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Abstract

Active learning (AL) is successful based on the assump-
tion that labeled and unlabeled data are obtained from the
same class distribution. However, its performance deteri-
orates under class distribution mismatch, wherein the un-
labeled data contain many samples out of the class distri-
bution of labeled data. To effectively handle the problems
under class distribution mismatch, we propose a contrastive
coding based AL framework named CCAL. Unlike the exist-
ing AL methods that focus on selecting the most informative
samples for annotating, CCAL extracts both semantic and
distinctive features by contrastive learning and combines
them in a query strategy to choose the most informative un-
labeled samples with matched categories. Theoretically, we
prove that the AL error of CCAL has a tight upper bound.
Experimentally, we evaluate its performance on CIFAR10,
CIFAR100, and an artificial cross-dataset that consists of
five datasets; consequently, CCAL achieves state-of-the-art
performance by a large margin with remarkably lower an-
notation cost. To the best of our knowledge, CCAL is the
first work related to AL for class distribution mismatch.

1. Introduction
Deep Learning, which largely depends on sufficient la-

beled data, has achieved unprecedented breakthroughs in
supervised learning [23]. Nevertheless, it is impractical
to obtain abundant labeled data because labeling requires
enormous human and financial costs [36].

Active learning (AL) selects the most informative sam-
ples to query their labels, delivering a competitive target
model while saving annotation costs relative to the super-
vised learning [36]. In traditional AL methods, it’s gen-
erally assumed that labeled and unlabeled data are drawn
from the same class distribution, i.e., the categories of un-
labeled data are the same as those of labeled ones. Un-
fortunately, this assumption cannot be maintained in many
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Figure 1: An instance of class distribution mismatch. Un-
labeled data contains some samples that are out of the class
distribution of labeled data.

real-world scenarios since that unlabeled data always con-
tain lots of samples out of the class distribution of labeled
data, i.e., some categories of unlabeled data are not pre-
sented in labeled ones. For example, when crawling a large
set of images (as shown in Figure 1) [49] by keyword fil-
tering (“dog”, “cat”) from the Internet for binary image
classification, many unlabeled images not belonging to tar-
get classes ( such as “deer”, “horse”, “airplane”, “ship”,
“car”, “flower”) are collected. The same problem has al-
ready been found in medical diagnoses containing unseen
lesions [11, 48] and the house annotation of remote sens-
ing images containing numerous natural sceneries. These
scenarios have been formalized as the learning framework,
called class distribution mismatch [11] [7].

Under class distribution mismatch, an AL algorithm will
suffer a sharp drop in performance if only focusing on
querying the “most informative” samples. One main reason
for this phenomenon is that a large set of samples with mis-
matched categories will be queried, which are invalid for the
target model, thereby wasting the annotation budget. Thus,
it is essential to reduce the cost for invalid queries while im-
proving the information of samples queried (valid queries)
in class distribution mismatch. Heuristically, we introduce
both invalid query error and valid query error to combat the
problem, as described in Eq.1. Specifically, an invalid query
error is attributed to those queried samples invalid for im-
proving the target model, and a valid query error is due to
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Figure 2: CCAL is combining the semantic score Ssem and
distinctive score Sdis to select samples for annotating.

the less representativeness of queried data to the entire data.
For example, in Figure 1, the “horse” and “flower” images
may increase the invalid query error, while the “cat” image
in the left bottom corner of unlabeled data may lead to the
increment of valid query error.

Inspired by the theoretical analysis presented in Sub-
section 3.5, we propose a contrastive coding based AL
framework, which extracts semantic and distinctive features
by contrastive learning, named CCAL, as shown in Fig-
ure 2. For one thing, semantic features, which function
as category-level features, can be exploited to filter invalid
samples with mismatched categories, thereby reducing the
invalid query error in CCAL. For another, distinctive fea-
tures, which describe the features at the individual level,
can be used to select the most representative and informa-
tive ones to extend the decision boundary, bring the lessen
of valid query error. In conjunction with semantics and dis-
tinctiveness, CCAL selects the most informative samples
with matched categories, excelling on tasks under class dis-
tribution mismatch. Our theoretical study shows that the
AL error of CCAL has a tight upper bound. Experimen-
tal results on different datasets further validate that CCAL
outperforms the compared methods.

1.1. Contributions

The major contributions of this study are:

1) Proposing an AL framework, called CCAL, which
combines semantics with distinctiveness as a new AL
criterion and selects the most informative unlabeled
samples with matched categories to query under class
distribution mismatch. This is the first work of AL re-
lated to class distribution mismatch to the best of our
knowledge.

2) Learning semantic and distinctive features, which de-
scribe the samples in category-level and individual-
level, respectively, and conductive to keep away from
the unlabeled samples with mismatched categories and
select the most informative ones with matched cate-
gories from unlabeled data.

3) Dividing the AL error into invalid query error and valid
query error, and proving that the AL error of CCAL has
a tight upper bound under class distribution mismatch.

The remainder of this paper is organized as follows. In
Section 2, we review some related work. In Section 3, the
proposed approach CCAL and theoretical studies are intro-
duced. Section 4 presents the experiments, followed by the
conclusion in Section 5.

2. Related Work
Active learning: AL reduces the labeling cost by actively
selecting the most valuable data to query their labels [36].
Existing AL methods can be roughly divided into pool-
based methods and generation-based methods.

Most pool-based methods evaluate a sample in terms
of its informativeness, representativeness, or both [40].
The first considering informativeness, contain uncertainty
[45, 41, 44], query by committee [29, 37], etc. A naive way
of defining uncertainty involves using the posterior proba-
bility of a sample predicted by a model [24, 18, 33]. Entropy
[28] is one of the most usual methods. Recently, Sinha et al.
[38] propose to assess the uncertainty based on whether un-
labeled samples share the same distribution as labeled ones.
Yoo et al. [50] take the uncertainty into account by esti-
mating the loss of the sample. The second one is on rep-
resentativeness, which focuses on diversity [9] and density
[31], etc. Coreset [35] is a classic diversity-based method
that minimizes the Euclidean distance between the sampled
points and remaining points in the feature space. It has been
verified that it is better to consider both informativeness and
representativeness instead of either [46, 15]. T et al. [1]
measure uncertainty with regard to the gradient magnitude
concerning parameters in the final (output) layer and collect
a batch of examples in which gradients span a diverse set of
directions to capture the diversity.

Generation-based methods attempt to generate informa-
tive samples to reduce the annotation budget. GAAL [53]
intends to generate samples at the target model’s decision
boundary; it introduces the generative adversarial network
into AL for the first time. BGADL [42] combines AL and
data augmentation [43] to continuously generate informa-
tive samples to accelerate the learning of the training model.

However, the AL methods mentioned above are based
on the assumption that labeled and unlabeled data origi-
nate from the same class distribution. Hence, their perfor-
mance undergoes a sharp deterioration under class distribu-
tion mismatch.
Contrastive learning: Contrastive learning is an efficient
tool in learning representations, which yields a specific fea-
ture space that benefits the downstream tasks. A practi-
cal way of implementing contrastive learning involves the
construction of positive and negative pairs in the training
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stage and embedding the anchor close to the positive sam-
ples while pushing it away from negative ones [17].

Contrastive learning has achieved significant attention in
recent years owing to its success in self-supervised learning
[22]. Transformation is vital in contrastive learning, and
several studies [6, 30, 5, 39] focus on designing varied aug-
mentations to yield useful representations. SimCLR [5] is
a self-paced approach that considers the potential value and
easiness of an instance simultaneously. CSI [39] contrasts
the sample with distributionally-shifted augmentations of it-
self. Moreover, various methods attempt to learn invariant
feature by combining contrastive learning with clustering,
such as [25] and [4]. Beyond this, to ensure the effect of
contrastive learning, Dosovitskiy et al. [8] propose a mem-
ory bank mechanism to store the representations computed
in the training process. MoCo [12] treats contrastive learn-
ing as a dictionary lookup problem, wherein a dynamic dic-
tionary is designed with a queue and considered the recent
representations to be more important. Khosla et al. [19] in-
tegrate class information with contrastive learning, wherein
it is considered that the samples obtained from the same cat-
egories are positive pairs and those obtained from different
classes are negative pairs.
Semi-supervised learning: Semi-supervised learning
(SSL) aims to solve the problem of insufficient labeled data.
Different from AL, it utilizes unlabeled data to improve the
target model’s performance, thus reducing the demand for
more labeled data. Based on the scenario of class distri-
bution mismatch, Guo et al. propose a deep SSL frame-
work, DS3L [11], which uses unlabeled data selectively to
ensure that the accuracy of supervised learning is not com-
promised. UASD [7] combines self-distillation and out-of-
distribution filtering, which produces soft targets to avoid
catastrophic error propagation.

3. Proposed Method: CCAL

Let labeled data as DL = (XL, Y L) = {(xLi , yLi )}
nL

i=1

and unlabeled data as DU = XU = {xUj }
nU

j=1
, wherein the

labeled samples are i.i.d. ones over space D, i.e., DL ∼ D,
and nL ≪ nU . Each labeled sample belongs to one of the
K known categories in label space Y , and Y = {yi}Ki=1.
However, an unlabeled one’s category may be excluded
in Y under class distribution mismatch. Let XID C and
XOOD C denote the samples in and out of the class distri-
bution of the labeled data, respectively. Then, the entire
data can be redefined as the combination of XID C and
XOOD C . Specifically, XL ⊆ XID C , XU ∩XID C ̸= ∅,
and XOOD C ⊆ XU . Suppose that Xquery is the query set
composed of all the queried samples in AL cycles, and then
it may contain the samples from XID C and XOOD C . Ac-
cordingly, Xquery is the set of XID C

query and XOOD C
query , which

indicates the queried samples in and out of the class distri-

bution of labeled data.

3.1. AL Error Analysis

In AL, population risk is jointly controlled by the gener-
alization gap, training error, and AL error. We formulate the
population risk as Eq.1. In Eq.1, the generalization gap is
the gap between the population risk and generalization loss
in XID C ; the training error is the average empirical loss
over Xtr, where Xtr = XL ∪ XID C

query denotes the sam-
ples trained for building target model in AL; the AL error
consists of valid query error and invalid query error. In-
valid query error is due to those queried samples, XOOD C

query ,
which are invalid for improving the target model; it is mea-
sured by the average empirical loss over Xre, where Xre

denotes the samples belonging to
(
XID C −XID C

query

)
, but

replaced by XOOD C
query in the query process. The valid query

error is measured by the difference between the average em-
pirical loss over Xtr and the average empirical loss over
XID\re = XID C − Xre. When those queried samples,
i.e., XID C

query, are more informative, the smaller both valid
query error and invalid query error are. Denote that in Eq.1,
p = |XID C |, q = |Xtr|, d = |Xre|.

E(x,y)∼D [l(x,y;w)]

≤
∣∣∣∣E(x,y)∼D [l(x,y;w)]−

1

p

p∑
i=1

l(x
ID C
i ,y

ID C
i ;w)

∣∣∣∣
︸ ︷︷ ︸

generalization gap

+

∣∣∣∣ 1
q

q∑
i=1

l(x
tr
i ,y

tr
i ;w)

∣∣∣∣
︸ ︷︷ ︸

training error

+

∣∣∣∣ 1
p

p−d∑
i=1

l(x
ID\re
i

,y
ID\re
i

;w)−
1

q

q∑
i=1

l(x
tr
i ,y

tr
i ;w)

∣∣∣∣
︸ ︷︷ ︸

valid query error

+

∣∣∣∣ 1
p

d∑
i=1

l(x
re
i ,y

re
i ;w)

∣∣∣∣
︸ ︷︷ ︸
invalid query error︸ ︷︷ ︸

ALerror (CCALerror)

(1)

Traditional strategies risk querying many samples of un-
seen classes in terms of class distribution mismatch, result-
ing in a drastic waste of annotation budget and a higher AL
error. For the sake of higher generalization ability and less
annotation budget, we propose a scheme combining the se-
mantic and distinctive features, named CCAL, to minimize
the AL error, especially the invalid query error. Followed
by, we exploit contrastive learning to extract semantic and
distinctive features, forming a combined query strategy. Fi-
nally, we present a theorem to analyze the upper bound of
the AL error, which theoretically shows the effectiveness of
CCAL.

3.2. Learning Semantic Features

Under class distribution mismatch, one drawback of the
existing AL methods is that the drastic increase in the num-
ber of samples in unseen classes reduces the informative-
ness and representativeness of selected data. Thus, filtering
unlabeled samples with mismatched categories poses a sig-
nificance. Heuristically, one feasible and effective means
to handle this tricky problem is to distinguish XID C and
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Figure 3: A effective CCAL framework that extracts semantic and distinctive features by contrastive learning and combines
the semantic score Ssem and distinctive score Sdis to select samples for labeling.

XOOD C in semantics. Contrastive learning is such a dis-
criminative approach, which does not pay attention to the
detailed information but learns invariant semantic proper-
ties of the samples [22]. Based on the Instance Discrimina-
tion task theory introduced by Wu et al. [47], the semantics
of the samples are learned via extracting the semantic fea-
ture by contrastive learning in CCAL. Specifically, the pos-
itive sample is the one that applies several transformations
at random, such as Random crop, Horizontal flip, etc., and
the negative one is randomly sampled from the remainder
unlabeled data, as shown in Figure 3(a).

Let B = {xi}ai=1 denotes a batch, and x̂+i indicates
the sample xi augmentated by the random and indepen-
dent transformation mentioned as above. Then, the posi-
tive pairs can be represented as (x̂i, x̂

+
i ) and the negative

pairs as (x̂i, B̂−i) . The loss of the semantic contrasting is
formulated as Eq.2.

Ls (B) =
1

|B̂|

|B̂|∑
i=1

Lcon

(
x̂i, x̂

+
i , B̂−i

)
, (2)

where B̂ = {x̂i}ai=1 ∪ {x̂+
i }ai=1, B̃−i = {x̂j}j ̸=i ∪ {x̂+

j }j ̸=i,
xi ∈ XL ∪XU , and Lcon is a contrastive learning loss [5].

Then, the semantic feature, zs(·), can be learned by Eq.2,
basing on the semantic score defined as Eq.3.

Ssem

(
xU
i

)
= σ

[
max

j
cos

(
zs(x

L
j ), zs(x

U
i )

)]
, (3)

where σ[·] is a Min-Max normalization operator [16].
Eq.3 achieves the maximum semantic similarity degree

of an unlabeled sample to the labeled data. The larger the
value of the semantic score, the higher the probability of the
unlabeled one belonging to the known categories, and the
lower the invalid query error is. Thus, the semantic score is
available to design the query strategy.

3.3. Learning Distinctive Features

The samples in and out of class distribution can be
roughly distinguished by semantic feature learning, consid-
erably reducing the invalid query error. However, if only
the semantic score is used as a query measure, many un-
informative samples within the class distribution may be

queried. Consequently, such samples will not significantly
improve the target model’s performance since they are sim-
ilar or even identical to labeled data. It is, therefore, neces-
sary to extract the distinctive features of labeled and unla-
beled data and filter those uninformative samples in query
processing.

Prompted by [39], the rotation transform [10], shifts the
sample input distribution but retains invariant semantics.
We consider the rotated sample the negative one, and the
transformations in semantic feature learning augment the
positive one. This allows the feature extractor to concen-
trate on the distinctiveness of the features.

Let xi,k denotes the sample xi rotated by k degrees.
Then, the positive pairs can be denoted as (x̂i,k, x̂+i,k), and
the negative ones as (x̂i,k, B̂R

−i,k) . The distinctive contrast-
ing loss is formulated as Eq.4.

Ld(B;R) =
1

|B̂R|
1

|R|

|B̂R|∑
i=1

∑
k∈R

[
Lcon(x̂i,k, x̂

+
i,k, B̂

R
−i,k)

+ log p(k|x̂i,k)

] (4)

where B̂R
−i,k includes all the augmentated samples except

the xi,k and x+i,k.
Then, the distinctive features learned by Eq.4, zd(·), are

exploited to measure the distinctiveness of unlabeled to the
labeled samples with the same semantics. Each unlabeled
sample is annotated with a pseudo semantic label, which is
the same as the label of its closest labeled one. Given an
unlabeled sample xUi , let xLi,st and xLi,nd denote its closest
and second closest labeled samples with the same semantic
label, then the distinctiveness of the unlabeled sample can
be measured by Eq.5, where σ[·] is a normalization operator
as same as Eq.3.

Sdis(x
U
i ) = 1− σ

[
cos

(
zd(x

U
i ), zd(x

L
i,st)

)
− cos

(
zd(x

U
i ),

zd(x
L
i,nd)

)
+ cos

(
zd(x

L
i,st), zd(x

L
i,nd)

)]
.

(5)

The first two-term in σ[·] of Eq.5 measures the difference
of xUi to labeled samples. The larger the difference, the
greater the similarity of xUi with the labeled one, followed
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by a smaller distinctiveness. The third term, to some extent,
measures the information of xUi . A larger one makes the
information of xUi smaller. To conclude, the larger the value
of Sdis, the higher the distinctiveness of sample xUi , and the
lower the valid query error. This means that the distinctive
score can be used in the final query strategy.

3.4. Joint Query Strategy

As shown in Figure 3(c), if only semantic features are
used, numerous redundant unlabeled samples within the
class distribution may be queried. For example, in the green
area of the top-left graph in Figure 3(c), those dots near the
image “dog” are less informative to the target model. How-
ever, simply using distinctive features may lead to many
invalid queries. For example, in the pink area of the top-
right graph in Figure 3(c), those dots with the label “flower”
are invalid for improving the target model. Thus, the valid
queries should contain those samples within the class dis-
tribution but with distinctive features. Consequently, it is
paramount to design a combined strategy with contrastive
coding on semantic and distinctive features.

A naive way to balance the semantic and distinctive
scores is to bring them to the same range and assign them
different weights, such as βSsem + Sdis. However, this
idea is not suitable for class distribution mismatch. It is
unreasonable to simultaneously enlarge or narrow all the
samples’ semantic scores by β. As the samples with lower
semantic scores are more likely to be out of class distri-
bution, their semantic scores should be narrowed in joint
query scores. On the contrary, the samples with higher
semantic scores should be enlarged. Therefore, we en-
large the semantic score from [0,1] to [-1,1] by the map-
ping tanh[x] = 1−e−x

1+e−x , and then we have the final strategy
Squery as Eq.6.

Squery(x
U
i ) = tanh

[
ψ
(
Ssem(xUi )

) ]
+ Sdis(x

U
i ) (6)

where ψ (Ssem(·)) = k × (Ssem(·) − t), the nonlinear
function, tanh[·], selectively narrows the semantic scores
of samples by threshold t, and k is introduced to control the
slop of tanh[·]. The larger the value of Squery, the lower
the AL error. The detail of algorithm for CCAL query is
shown in Algorithm 1.

3.5. Theoretical Studies

In this Subsection, we discuss and analyze the upper
boundary of the AL error and then verify the effectiveness
of CCAL. As shown in Eq.1, population risk is jointly con-
trolled by the generalization gap, training error, and AL
error. Empirically, it has been widely observed that the
training error can be reduced to near zero in Convolutional
Neural Networks (CNNs). Theoretically, it has been proved
that the generalization gap of CNNs can be bounded [26].
Hence, the essential part for AL under class distribution

Algorithm 1: Joint Query Strategy in CCAL

Input: Labeled data (XL, Y L), Unlabeled data
XU , Budget: b, Number of categories in
labeled data: K, semantic encoder: θs,
distinctive encoder: θd

Output: (XL, Y L), XU

1 Calculate the semantic features of XL and XU

using θs: zs(XL) = θs(X
L), zs(XU ) = θs(X

U );
2 Calculate the distinctive features of XL and XU

using θd: zd(XL) = θd(X
L), zd(XU ) = θd(X

U );
3 for e in AL cycles do
4 Xquerye

= ∅;
5 Calculate Ssem(XU ) using Eq.3 and obtain

pseudo-semantic set XUl , l ∈ Y L. Where XUl

is composed of the unlabeled samples with the
same pseudo-semantic label l;

6 for l in Y L do
7 Calculate Sdis(X

Ul) using Eq.5;
8 Calculate Squery(X

Ul) using Eq.6;
9 Select the unlabeled samples with

maxb/KSquery(X
Ul) and then add to

Xquerye
;

10 end
11 Given the labels Yquerye

of Xquerye
by oracle;

12 (XL, Y L)← (XL, Y L) ∪ (XID C
querye

, Y ID C
querye

);
13 XU ← XU −Xquerye

;
14 end
15 Return (XL, Y L), XU ;

mismatch is the AL error, also called CCAL error. Further,
we analyze the upper boundary of CCAL error in Theorem
1.

Theorem 1 Given p i.i.d. samples drawn from D as
{xi, yi}pi=1, and set of points Xtr, Xre with size of q, d re-
spectively. If the loss function l(·, y;w) is λl − Lipschitz
continuous for all y, w and bounded by T , regression
function is λµ − Lipschitz continuous, training error
l(xj,yj;w) = 0 , j ∈ {1, 2, ..., q}, and CCAL strategy
can maximize the lower boundary α of information measure
Sdis (Sdis is further defined in Appendix.); with probability
of at least 1− γ,


∣∣∣∣1p

p−d∑
i=1

l(x
ID\re
i , y

ID\re
i ;w)−

1

q

q∑
j=1

l(xtr
j , ytrj ;w)

∣∣∣∣
+

∣∣∣∣1p
d∑

i=1

l(xre
i , yrei ;w)

∣∣∣∣
}

≤
√
6− 2α(λl + λµTK) +

√
T 2log(1/γ)

2p
+

dT

p
.

(7)
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According to Theorem 1, the smaller d and the larger
α, followed by the fewer the invalid queried samples be-
come and the more informative the valid queried samples
are. This results in a tighter upper boundary of CCAL er-
ror. CCAL then obtains a more satisfied target model. The
detailed proof for Theorem 1 was provided in Appendix.

4. Experiments
In the following, we evaluate the CCAL’s performance

on classification tasks in Subsection 4.1 and perform ab-
lation study and sensitivity analysis in Subsections 4.2 &
4.3, respectively. Besides, CCAL is compared with two
state-of-the-art SSL methods in Subsection 4.4. The code is
available at https://github.com/RUC-DWBI-ML/
CCAL.

Datasets. There are two benchmark datasets used, i.e.,
CIFAR10 [21] and CIFAR100 [21]. CIFAR10 contains
50000 training images and 10000 test images from 10 cate-
gories with a size of 32× 32× 3. The size of CIFAR100 is
the same as that of CIFAR10; however, CIFAR100 contains
100 categories, which contain 500 training images and 100
test images, each, with a size of 32× 32× 3. Moreover, an
artificial cross-dataset consist of five datasets as CIFAR10,
CIFAR100, Flowers [32], Places-365 [52], and Food-101
[3], is utilized.

In all experiments, the labeled data is initialized by ran-
domly sampling 8% samples from XID C , and 1500 sam-
ples are selected to request the labels from oracle at each
cycle of AL. To evaluate CCAL on datasets with different
mismatch ratios, we use Eq.8 to construct artificial unla-
beled data. The mismatch ratio is set as 20%, 40%, 60%,
and 80%, respectively, in the subsequent experiments.

ratio(mismatch) =
|XOOD C

U |
|XID C

U |+ |XOOD C
U |

(8)

where |XID C
U | and |XOOD C

U | denotes the number of unla-
beled samples in XID C and XOOD C , respectively.

Baselines. CCAL is compared with the following six
state-of-the-art AL algorithms which can be divided into the
following five categories. (1) Random sampling: Randomly
select samples from unlabeled pool for labeling. (2) Uncer-
tainty: Entropy [28] and VAAL [38]. (3) Diversity: Coreset
[35]. (4) Uncertainty and Diversity: BADGE [1]. (5) Gen-
eration: BGADL [42].

Implementation details. For the target classification
model training, ResNet18 [13] is adopted as the target task
module cooperates with the data augmentation of random
horizontal flip. In each AL cycle, training continues 100
epochs, and Adam is adopted as the optimizer [20] with an
equal learning rate of 5e-4 and batch size of 32. In Sub-
section 4.4, the accuracy is the result over 1 run due to the
stability of the adopted classifier, Wide ResNet-28-2 [51],

in comparison. The reported accuracy of these compared
AL methods is the average of the results over 5 runs in the
remaining parts, and the shaded area in the reported results
represents the standard deviation of the five runs. Unless
otherwise specified, all parameters in semantic and diatinc-
tive feature learning are the same as [5] and [39], respec-
tively. Note that except the sensitivity analysis in Subsec-
tion 4.3, k and t are set as 100 and 0.9, respectively.

4.1. Evaluation on image classification benchmarks

In CIFAR10, we perform a binary classification task
on airplane and automobile. The remainder 8 categories
(“bird,” “cat,” “dog,” “deer,” “frog,” “horse,” “ship,” and
“trunk”) are seen as unknown classes not presented in la-
beled data. In CIFAR100, a 20-class classification task is
conducted on 4 superclasses of large carnivores, large om-
nivores and herbivores, medium-sized mammals, and small
mammals, each of which contains 5 categories. The re-
mainder 80 categories are unknown classes. In the cross-
dataset, the classification task is conducted on the 6 animal
categories from CIFAR10, while 668 categories originating
from the four external datasets are regarded as unknown.

Evaluation results on CIFAR10, CIFAR100, and
cross-dataset. The results of CIFAR10, CIFAR100, and
cross-datset are shown in Figure 4 & 5 & 7, respectively.
Then, we have the following five observations. 1) Unlike
the existing AL methods whose performance deteriorates
as the ratio of class mismatch increases, CCAL achieves
satisfactory performance even on 80% ratio of class mis-
match. More specifically, in CIFAR10 and CIFAR100,
CCAL achieve a supervised accuracy by just annotating
16.3% and 26.09% of the unlabeled data under 80% class
mismatch, respectively. This shows the design of joint se-
mantic and distinctive feature extraction is effective and it
makes CCAL query more valid and informative samples. 2)
As shown in Figure 4 & 5 & 7, with the mismatch ratio in-
creasing, the accuracies of the existing AL methods, such
as VAAL and Coreset, approximate to random sampling.
This indicates that the query measure of the existing AL
methods work less effectively or even ineffectively under
class distribution mismatch. 3) With the increment of the
mismatch ratio, the performance of the existing AL meth-
ods decreases more obviously compared with CIFAR10, as
shown in Figure 4 & 5. For example, CCAL outperforms
random sampling by a margin of 2.44% and 7.65% in CI-
FAR10 and CIFAR100 respectively, when mismatch ratio
is 80% and the number of AL cycle is 5. This suggests
the existing AL methods are more sensitive when unlabeled
data contain numerous mismatch categories. 4) As shown
in Figure 7, CCAL performs remarkably well in comparison
to the AL method. This represents CCAL success even the
class distribution across muti-datasets. 5) It is worth noting
that almost all the compared methods can achieve a super-
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Figure 4: Classification accuracy of CCAL and compared AL algorithms on CIFAR10 under different mismatches.
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Figure 5: Classification accuracy of CCAL and compared AL algorithms on CIFAR100 under different mismatches.
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Figure 6: Ablation study to analyze the influence of each
part of CCAL.

vised accuracy after 5 AL cycles when the mismatch ratio
is 20%, due to the problem of class distribution mismatch
degenerates into the problem with noise.

4.2. Ablation study

The ablation study is conducted on CIFAR10 with the
mismatch ratio is 60% to demonstrate the effectiveness of
CCAL. The experimental results are shown in Figure 6.
• no Ssem: It denotes that semantic score Ssem is not used.
The accuracy of “no Ssem” rapidly deteriorates and oscil-
lates compared with the CCAL. This demonstrates that se-
mantic score Ssem plays an essential role in our query strat-
egy. Without Ssem, CCAL no long works well.
• no Sdis: It indicates that distinctive score Sdis is not
used. When removing the distinctive score Sdis, we ob-
serve the accuracy of “no Sdis” decreases compared to the
CCAL. This shows that filtering those uninformative sam-
ples within class distribution does work in CCAL.

• Ssem(VAE): It states that VAE learns the semantic fea-
ture. To assess the role of contrastive learning, we replace
contrastive learning with VAE. CCAL exceeds Ssem(VAE)
by a margin of 3.74% when the number of AL cycles is 5.
This suggests that contrastive learning is a great technique
for learning semantic features.
• Sdis(VAE): It points out that VAE learns the distinctive
feature. As shown in Figure 6, Sdis(VAE) exhibits compa-
rable performance compare with CCAL. Hence, the distinc-
tive score is appropriate for the feature VAE has learned.

4.3. Sensitivity analysis

The sensitivity of parameters k and t is analyzed on CI-
FAR10 with a mismatch ratio of 60%. Figure 8 shows the
accuracy and the distribution of tanh[ψ(Ssem)] with differ-
ent parameters.
• Evaluate the effect of t: The experiments with t equal to
0.7, 0.8, 0.9 while k fixed as 100 are performed to evaluate
the sensitivity of t. As shown in Figure 8(a), with t increas-
ing, the samples with a score from 0.9 to 1 in XOOD C

U be-
come less numerous, and CCAL accuracy improves. Thus
in our experiments, t is set as 0.9.
• Evaluate the effect of k: The experiments with k equal
to 10, 70, 130 while t fixed as 0.9 are done to assess the
sensitivity of k. As illustrated in Figure 8(b), the samples
with a [-0.9,0.9] score decreasing with the increment of k.
Moreover, the accuracy of k equal to 70 has a barely no-
ticeable difference compared to 130. But the accuracy will
decrease when k equal to 10 since tanh[ψ(Ssem)] cannot
reach 1. Therefore, CCAL’s performance is not sensitive to
k, and it would be even better when k > 10.
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Figure 7: Classification accuracy of CCAL and compared AL algorithms on cross-dataset under different mismatches.
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(a) Analyze the influence of the change of t in Squery .
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Figure 8: Analyze the sensitivity of parameters k and t in Squery on the experimental results.
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Figure 9: The classification accuracy of CCAL and SSL
methods DS3L and USAD which based on the problem of
class distribution mismatch.

4.4. Comparison of CCAL and SSL

In this Subsection, CCAL is compared to only two SSL
methods focusing on class distribution mismatch, DS3L
and UASD, on CIFAR10 under different mismatch ratios.
Except for the mismatch data construction, all the exper-
iment settings are followed with DS3L [11] and UASD
[7], respectively. In Figure 9, ”baseline” represents train-
ing the target model with 800 initialized labeled samples.
”CCAL Cycle 1” and ”CCAL Cycle 2” indicate that the
number of AL cycles is 1 and 2, respectively. CCAL accu-
racy is remarkably superior to DS3L and UASD after just
one AL cycle. Therefore, in practical applications, peo-
ple can choose a suitable method depending on their needs:
budget saving or high accuracy.

5. Conclusion
This paper finds that AL error is composed of valid

query error and invalid query error under class distribution
mismatch. Following the theoretical, a contrastive coding
based AL framework CCAL is proposed, which learns se-
mantic and distinctive features by contrastive coding and
joins them in query strategy. Unlike the existing AL al-
gorithms, CCAL can effectively keep away from the unla-
beled samples with mismatched categories on one hand, and
on the other hand, it can seek the most informative sam-
ples with matched categories from the unlabeled pool. Ex-
perimental results on two benchmark datasets and an arti-
ficial cross-dataset demonstrate that CCAL achieves state-
of-the-art performance with much lower annotation costs
by a large margin. In the future, we expect to extend our
algorithm to the text classification task under class distribu-
tion mismatch by designing an AL architecture with specific
contrastive coding.
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