1/50

Table 3: The results of backdoor detection on CIFAR-10. For normal and backdoored models with different trigger sizes, we show their average accuracy
and backdoor attack success rates (ASR). For the four backdoor detection methods — NC, TABOR, B3D, and B3D-SS, we report the L1 norm and attack
success rates of the reversed trigger corresponding to the target class, as well as the detection results in four cases.

* Case IV: A successfully identifies a normal model or
wrongly identifies a backdoored model as normal.
Below we introduce the detailed results on each dataset.

4.1. CIFAR-10

We adopt the ResNet-18 [23] architecture on CIFAR-10.
The backdoor attacks are implemented using the BadNets
approach [19]. We consider the triggers of size 1 X 1, 2 x 2,
and 3 x 3. For each size, we train 50 backdoored models
using different triggers and target classes with 5 models per
target class. The triggers are generated in random positions
and have random colors. We poison 10% training data. Be-
sides, we also train 50 normal models with different random
seeds, resulting in a total number of 200 models. We train
them for 200 epochs without using data augmentation. The
accuracy on the clean test set and the backdoor attack suc-
cess rates (ASR) are shown in Table 3 (column 2-3).

To perform backdoor detection, NC, TABOR, and B3D
adopt the 10, 000 clean test images, while B3D-SS adopts
1,000 synthetic images with 100 per class. In Table 3, we
report the L1 norm and the attack success rates (ASR) of the
reversed trigger corresponding to the true target class for the
backdoored models. We also report the number of models
belonging to the four cases of backdoor detection. In Fig. 2,
we visualize the original triggers and the reversed triggers
optimized by NC, B3D, and B3D-SS with different trigger
sizes. From the results, we draw the following findings.

First, the reversed triggers of NC have smaller L; norm
than B3D and B3D-SS. It is reasonable since NC performs
direct optimization using gradients. However, as NC relaxes
the mask m to be continuous in [0, 1]¢, the optimized masks
shown in Fig. 2 tend to have small amplitudes. For B3D and
B3D-SS, since we let m follow the Bernoulli distribution,
the optimized masks have values closer to 0 (black) or 1
(white), which is in accordance with the formulation (1).

1 x 1 trigger 2 x 2 trigger 3 x 3 trigger

Mask Mask*Pattern Mask Mask*Pattern Mask Mask*Pattern
Figure 2: Visualization of the original triggers and the reversed triggers
optimized by NC, B3D, and B3D-SS on CIFAR-10.

B3D NC Original

B3D-SS

Second, as can be seen from Table 3, NC wrongly iden-
tifies more normal models as backdoored (i.e., 8 out of 50)
than B3D and B3D-SS. It is also because that NC relaxes the
mask m to [0,1]%. Thus NC sometimes optimizes a mask
with small L norm for an uninfected class, which does not
resemble true backdoor patterns and is identified as an out-
lier by MAD. But B3D and B3D-SS perform optimization
in the discrete domain, which are less prone to this problem.
We will further discuss this phenomenon in Appendix C.

Third, we find that many backdoored models, especially
those with 1 x 1 triggers, can be found multiple backdoors
(i.e., Case II), as shown in Table 3. We verify that a chosen
backdoored model truly has two backdoors in Fig. 3. So we
think that backdoor attacks through data poisoning can not
only affect the behavior of the model corresponding to the
true target class, but also interfere other uninfected classes.

Fourth, as shown in Fig. 2, the reversed triggers can have
different positions and patterns compared with the original
triggers. It indicates that a backdoored model would learn a
distribution of triggers by generalizing the original one [36].
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Reversed Trigger Detection Results

Model Accuracy ASR Method L1 norm ASR Casel Casell Caselll CaselV
NC [45] N/A N/A N/A N/A 0/43 43/43

TABOR [20] N/A N/A N/A N/A 0/43 43/43

Normal 98.84% N/A B3D (Ours) N/A N/A N/A  N/A 0/43 43/43
B3D-SS (Ours) N/A N/A N/A N/A 0/43 43/43

NC [45] 0.737 98.90% | 14/43  29/43 0/43 0/43

Backdoored 08.74% | 99530, | TABOR[20] 0.543 99.24% | 19/43  24/43 0/43 0/43
(1 x 1 trigger) S =271 B3D (Ours) 0.922 98.86% | 10/43  33/43 0/43 0/43
B3D-SS (Ours) | 3.079  100.00% | 12/43  31/43 0/43 0/43

NC [45] 1.439 9875% | 27/43  16/43 0/43 0/43

Backdoored TABOR [20] 1.783 99.15% | 22/43  21/43 0/43 0/43
@ x 2uiggen) | 570% | 100:00% 1 gap (Ours) 2260 99.04% | 2743 16/43  0/43 0/43
B3D-SS (Ours) | 2351 97.96% | 25/43  18/43 0/43 0/43

NC [45] 2264 9871% | 39/43  4/43 0/43 0/43

Backdoored TABOR [20] 2.764 99.22% | 3543  8/43 0/43 0/43
3 x Buiggen) | 570% | 100:00% 1 gap Ours) 3.758 98.87% | 34/43  9/43 0/43 0/43
B3D-SS (Ours) | 3.048 94.87% | 33/43  10/43 0/43 0/43

Table 4: The results of backdoor detection on GTSRB. For normal and backdoored models with different trigger sizes, we show their average accuracy
and backdoor attack success rates (ASR). For the four backdoor detection methods — NC, TABOR, B3D, and B3D-SS, we report the L1 norm and attack
success rates of the reversed trigger corresponding to the target class, as well as the detection results in four cases.

Class: 0 Class: 1 Class: 2 Class: 3 Class: 4
Class: 5 Class: 6 Class: 7 Class: 8 Class: 9

Figure 3: Visualization of the reversed triggers optimized by B3D for all
classes on CIFAR-10. The true target class is 0, but B3D reports two back-
door attacks corresponding to class 0 and 9.

We provide further analysis on the effective input positions
of backdoor attacks in Appendix D.

4.2. GTSRB

We adopt the same model architecture (i.e., ResNet-18)
and backdoor injection method (i.e., BadNets) as in CIFAR-
10. Since GTSRB has 43 classes, we train one backdoored
model for each class, resulting in 43 backdoored models for
a specific trigger size. We also train another 43 normal mod-
els for comparison. These models are trained for 50 epochs.
For backdoor inspection, NC, TABOR, and B3D adopt the
12,630 clean test images for optimization, while B3D-SS
generates 4, 300 synthetic images with 100 per class.

The detailed experimental results on the statistics of the
reversed triggers and the backdoor detection accuracy are
presented in Table 4. The observations are consistent with
those on CIFAR-10. We also find that the backdoor detec-
tion accuracy achieves 100%. We think that the perfect de-
tection accuracy is partially a consequence of more classes
in this dataset, which enables the outlier detection method
to correctly find outliers with more data points.

4.3. ImageNet

Since the original ImageNet dataset contains more than
14 million images, it is hard to train hundreds of models on

it. Hence, we use a subset of 10 classes, where each class
has ~ 1,300 images. The test set is composed of 500 im-
ages with 50 per class. These images have the resolution of
224 x 224. We also adopt the ResNet-18 model. For back-
door attacks, we consider three pre-defined patterns shown
in Table 5 of size 15 x 15 as the triggers rather than the ran-
domly generated triggers. Similar to the experimental set-
tings on CIFAR-10, we train 50 backdoored models using
each trigger, in which 5 models per target class are trained
with the trigger stamped at random positions. For backdoor
detection, NC, TABOR, and B3D adopt the 500 test images,
while B3D-SS utilizes 1, 000 synthetic images generated by
BigGAN [3], due to the poor performance of using random
noises in the high-dimensional image space of ImageNet.

We show the backdoor detection results on ImageNet in
Table 5. Our proposed B3D and B3D-SS can achieve com-
parable performance with the baselines. The reversed trig-
gers also exhibit different visual appearance compared with
the original triggers, as shown in Appendix E.

4.4. Ablation Study on More Settings

Besides, we demonstrate the generalizability of B3D and
B3D-SS by considering more settings, including:

* Other backdoor attacks. We study the blended injec-
tion attack [9] and label-consistent attack [44] to insert
backdoors besides BadNets.

* Different model architectures. We study a VGG [40]
model architecture besides the ResNet model.

* Data augmentation. We investigate the effects of data
augmentation for backdoor attacks and detection.

* Multiple infected classes with different triggers. We
consider the scenario that multiple backdoors with dif-
ferent target classes are embedded in a model.

« Single infected class with multiple triggers. We con-
sider the scenario that multiple backdoors with a single
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Reversed Trigger Detection Results
Model Accuracy ASR Method L1 norm igSR Casel Casell Caselll CaselV
NC [45] N/A N/A N/A N/A 2/50 48/50
TABOR [20] N/A N/A N/A N/A 1/50 49/50
Normal 88.46% NA 1 B3D (Ours) N/A N/A N/A  NIA 0/50 50/50
B3D-SS (Ours) N/A N/A N/A N/A 1/50 49/50
NC [45] 62.093 99.11% | 45/50 0/50 0/50 5/50
Backdoored 87.91% 99.95% TABOR [20] 57.569 99.25% | 43/50 0/50 0/50 7/50
(Trigger = ) ’ ’ B3D (Ours) 86.083 99.14% | 43/50 0/50 0/50 7/50
B3D-SS (Ours) 120.822  97.57% | 42/50 0/50 0/50 8/50
NC [45] 20.610 99.12% | 50/50 0/50 0/50 0/50
Backdoored TABOR [20] 22.035 99/24% 47/50 2/50 0/50 1/50
. 87.52% 99.68%
(Trigger j) B3D (Ours) 23.497 99.09% | 50/50 0/50 0/50 0/50
B3D-SS (Ours) 24.124 97.15% | 44/50 6/50 0/50 0/50
NC [45] 38.701 99.14% | 48/50 1/50 0/50 1/50
Backdoorled 87.39% 99.94% TABOR [20] 37.499 99.20% | 46/50 3/50 0/50 1/50
(Trigger ™) ’ ' B3D (Ours) 56.636 99.13% | 48/50 1/50 0/50 1/50
B3D-SS (Ours) 37.253 97.44% | 49/50 1/50 0/50 0/50

Table 5: The results of backdoor detection on ImageNet. For normal and backdoored models with different triggers, we show their average accuracy and
backdoor attack success rates (ASR). For the dour backdoor detection methods — NC, TABOR, B3D, and B3D-SS, we report the L1 norm and attack
success rates of the reversed trigger corresponding to the target class, as well as the detection results in four cases.

target class are embedded in a model.

Due to the space limitation, the complete experiments on
these settings are deferred to Appendix F.

5. Mitigation of Backdoor Attacks

Once a backdoor attack has been detected, we can fur-
ther mitigate the backdoor to preserve the model utility for
users. Under the studied black-box setting, we are unable to
modify the model weights, such that the typical re-training
or fine-tuning [32, 43, 45] strategies cannot be utilized. In
this section, we introduce a simple and effective strategy for
reliable predictions by rejecting any adversary-crafted input
with the backdoor trigger stamped during inference.

Assume that we have detected a backdoored model f(x)
and discovered the true target class y°. The optimized trig-
ger for the target class is denoted as (m, p). The basic intu-
ition behind our method is as follows. For a clean input x.
and a triggered input x, crafted by the adversary, the pre-
dictions of x. and A(x., m,p) by applying the reversed
trigger are extremely different, while the predictions of x,
and A(x,, m,p) are similar. The rationale is that both x,
and A(x,, m, p) have the trigger stamped and are classified
as the target class y* with similar probability distributions.
Therefore, for an arbitrary input x, we let

S(x) = Dxu(f(@)||f (Alz, m, p))) ®)

measure the similarity between the model predictions f(x)
and f(A(z, m, p)), where Dk, is the Kullback-Leibler di-
vergence. If S(x) is large, x is probably a clean input, and
otherwise x has the trigger stamped, which will be rejected
without a prediction. Based on the metric S(x), we perform
binary classification of clean inputs and triggered inputs on
each dataset’s test set. We report the AUC-scores averaged
over all backdoored models in Table 6. Using the reversed

| CIFAR-10 [ GTSRB [ ImageNet
STRIP [16] 0.9332 0.4937 0.7126
Kernel Density [25] 0.9585 0.9874 0.9328
NC [45] 0.9948 0.9962 0.9312
TABOR [20] 0.9937 0.9953 0.9842
B3D (Ours) 0.9958 0.9946 0.9806
B3D-SS (Ours) 0.9856 0.9924 0.9833

Table 6: The AUC-scores of detecting triggered inputs during inference on
the CIFAR-10, GTSRB, and ImageNet datasets. We use the metric S(x)
in Eq. (8) with the reversed triggers given by NC, TABOR, B3D, and B3D-
SS, respectively. The performance is compared with additional baselines,
including STRIP [16] and the kernel density method [25].

triggers optimized by any method, the proposed strategy can
reliably detect the triggered inputs, achieving better perfor-
mance than alternative baselines [16, 25].

6. Conclusion

In this paper, we proposed a black-box backdoor detec-
tion (B3D) method to identify backdoored models under the
black-box setting. By formulating backdoor detection as an
optimization problem, B3D solves the problem with model
queries only. B3D can also be utilized with synthetic sam-
ples. We further introduced a simple and effective strategy
to mitigate the discovered backdoor for reliable predictions.
We conducted extensive experiments on several datasets to
demonstrate the effectiveness of the proposed methods. Our
methods reach comparable or even better performance than
the previous methods based on stronger assumptions.
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