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Abstract

Human can easily recognize visual objects with lost in-
formation: even losing most details with only contour re-
served, e.g. cartoon. However, in terms of visual perception
of Deep Neural Networks (DNNs), the ability for recogniz-
ing abstract objects (visual objects with lost information) is
still a challenge. In this work, we investigate this issue from
an adversarial viewpoint: will the performance of DNNs
decrease even for the images only losing a little informa-
tion? Towards this end, we propose a novel adversarial at-
tack, named AdvDrop, which crafts adversarial examples
by dropping existing information of images. Previously,
most adversarial attacks add extra disturbing information
on clean images explicitly. Opposite to previous works, our
proposed work explores the adversarial robustness of DNN
models in a novel perspective by dropping imperceptible de-
tails to craft adversarial examples. We demonstrate the ef-
fectiveness of AdvDrop by extensive experiments, and show
that this new type of adversarial examples is more difficult
to be defended by current defense systems.

1. Introduction
Deep Neural Networks (DNNs) have demonstrated their

outstanding performance across many applications such as
computer vision [24] and natural language processing [47].
Though DNNs have great achievement in these tasks, espe-
cially in computer vision, they are known to be vulnerable
to adversarial examples. Adversarial examples of DNNs
were first discovered by Szegedy et al. [42], which are
crafted by adding malicious perturbation on clean images to
generate undesirable consequences. Various methods have
been proposed to generate adversarial examples [20, 32, 7].
Typically, the generated adversarial perturbation is bounded
by a small norm ball, which guarantees the resultant images
“look like” benign images.

Interestingly, Ilyas et al. [27] empirically demonstrated
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Figure 1: Adv. images generated by PGD and AdvDrop.
Compared to the clean images, the adversarial images gen-
erated by AdvDrop have fewer details composed of fewer
colors, with the decreasing in size (by 15% and 7%).

that adversarial perturbation can be non-robust features for
DNNs. That is to say, regarding adversarial perturbation,
they are meaningful features for DNNs, but meaningless
and imperceptible for humans. So we wonder, whether
it is possible to craft adversarial examples in an opposite
paradigm? Rather crafting adversarial examples by adding
adversarial perturbation (or non-robust features) on clean
images, we drop certain features from clean images that are
imperceptible to humans but essential for DNNs which fur-
ther lead to DNNs failing to recognize the resultant images.

Towards this end, we propose a novel adversarial attack
named AdvDrop, which crafts adversarial images by drop-
ping less perceptible details from clean images. For exam-
ple, as shown in Figure 1, both adversarial images gener-
ated by PGD [32] and AdvDrop look indistinguishable from
the clean images at first glance. However, when you look
closely, PGD generates extra details (composed of more
colors) at the cost of extra storage (larger image size). In
contrast, the proposed AdvDrop drops existing details such
as subtle texture-like information from clean images, and
the local patch is composed of less colors compared with
the other images. As the figure indicates, the lost brittle de-
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Figure 2: Interpolation between the clean image and adversarial images generated by AdvDrop and PGD.

tails from benign images result in DNNs failing to recognize
the resultant images correctly.

Dropping information of images can be achieved in ei-
ther spatial domain (e.g. color quantization [25, 34]) or fre-
quency domain (e.g. JPEG compression [44]). In our work,
we consider developing proposed AdvDrop in frequency
domain. Principally, we can drop various features of an
image to generate adversaries. This preliminary study by
us focuses on the frequency domain because we choose
to use the “image details” as the feature of interest to be
dropped, which can be well quantized in the frequency
domain. This choice is due to native insensitivity of hu-
man eyes to fine image details. In this work, AdvDrop
first transforms images from spatial domain to frequency
domain, then reduces some frequency components of the
transformed images quantitatively. Figure 2 shows the pro-
cess of AdvDrop, which performs attack following an op-
posite mechanism to PGD. The proposed AdvDrop starts
from removing subtle details (e.g. textures) and the resultant
image is almost indistinguishable from the clean one. When
increasing the amount of dropped information, the resul-
tant adversarial image finally turns to be somewhat “blank”.
Here,“blank” denotes pure color which presents (almost) no
information for recognizing a specific object for DNNs.

We then perform comprehensive evaluation on the pro-
posed AdvDrop. It can achieve high attack success rates
in both targeted and untargeted settings on ImageNet [12].
We also evaluate the effectiveness of AdvDrop in terms of
defense methods. Various defense methods have been pro-
posed to defend against adversarial examples [32, 4, 35, 46].
Current defense methods are less effective against adver-
sarial examples generated by AdvDrop as they are gen-
erated with a rather different paradigm. Moreover, since
the adversaries are generated by AdvDrop via losing infor-
mation, they are somewhat robust to denoising-based de-
fenses. Typically, the denoising-based method removes the
generated adversarial perturbation and accordingly defends
against adversaries (Figure 3). For adversaries generated by
AdvDrop, however, denoising-based defenses take no ef-
fect and the resultant images are still adversarial for DNNs.
We hope this finding will motivate devising more effective
defense approaches against AdvDrop. In addition, to better
understand the mechanism of AdvDrop and the properties
of generated adversarial examples by AdvDrop, we provide

Figure 3: Adversarial images under denoising-based de-
fense. Adversarial perturbation generated by PGD could be
mitigated by applying denoising strategies, but with almost
no effect on adversaries generated by AdvDrop.

visualizations of the dropped information by AdvDrop, and
perform a further analysis together with the attention of the
DNNs. In summary, this paper has made the following con-
tributions:

• We propose a novel adversarial attack named
AdvDrop, which is a totally different paradigm from
previous attacks. AdvDrop crafts adversarial images
by dropping existing details of clean images. It opens
new doors to generate adversarial attacks for DNNs.

• We conduct comprehensive experiments and demon-
strate the effectiveness of AdvDrop on targeted and
untargeted attack settings. We also empirically show
that current defense methods become less effective
against adversarial examples generated by AdvDrop
compared to other attacks.

• Finally, we visualize the dropped information and the
attention of the DNNs to interpret the adversaries gen-
erated by AdvDrop.

This paper is organized as follows. Background and related
work are discussed in Section 2. Our proposed approach is
described in Section 3, and evaluated in Section 4. Section
5 concludes the paper and points out future work.
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2. Background and Related Work

2.1. Adversarial attacks and defenses

Adversarial attack was first proposed by Szegedy et
al. [42], aiming to generate perturbation superimposed on
clean images to fool a target model. Adversarial attacks
can be either digital-setting [20, 29, 32] or physical-setting
[18, 38, 14], where most attacks are developed in digital-
setting. Specifically, given a target model f , adversarial ex-
ample x′ can be crafted by either following the direction of
adversarial gradients [20, 29, 32] or optimizing perturbation
with a given loss [6, 8]. For most adversarial attacks, the
generated adversarial perturbation is bounded by a lp norm
ball. Some works [21, 39] propose generating adversarial
examples in the frequency domain for either improving the
efficiency in black-box setting or transferability. Roughly
speaking, these adversarial attacks can be somewhat formu-
lated as x′ = x+ δ, where δ represents additive adversarial
perturbation. Conversely, the proposed AdvDrop crafts ad-
versarial examples with an opposite paradigm x′ = x − δ.
Note here ‘+’ and ‘-’ are not simple “add” or “subtract”
operations over the values of x, but denote whether δ is ex-
tra information created by attacks or existing information of
clean images dropped by AdvDrop.

Other works also explore adversarial examples by mak-
ing modifications or replacement on the secondary at-
tributes (e.g. color, lighting [26, 37, 51, 48, 31, 50, 15],
texture [45, 14]) to generate adversarial examples. We also
note some other works [23, 9] proposed attack based on mo-
tion blur or smoothing, which also loses details of the clean
image after the attack. However, their purposes are different
from ours. This work aims to demonstrate the effectiveness
of the proposed mechanism.

Many adversarial defense techniques have been pro-
posed. Madry et al. [32] proposed adversarial training,
which is arguably one of the most effective defense against
adversarial attacks. Adversarial training is a data augmen-
tation technique that trains DNNs on adversarial examples
rather than natural examples. However, adversarial training
is both time and computation consuming, due to the genera-
tion of adversarial examples and extra training epochs to fit
adversarial examples. There are also preprocessing based
methods, which process the inputs with certain transforma-
tions to remove the adversarial noise, and then send these
inputs to the target model [16, 10, 11, 22, 35]. We consider
both types of defenses during the evaluation to evaluate the
effectiveness of AdvDrop.

2.2. Image compression methods

Image compression methods fall into two categories,
lossless compression, e.g., PNG [5], and lossy compression,
e.g., JPEG [44, 41]. JPEG compression applies discrete
cosine transform (DCT) on patches which transforms im-

ages from spatial domain to frequency domain. DCT works
by separating the image into different parts of different fre-
quencies. Then JPEG applies quantization matrix (designed
based on human vision) on transformed images dropping
most of high-frequency components. In detail, higher fre-
quency components of transformed images are rounded to
zero, and finally reduce the size of original images. Re-
cently, deep learning based methods have been investigated
for image compression problems. Both CNN-based meth-
ods [30, 2, 1] and RNN-based methods [43, 28] are investi-
gated. However, deep learning based compression methods
are time-consuming and require pre-training. Due to both
efficiency and convenience concerns, we follow the design
of JPEG to develop our proposed AdvDrop.

3. Approach
3.1. Overview

Given a clean image x ∈ Rm with class label y, a DNN
classifier f : Rm → {1, · · · , k} which maps image pix-
els to a discrete label set, and a target class yadv ̸= y for
targeted attack. The goal of adversarial attack is to find an
adversarial example x′ for clean image x by solving the op-
timization problem Ladv(·), which is the adversarial loss
leading to f(x′) ̸= y or f(x′) = yadv . Typically, x′ is re-
stricted by l∞ norm ball: ∥x′ − x∥∞ < ϵ. Our goal is to
develop a mechanism that drops information from benign
images to craft adversarial images. AdvDrop is composed
of several parts:

• Adversarial loss: The proposed method optimizes
over quantization table q by minimizing adversarial
loss Ladv(·).

• Discrete Cosine Transform (DCT): DCT transforms
the input image x from spatial domain to frequency
domain. DCT is denoted as D(·) in the following.

• Inverse Discrete Cosine Transform (IDCT): IDCT
transforms image’s signals from frequency back to
spatial domain, denoted as DI(·).

• Quantization: Quantization serves as the core pro-
cess to drop information by applying quantization ta-
ble q, which is optimized during the attack. We de-
note common quantization as Q(·). However, in our
work, we adopt a differential quantization process
denoted as Qdiff (·). Note in the following, either
Q(·) or Qdiff (·) represents a complete quantization-
dequantization process.

In summary, our proposed AdvDrop first transforms clean
images from spatial to frequency domain, then applies
quantization to drop some specific frequencies of the trans-
formed image, followed by inverting the frequency sig-
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Figure 4: Pipeline.

nals of images back to spatial domain. During optimiza-
tion, AdvDrop only tunes the value of quantization table q
bounded by ϵ. Formally, we denote our final objective as:

min
q

Ladv(x
′, y), where x′ = DI(Qdiff (D(x), q))

s.t. ∥q − qinit∥∞ < ϵ
(1)

where qinit is the initial value of quantization table q. We
set qinit = 1. We increase the value of quantization table
q gradually to drop the information of given image during
the optimization. Qdiff represents a differential quantiza-
tion function, which allows AdvDrop to compute the gra-
dients during the backward propagation. The overview of
AdvDrop is illustrated in Figure 4.

3.2. Adversarial loss

For adversarial loss Ladv(·), we use the following cross-
entropy loss:

Ladv =

{
log(py(x

′)), for untargeted attack,
− log(pyadv

(x′)), for targeted attack
(2)

where p(·) is the probability output (softmax on logits) of
the target model f with respect to class yadv or y. By mini-
mizing loss Ladv , AdvDrop optimizes the quantization ta-
ble q to selectively drop the information of input image x,
in order to mislead the target model f finally.

3.3. Transformation

We introduce both DCT and IDCT in this part. DCT
serves as a transformation of images from spatial domain
to frequency domain, which expresses a finite sequence of
data points in terms of a sum cosine functions oscillating at
different frequencies. Note that there are also other methods
enabling transformation of images from spatial to frequency
domain, such as discrete Fourier transform etc. We focus
on DCT as it enables the proposed AdvDrop to have more
flexibility in selecting what and where information to drop.

Before applying DCT, we first split the original images
into blocks with size N × N as shown in Figure 4. Our
proposed method splits images into patches with size N =
8 [41, 44] for all the experiments by mainly considering
computation cost and perceptual quality. As the correlation

between pixels within the patch decreases with increasing in
patch size, the quantization results in larger distortion. For
each block, the value of pixels are adjusted to be symmetric
with respect to zero. The mathmatical definition of DCT is:

D(x)[u,v] =
1√
2N

C(u)C(v)

N−1∑
x=0

N−1∑
y=0

x[k,m]

cos[
(2k + 1)iπ

2N
]cos[

(2m+ 1)jπ

2N
],

(3)

In which, Eq. 3 computes the u, vth entry of D(x). x[k,m]
with the value on coordinate (k,m) of image x. N is the
size of the block. A concrete example can be seen in Figure
4, where D transforms input image from spatial domain to
a series of blocks in frequency domain.

IDCT is the inverse process of DCT, which serves as re-
covering the signals of input image from frequency back to
spatial domain. Due to the page limit, more details can be
referred to [3]. Note that either DCT or IDCT is lossless.
The information is only lost during the quantization. We
then discuss how the quantization is capable of dropping
information.

3.4. Quantization

The quantization is done with two operations: round-
ing and truncation. The former maps the original value
to its nearest quantization point, while the latter con-
fines the range of quantized values. A common complete
quantization-dequantization process Q(·) is defined by:

Q(x,∆) = ⌊x+ 0.5

∆
⌋ ·∆, that Q(x,∆) ∈ [ϵmin, ϵmax]

(4)
where ∆ denotes the interval length, which decides the
nearest quantization point for value of x, serves as a quan-
tizer. Intuitively, the larger of ∆, the smaller of the length
of the set of quantized values after quantization. The quan-
tized values are constrained in a valid range [ϵmin, ϵmax].

In our case, we use a trainable quantization table q to
quantize the input image x after transformed to frequency
domain. Note the purpose of quantization table q is the
same as ∆. We increase the amount of dropped details
by enlarging the interval of quantization table q. In order
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to adjust the quantization table q accurately, and further
improve the success rate of the proposed attack, we for-
mulate the whole process as an optimization problem by
leveraging the gradients of target model f via backward-
propagation. However, ⌊·⌋ is a staircase and thus non-
differential function, which cannot be integrated to the opti-
mization via back-propagation directly. To tackle this chal-
lenge, inspired by Gong. et al.’s [19] work, we propose a
differential asymptotic quantization Qdiff (·) by introduc-
ing tangent function into quantization process to approxi-
mate the staircase quantization function gradually, such that
Qdiff (·) ≈ Q(·). Formally, Qdiff is defined as follows:

Qdiff (x, q) = (φ(
x

q
) + ⌊x

q
⌋) · q, (5)

where φ(·) approximates the change between two adjacent
quantized values. φ(·) is continuously differentiable every-
where and defined as follows:

φ(xq ) =
1
2 (1 + tanh ((xq − ⌊x

q + 0.5⌋) · log( 2
α − 1)) · log( 1

1−α )),
(6)

where α is an adjustable parameter which controls the
steepness of slope between two adjacent quantized values.
We decrease the value of α linearly to approximate the stair-
case function gradually during the optimization (Figure 5).
The value of α is determined at start and decreased grad-

Figure 5: Illustration of the usage of φ(x) and α.

ually during the optimization, and thus Qdiff (·) behaves
almost the same as the desired staircase quantization func-
tion at the end of optimization. Due to page limit, more
details regarding α can be referred to work [19]. Besides,
as the quantization table q should be integers during the op-
timization, we update the quantization table q with the sign
of gradients returned via backward propagation. Formally:

q’ = q+sign(∇qLadv(x
′, y)), s.t. ∥q − qinit∥∞ < ϵ (7)

where the purpose of ϵ is similar to lp-norm, aiming to make
the resultant adversarial image x′ looking indistinguishable
from clean image x. In detail, ϵ confines the norm of quan-
tization table q, to further restrict the amount of information
to drop. We will give more study about the setting of ϵ in
Section 4. The illustration of differential quantization and
updation of q at different steps are shown in Figure 6.

During the process of optimization, the interval of q in-
creases gradually as updated by Eq. 7. For illustration, we
plot color palettes at the bottom to show how the colors are

Figure 6: Differential quantization process and updation
of quantization table q.

dropped when the interval increases. In summary, the pro-
posed AdvDrop adopts an asymptotic strategy to drop the
information, that the slope (∆y

∆x ) becomes steeper gradually,
thus Qdiff (·) ≈ Q(·) finally.

4. Experimental Evaluation

We first outline the experimental setup. Then we evalu-
ate our AdvDrop regarding its perceptual and attack perfor-
mance. Afterwards, we evaluate the performance of Adv-
Drop under defense methods. We then analyze AdvDrop
via an ablation study. We finally analyze the dropped infor-
mation by AdvDrop together with attention of the model.

4.1. Experimental settings

Dataset and models. We randomly selected 2000 cor-
rectly classified images from ImageNet [12] to evaluate pro-
posed attack. We use ResNet50 [24] as the target model for
all the experiments. For evaluating the effectiveness of pro-
posed AdvDrop on adversarial training, we used pretrained
adversarial model ResNet50 as defense model [17] *.

Metrics. For all the tests we use attack success rate
(succ. rate) (%) as the metric to evaluate the effectiveness of
attacks, which is the proportion of successful attacks among
the total number of test images defined as 1

N

∑N
n=1[f(x) ̸=

f(x′)] in untargeted setting, and 1
N

∑N
n=1[f(x) = yadv] in

targeted setting. Regarding evaluation on the visual quality
on attacks, we use Learned Perceptual Image Patch Similar-
ity (lpips) metric [49] as the perceptual metric.

Baselines. For perception study in Section 4.2, we com-
pared our proposed AdvDrop with one of the most com-
monly used adversarial attack PGD under both l2 and l∞
settings with different constraints. For evaluation under var-
ious defenses, we consider defense methods including: fea-
ture squeezing [46], pixel deflection [35], JPEG compres-
sion [40] and adversarial training [32]. Regarding adver-
sarial attacks to compare, we select several state-of-the-art
attacks under both l2 and l∞ settings, including PGD [32],
FGSM [20], C&W [7], DeepFool [33].

*https://github.com/MadryLab/robustness
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4.2. Perception study

We first conduct perception study on the proposed
AdvDrop. With enlarging the constraint ϵ for quantiza-
tion table q, the details disappear gradually as shown in
Figure 7. We then compare the perceptual quality of ad-

Figure 7: Adv. images generated by AdvDrop.

versarial examples generated by AdvDrop with other attack
methods. Though we have a setting (using ϵ) similar to lp
norm, however, our proposed AdvDrop attack optimizes in
the frequency domain, that ϵ is applied as the constraint for
q. Therefore we adopt lpips [49] as the perceptual metric,
which measures how similar the two images are in a way
that coincides with human judgment. The value of lpips
denotes the perceptual loss, the lower, the better. We com-
pare with one of the most commonly used adversarial attack
PGD in both l2 and l∞ settings.

Figure 8: lpips scores for AdvDrop and PGD.
We summarize the results in Figure 8, we set y-axis with

perceptual loss calculated by lpips [49], and set x-axis with
the change ratio on size of resultant images compared with
clean images. For example, for AdvDrop-100, the value of
x-axis represents the size of adversarial images’ decreases
by 36.32% on average compared with clean images’ size.
Note that opposite to AdvDrop, the size of adversarial im-
ages generated by PGD is larger than clean images. Thus
for PGD, the value on x-axis represents how much the ratio
in size increases. As Figure 8 indicates, though the relative
size ratio changes more compared with PGD in either l2 or
l∞ settings, the adversarial images generated by AdvDrop

are more perceptually aligned with clean images compared
with PGD.

4.3. Evaluation of AdvDrop

We now evaluate the performance of AdvDrop with both
targeted and untargeted settings. We evaluate AdvDrop with
constraint ϵ for quantization table q with 20, 60, 100 respec-
tively. We summarize the results in Table 1.

Table 1: Succ. rate (%) of AdvDrop on targeted and
untargeted settings with different ϵ.

ϵ for q 20 60 100
Targeted succ. rate (%) 97.20 ± 0.37 99.45 ± 0.16 99.95 ± 0.05
Untargeted succ. rate (%) 98.55 ± 0.26 99.85 ± 0.08 100.00 ± 0.00

As Table 1 indicates, with relaxing the constraint ϵ, the
success rates of AdvDrop on both targeted and untargeted
settings increase. AdvDrop can achieve almost 100% suc-
cess rate when ϵ = 100. We find that AdvDrop in tar-
geted setting requires more steps to achieve successful at-
tacks compared with untargeted setting (Figure 9). This
may be due to targeted attack always requires more accu-
rate approximation on gradients. During the attack, we set
the steps for AdvDrop in targeted and untargeted settings
with 500 and 50 respectively. We plot the success rates and
the loss of a batch on different steps in Figure 9.

Figure 9: Loss and succ. rate (%) on a batch.
As shown in Figure 9, the loss of untargeted attack con-

verges rapidly and achieves 100% success rate when step is
around 50. On the other hand, the loss for targeted attack
converges until the step is around 500. During the exper-
iments, we find that with the increase of constraint ϵ, less
steps are required for AdvDrop on both targeted and untar-
geted settings. For example, in a targeted setting, to achieve
success rate above 99%, on average 496 steps are required
when ϵ = 20, but only 61 steps are required when ϵ = 100.

4.4. Attack effectiveness under defense methods

In this part, we evaluate the effectiveness of proposed
AdvDrop compared with other adversarial attacks under
various defense methods. Here we first generate adversarial
examples by adversarial attacks including PGD [32], BIM
[13], C&W [7], FGSM [20], and DeepFool [33]. Regarding
these attacks, we consider both settings including l2 and l∞
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to generate adversarial examples. Then we test different de-
fense methods including adversarial training (AT) [4, 32],
feature squeezing [46], JPEG compression [40], and pixel
deflection (PD) [35] against these samples to evaluate the
strength of these attacks under defenses. Among all these
defenses, adversarial training is the most effective defense
against adversarial attacks. As adversarial training requires
too much computation resource, we adopt a black-box set-
ting to evaluate various attacks on adversarial training. We
first generate adversarial examples by various attack meth-
ods, then feed them to the adversarial trained model. We
set ϵ = 4 for attacks on l∞ setting, set ϵ = 0.06 for at-
tacks on l2 setting that common used in previous defense
methods [35, 22]. We set quantization table q with 100 for
AdvDrop. We summarize the results in Table 2.

Table 2: Succ. rate (%) of attacks under defenses.

Attacks No Def. AT Feature Squeeze JPEG-30 PDMF-3 Bit-6
l∞

PGD 100.00 41.60 90.65 70.50 62.50 85.10
BIM 100.00 42.80 90.25 69.20 33.80 81.50
FGSM 91.90 42.60 91.80 66.05 49.60 81.40

l2
PGD 100.0 43.00 90.3 62.8 27.6 64.1
Dfool 99.00 42.95 89.7 29.00 21.20 12.60
CW 84.30 43.00 88.80 26.00 21.70 12.60
AdvDrop 100.00 44.50 95.35 82.60 80.00 95.65

As Table 2 shows, since adversarial images are crafted
by AdvDrop with a total different paradigm, they are more
robust to current defense methods compared to adversar-
ial images generated by other attacks. Among all these de-
fenses, adversarial training is still the most effective defense
against AdvDrop. We suggest that as the adversarial training
makes the model learn more robust feature representations,
it is also effective to defend against our proposed AdvDrop
to some degree. On the other hand, other denoising-based
defense methods demonstrate limited effectiveness to de-
fend against our proposed AdvDrop. Though denoising-
based strategies show effectiveness in mitigating the adver-
sarial perturbation generated by previous attacks, regarding
AdvDrop which has already removed some essential fea-
tures from clean images, denoising may aggravate the dis-
tortion caused by loss of features. We further perform an
evaluation by JPEG compression to validate the robustness
of adversarial examples generated by AdvDrop under de-
noising operation.

JPEG compression. Previous studies show that adver-
sarial perturbation can be partly removed via JPEG com-
pression [22, 11]. Regarding JPEG compression, the com-
pression rate is controlled by a quantifiable quality, which
affects to what extent the information is reduced. We eval-
uate the performance of AdvDrop under JPEG compression
with different quality factors to represent how robust the

adversaries generated by AdvDrop are. For comparison, we
also test the performance of PGD and the accuracy of clean
images under JPEG compression (Figure 10). We set both
AdvDrop and PGD with untargeted setting. We report accu-
racy rate as the metric in Figure 10, meaning the proportion
of recovered adversarial examples by JPEG compression.

Figure 10: Performance of AdvDrop under JPEG.

As Figure 10 indicates, when quality factor is extreme
low (e.g. quality factor = 10), JPEG compression results in
corruption on clean images, that clean accuracy even drops
below 60%. Regarding the adversarial examples generated
by PGD, they are mostly recovered when JPEG compres-
sion with quality factor being equal to 30. When quality fac-
tor further decreases, the recovered rate of PGD decreases
due to the corruption caused by JPEG compression. Com-
pared to PGD, adversarial examples generated by AdvDrop
is much less affected by JPEG compression. Less than 30%
adversaries generated by AdvDrop are recovered at most.
We suggest that the mechanism of AdvDrop itself is a kind
of lossy operation which makes resultant adversarial images
are lack of some key features for recognition. Thus when
further applying lossy operations (such as JPEG compres-
sion) on resultant adversarial images, the applied lossy op-
erations may even further destroy the generated adversarial
examples and even harder to recover. However, there is still
chance that the adversarial examples generated by AdvDrop
can be recovered by “lossy operation” as Figure 10 shows.

4.5. Ablation study

Here, we conduct experiments to analyze the impact
from following aspects for proposed AdvDrop attack: 1)
quantization methods, 2) spatial domain, 3) frequency (low
frequency, middle frequency or high frequency).

Effect of quantization methods. Here we evaluate how
different quantization methods affect the performance of
AdvDrop. We evaluate a typical rounding method and an-
other differential quantization method proposed by Shin et
al. [40]. During evaluation, we only change the quantiza-
tion method but keep others of AdvDrop unchanged. Typ-
ical rounding method ⌊x+ 0.5⌋ achieves success rate of
only 5.00 ± 0.98%. Differential rounding method proposed
by Shin et al. [40], ⌊x+ 0.5⌋ + (⌊x+ 0.5⌋ − x)3 achieves
success rate of 65.20 ± 2.13%, and ours achieves 97.20 ±
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0.37% success rate. This demonstrates the effectiveness of
differential quantization method adopted by AdvDrop.

Effect of frequency domain. Here we perform an ab-
lation study to show the advantage of dropping information
on frequency domain rather than spatial domain. We reduce
the color depth to drop the images’ information. We sum-
marize the accuracy on the same dataset when reducing the
images’ color in different bits (Table 3). Compared to drop-

Table 3: Acc. rate (%) by reducing color depth.

Bit Depth 2 4 6
Acc. rate (%) 11.10 ± 0.07 93.50 ± 0.05 99.90 ± 0.07

ping information in frequency domain, the accuracy rate is
affected until the bit is reduced to 2 (11.10 ± 0.07%). As
the images’ details could be well quantized in the frequency
domain, the resultant images are also more natural for hu-
man observers.

Effect of different frequencies. We also perform an
ablation study on how dropping different regions of fre-
quency (low, middle, high) affects the model’s clean accu-
racy. We perform this study by dropping different regions
of frequency of given images after transformed to frequency
domain by DCT. Results are summarized in Table 4. We
also visualize the resultant images and their local details
at the bottom of Table 4. As the results in Table 4 indi-
cate, compared to middle and high frequencies, the low fre-
quency part serves as dominant feature for the model. When
low frequency is dropped from the images, the accuracy rate
drops to 30.00 ± 1.02%, but 84.40 ± 8.11% and 86.50 ±
0.76% when middle and high frequencies dropped. As the
images in Table 4 show, when low frequency is dropped, the
details are almost lost.

Table 4: Acc. rate (%) by dropping/reserving different
frequencies.

Dropped Freq. None Low Middle High
Acc. rate (%) 100.00 ± 0.00 30.00 ± 1.02 84.40 ± 8.11 86.50 ± 0.76

4.6. Visualization and analysis

We are also interested in where and what informa-
tion would be dropped by AdvDrop with a given image?
Whether AdvDrop tends to drop the information where
models pay attention? Towards this end, we visualize the
attention of the model (Grad-CAM [36]) and the amount
of dropped information by AdvDrop on different regions of
given images (Figure 11). Regarding the first case in Fig-
ure 11, the model mainly pays attention to the flower part

Figure 11: Analysis on dropped information.

of the “cardoon”, AdvDrop drops both calyx and flower
parts. In the second case, the model pays attention to
the head of the “peguin”, however, in this case, AdvDrop
mainly throws away the information on the body part of
the “peguin”, which has rich texture details regarding the
fur of the “peguin”. In summary, there is some overlap-
ping between model’s attention and where AdvDrop drops
information from. A small difference is that AdvDrop seems
focusing more on the part which has rich texture details.

We also analyze the components of the dropped infor-
mation. Here we roughly devide the dropped information
as “high frequency” and “low frequency”. We find Adv-
Drop tends to drop high frequency information than low
frequency information.

5. Conclusion and Future Work

In this paper, we have investigated the adversarial robust-
ness from a novel perspective, and proposed a novel ap-
proach called adversarial drop (AdvDrop), which leverages
differential quantization and adversarial attack techniques,
to craft adversarial examples by dropping existing details of
images. AdvDrop opens a new way for robustness evalu-
ation of DNNs. The proposed AdvDrop currently still uti-
lizes a relative simple method to drop the information by
focusing on frequency domain. We plan to explore other
techniques to drop the information from images in our fu-
ture work. Also, we will explore how to apply AdvDrop on
other tasks such as interpretability of DNNs. Moreover, ef-
fective defense strategies against AdvDrop will be another
crucial and promising direction.
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