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Abstract

As autonomous driving systems mature, motion forecast-
ing has received increasing attention as a critical require-
ment for planning. Of particular importance are interactive
situations such as merges, unprotected turns, etc., where
predicting individual object motion is not sufficient. Joint
predictions of multiple objects are required for effective
route planning. There has been a critical need for high-
quality motion data that is rich in both interactions and an-
notation to develop motion planning models. In this work,
we introduce the most diverse interactive motion dataset
to our knowledge, and provide specific labels for interact-
ing objects suitable for developing joint prediction models.
With over 100,000 scenes, each 20 seconds long at 10 Hz,
our new dataset contains more than 570 hours of unique
data over 1750 km of roadways. It was collected by mining
for interesting interactions between vehicles, pedestrians,
and cyclists across six cities within the United States. We
use a high-accuracy 3D auto-labeling system to generate
high quality 3D bounding boxes for each road agent, and
provide corresponding high definition 3D maps for each
scene. Furthermore, we introduce a new set of metrics that
provides a comprehensive evaluation of both single agent
and joint agent interaction motion forecasting models. Fi-
nally, we provide strong baseline models for individual-
agent prediction and joint-prediction. We hope that this new
large-scale interactive motion dataset will provide new op-
portunities for advancing motion forecasting models.

1. Introduction

Motion forecasting has received increasing attention as
a critical requirement for planning in autonomous driving
systems [8, 14, 40, 36, 28, 34]. Due to the complexity of
scenes that autonomous systems need to safely handle, pre-
dicting object motion in the scene is a difficult task, suitable
for machine learning models. Building effective motion

(a) A vehicle waits for a pedestrian to fully cross the crosswalk
before commencing a turn.

(b) A vehicle accelerates onto the street only after the incoming
vehicle turns.

Figure 1: Examples of interactions between agents in a
scene in the WAYMO OPEN MOTION DATASET. Each ex-
ample highlights how predicting the joint behavior of agents
aids in predicting likely future scenarios. Solid and dashed
lines indicate the road graph and associated lanes. Each nu-
meral indicates a unique agent in the scene.

forecasting models requires large amounts of high quality
real world data. Creating a dataset for motion forecasting
is complicated by the fact that the distribution of real world
data is highly imbalanced [4, 18, 32, 38]; in the common
case, vehicles drive straight at a constant velocity. In or-
der to develop effective models, a dataset must contain and
measure performance on a wide range of behaviors and tra-
jectory shapes for different object types that an autonomous
system will encounter in operation.

We argue that critical situations (e.g., merges, lane
changes, and unprotected turns) require the joint prediction
of a set of multiple interacting objects, not just a single ob-
ject. An example of a pedestrian and vehicle interacting is
illustrated in Figure 1a where a vehicle waits for a pedes-
trian to fully cross the street before turning. In Figure 1b,
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the orange vehicle accelerates into the street only after en-
suring the incoming blue vehicle’s intention is to deceler-
ate and turn off of the street. Most existing datasets have
focused on single agent representation, but there has been
considerably less work on interaction modeling at a large
scale, which motivates this work.

The goal of this work is to provide a large scale, diverse
dataset with specific annotations for interacting objects to
promote the development of models to jointly predict inter-
active behaviors. In addition, we aim to supply object be-
haviors over a wide range of road geometries, and thus pro-
vide a large set of annotated interactions over a diverse set
of locations. To generate such a set, we develop criteria for
mining interactive behavior over a large corpus of driving
data. We explicitly annotate groups of interacting objects in
both training and validation/test data to enable development
of models that jointly predict the motion of multiple agents
as well as individual prediction models.

We aim to provide high quality object tracking data to re-
duce uncertainty due to perception noise. The cost of hand
labeling a dataset of the required size is prohibitive. Instead
we use a state-of-the-art automatic labeling system [26] to
provide high quality detection and tracking data of objects
in the scenes. In contrast with many datasets which provide
tracking from on-board autonomous systems, the off-board
automatic labeling system provides higher accuracy as it is
not constrained to run in real time. These high quality tracks
allow us to focus on understanding the complexity of object
behavior, rather than on dealing with perception noise.

Evaluation of interactive prediction models requires met-
rics formulated for joint predictions as motivated by recent
work [33, 6, 34, 28]. In Section 4, we discuss existing work
on generalizing metrics to the joint prediction case. We also
propose a novel mean Average Precision (mAP) metric to
capture the performance of models across different object
types, prediction time scales, and trajectory shape buckets
(e.g., u-turns, left turns). This method is inspired by metrics
used in the object detection literature and overcomes limi-
tations in currently adopted metrics. We discuss how this
metric attempts to address issues with existing metrics.

We name our large-scale interactive motion dataset:
WAYMO OPEN MOTION DATASET. It will be made pub-
licly available to the research community, and we hope it
will provide new directions and opportunities in developing
motion forecasting models. We summarize the contribu-
tions of our work as follows:
• We release a large-scale dataset for motion forecast-

ing research with specifically labeled interactive be-
haviors. The data is derived from high quality percep-
tion output across a large array of diverse scenes with
rich annotations from multiple cities.
• We provide novel metrics for motion prediction anal-

ysis along with challenging benchmarks for both the

Lyft NuSc Argo Inter Ours

# unique tracks 53.4 m § 4.3 k 11.7 m ‡ 40 k 7.64 m
Avg track length 1.8 s § - 2.48 s ‡ 19.8 s ∗ 7.04 s ††

Time horizon 5 s 6 s 3 s 3 s 8 s
# segments 170k 1k 324k - 104k

Segment duration 25 s 20 s 5 s - 20 s
Total time 1118 h 5.5 h 320 h 16.5 h ∗ 574 h

Unique roadways 10 km - 290 km - 1750 km††

Sampling rate 10 Hz 2 Hz 10 Hz 10 Hz 10 Hz
# cities covered 1 2 2 6 ∗ 6
# object types 3 1 † 1 ‡ 1 3

Boxes 2D 3D None 2D 3D
3D maps 3 3

Offline perception 3 3
Interactions 3 3

Traffic signal states 3 3

Table 1: Comparison of popular behavior prediction and
motion forecasting datasets. Specifically, we compare
Lyft Level 5 [19], NuScenes [4], Argoverse [9], Interactions
[39], and our dataset across multiple dimensions. # object
types measures the number of types of objects to predict the
motion trajectory. Dashed line ”-” indicates that data is not
available or not applicable. § Lyft Level 5 number of unique
tracks and average track length are determined through pri-
vate correspondence. † nuScenes [4] provides annotations
for 23 objects types (stationary vehicles are removed), but
only the vehicle is predicted. ‡ Argoverse [9] provides an-
notations for 15 object types (Appendix B) but only vehi-
cle is predicted. The number of unique tracks is determined
through private correspondence. The average track length is
estimated from data. ∗ Interactions [39] gathered data from
4 countries including 6 cities (the last statistic is collected
through personal communication) and the entire dataset is
not divided into segments. The average track length is esti-
mated from data. †† Our average track length is computed
on the 20s segments of the training split. Our total unique
roadway distance is calculated by hashing our autonomous
vehicle poses as UTM coordinates into 25 meter voxels and
counting the number of non-zero voxels.

marginal and joint prediction cases.

2. Related Work
Motion forecasting datasets Several existing public
datasets have been developed with the primary goal of mo-
tion forecasting in real-world urban driving environments,
compared in Table 1. The datasets vary in size measured in
number of scenes, total time, total miles, number of tracked
objects, and number of distinct time segments. While Lyft
Level 5 [19] has the most hours of data and NuScenes [4]
has rich object taxonomy, they were not collected to cap-
ture a wide diversity of complex and interactive driving sce-
narios. Argoverse [9] was collected for interesting behav-
iors by biasing sampling towards certain observed behaviors
(e.g., lane changes, turns) and road features (e.g., intersec-
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tions). The INTERACTION dataset [39] manually selected
a small set of specific driving locations (e.g., roundabouts),
and times of day (e.g., rush hour) to obtain a dataset with
high interaction complexity. We explain our own method-
ology for collecting interactions in Section 3.1.

Another salient dataset attribute is the time horizon for
prediction. Our dataset’s forecasting horizon is 8 seconds
into the future, considerably longer than others (3 or 5 sec-
onds), as we believe that long term forecasting is neces-
sary for safe and human-like planning, and is intrinsically
more difficult. Finally, most datasets are auto-labeled with
industry-grade, onboard 3D perception stacks, employing
LiDAR’s, cameras, and/or radar, and provided as-is with
noisy state estimates and tracking errors. One exception is
the INTERACTION dataset [39] which collects data from
drone footage, which is then post-processed offline with de-
tection, tracking and track smoothing. We also put consider-
able effort into creating high quality state estimates and 3D
tracks by employing an offboard 3D detection and tracking
pipeline, as discussed in Section 3.3.

We consider perception datasets (e.g., KITTI [15],
Waymo Open Dataset [32]) outside of the scope of this dis-
cussion as they do not contain enough motion data to build
sufficiently complex models. Generating synthetic data [29]
is another line of research, but by collecting real-world data,
the behaviors have no realism concerns, and are therefore
less susceptible to domain adaptation and transfer. We also
note there are a host of other motion forecasting datasets
which, while popular, are orders of magnitude smaller, have
O(10) unique locations, and/or are not focused on driving
environment, for example the Stanford Drone Dataset [30],
NGSIM [10], ETH [24], UCY [21], Town Center [2].

Jointly consistent multi-agent forecasting Most exist-
ing models output independent future distributions per ob-
ject in a scene, e.g. [1, 3, 7, 5, 8, 12, 11, 14, 17, 20, 22,
25, 40]. This is encouraged by the popular metrics, which
only measure quality on a per-object level, and by datasets
that only require predicting one agent per scene. An im-
portant note is that these methods do model interactions be-
tween objects to achieve better performance, but explicitly
modeling joint futures is much less common. There are a
few exceptions which model jointly-consistent futures: Pre-
cog [28] and MFP [34] employ models which roll out trajec-
tory samples timestep-by-timestep, where each agent’s next
step sample conditions on all other agents’ current and past
steps. In contrast, ILVM [6] (also used by TrafficSim [33]),
samples from a latent variable from which multiple steps of
future joint samples from all agents are decoded, without
explicit conditioning on each step of rollout. These works
all measure a stricter version of distance error metrics, re-
porting the per-agent error of the best joint configuration.
It is important to note that none of the datasets in Table 1

provide such joint metrics in their release, in contrast to
our WAYMO OPEN MOTION DATASET.

3. Dataset
The dataset provides high quality object tracks gener-

ated using an offboard perception system (described in Sec-
tion 3.3) along with both static and dynamic map features
to provide context for the road environment. Object track
states are sampled at 10Hz. Each state includes the object’s
bounding box (3D center point, heading, length, width, and
height), and the object’s velocity vector.1 Due to sensor
range or occlusion, measurements of an object’s state may
not exist at some time steps. A valid flag is provided to in-
dicate which time steps have valid measurements. Map data
is provided as a set of polylines and polygons created from
curves sampled at a resolution of 0.5 meters. Static map
feature types include lane centers, lane boundary lines, road
edges, stop signs, crosswalks, and speed bumps. Traffic sig-
nal states and the lanes they control are included. In addi-
tion to the geometry data, map features also contain addi-
tional data specific to each feature type e.g. lane boundaries
have a field to indicate if they are a broken white boundary,
a double yellow boundary, etc.

Starting with 20 second segments that are specifically
mined from interactions as described in 3.1, we create 9.1
second (91 steps at 10Hz) scenes, splitting the data into a
70% training, 15% validation, and 15% test set. We derive
two versions of the validation and test sets which we refer
to as the standard and interactive versions. The standard
validation and test sets provide up to 8 objects to predict in
each scene. Selection is biased to require objects that do
not follow a constant velocity model or straight paths. The
interactive versions of the validation and test sets focus on
the interactive portion of the segment and require only the
2 mined interactive objects to be predicted. The original 20
second segments are also provided for research requiring
longer time frames.

3.1. Mining for interesting scenarios

We mine for interesting scenarios by first hand-crafting
semantic predicates involving agents’ relationships—e.g.,
“agent A changed lanes at time t”, and “agents A and B
crossed paths with a time gap t and relative heading differ-
ence θ”. These predicates can be composed to retrieve more
complex queries in an efficient SQL and relational database
framework on an overall data corpus orders of magnitude
larger than the resulting curated WAYMO OPEN MOTION
DATASET.

With this framework, we specifically mined for the
following pairwise interaction scenarios: merges, lane

1Raw videos and sensor data are not part of the release, as including
them would increase the dataset to an impractical size (hundreds of TBs).
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Figure 2: Our dataset contains many agents including
pedestrians and cyclists. Top: 46% of scenes have more
than 32 agents, and 11% of scenes have more than 64
agents. Bottom: In the standard validation set, 33.5% of
scenes require at least one pedestrian to be predicted, and
10.4% of scenes require at least one cyclist to be predicted.

changes, unprotected turns, intersection left turns, inter-
section right turns, pedestrian-vehicle interactions, cyclist-
vehicle interactions, interactions with close proximity, and
interactions with high accelerations. The pair of interacting
objects is annotated within the dataset in each scenario, and
the interaction happens close to the 10s mark of the 20s clip.

3.2. Dataset statistics

In contrast with many existing datasets that provide a
limited number of agents per scene or agent types, we pro-
vide more diverse scenes in terms of the number of agents
and types of agents, reflecting many complicated real world
driving scenarios like city driving and busy intersections.
We show the distribution of number of agents per scene
(Figure 2, top). All scenes have at least one vehicle, 57% of
scenes have at least one pedestrian (with 20% having four
or more), and 16% of scenes have at least one cyclist.

Our dataset contains rich interactions between vehicles,
pedestrians, and cyclists, and the users of this dataset must
be able to accurately predict the trajectories of all three
classes, which is not the case in previous datasets [9, 4, 39].
We show the frequency of scenes in which we ask the model
to predict each class in the validation set (Figure 2, bottom).
Notably, 38.3% of scenes in the validation set require the
model to predict more than one type of agent (e.g. a vehicle
and a pedestrian or cyclist), and 4.9% of scenes require a
model to predict trajectories for all three classes. Finally,
in the interactive validation set, where we task the model
with predicting the joint future trajectories of two interact-
ing agents, 77.5% of scenes involve two interacting vehi-
cles, 14.9% of scenes involve a vehicle interacting with a

Figure 3: Agents selected to be predicted have diverse
trajectories. Left: Ground truth trajectory of each pre-
dicted agent in a frame of reference where all agents start
at the origin with heading pointing along the positive X
axis (pointing up). Right: Distribution of maximum speeds
achieved by all of the agents along their 9 second trajectory.
Plots depict variety in trajectory shapes and speed profiles.

pedestrian, and 7.6% of scenes involve a vehicle interacting
with a cyclist.

Finally, a motion forecasting dataset should contain di-
verse scenarios, trajectories, and agent interactions. Table 1
shows that we gather data across a large range of roadways.
Figure 3 visualizes the future ground-truth trajectories and
maximum speeds of agents we task the models with pre-
dicting. These agents represent a wide range of trajectory
shapes, speeds, and behaviors, which we believe accurately
captures the many different behavioral modes for each class.

3.3. Offboard perception system

Modern motion forecasting systems require a large
amount of training data to imitate human maneuvers in
complex real-world scenarios. Recently released datasets
for motion forecasting [9, 18, 4] are orders of magnitude
larger than popular 3D perception datasets [4, 19, 32, 15].
However, manually annotating datasets at such large scales
not only incurs exorbitant cost but it also takes tremendous
amount of time [26, 37]. Constrained by the high cost,
most existing motion forecasting datasets [9, 18] directly
employ onboard perception output as groundtruth for tra-
jectory prediction. But limited by the onboard perception
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system performance, such annotated 3D objects tracks may
have a high degree of state estimation error, lack temporal
kinematic consistency or under-/over-segment tracks.

In this work, we aim to alleviate the perception qual-
ity bottleneck in existing motion datasets captured by au-
tonomous vehicles and propose using the recently intro-
duced offboard algorithms [26, 37] to automatically gen-
erate high-quality motion labels, allowing motion forecast-
ing algorithms to focus on the subtle dynamics and interac-
tions of agents instead of overcoming the noise generated
by a constrained, onboard perception system. Compared to
the onboard counterpart, offboard perception has two ma-
jor advantages: 1) it can afford much more powerful mod-
els running on the ample computational resources; and 2) it
can maximally aggregate complementary information from
different views by exploiting the full point cloud sequence
including both history and future. Thanks to those advan-
tages, the offboard perception system has shown superior
perception accuracy compared to onboard detectors [26]
and we have further validated its quality in Section 5.3.

4. Metrics
To measure the accuracy of motion predictions we use a

suite of five metrics, which we extend to handle joint pre-
dictions over multiple agents as proposed by a few related
works [34, 6, 28]. Several common metrics report a min-
imum error within a trajectory set; when generalized, the
joint metric analog constrains the minimum over the best
joint configuration of trajectories from a group of agents.

We report standard trajectory-set distance error metrics
minADE, minFDE, and Miss Rate (MR), with a custom def-
inition of a match explained below. We also report overlap
rate (OR) to measure frequency of predicted tracks’ extents
overlapping with others’. Finally, inspired by the detection
literature, we propose an Average Precision (AP) metric ac-
cording to the defined MR to measure the precision and
recall performance of models across different confidence
values. We then account for imbalanced data by reporting
mean AP (mAP) over different semantic trajectory motion
types.

For each evaluated example scene e, a model makes
K possibly joint predictions Sk, k ∈ 1 . . .K. Each Sk

contains a scalar confidence ck, and a trajectory sk =
{sa,t}t=1:T,a=1:A for T future time steps forA agents. Sim-
ilarly, the ground truth is denoted as ŝ = {ŝa,t}. The indi-
vidual object prediction task becomes a special case of this
formulation where each joint prediction contains only a sin-
gle agent A = 1.
minADE. The minimum Average Displacement Error
computes the L2 norm between ŝ and the closest joint pre-
diction: 1

TA mink
∑

a

∑
t ||ŝa,t − ska,t||2.

minFDE. The minimum Final Displacement Error is
equivalent to evaluating the minADE at a single time step

T : 1
A mink

∑
a ||ŝa,T − ska,T ||2

Overlap rate (OR). The overlap rate is computed by tak-
ing the highest confidence joint prediction from each multi-
modal joint prediction. If any of the A agents in the jointly
predicted trajectories overlap at any time with any other ob-
jects that were visible at the prediction time step (compared
at each time step up to T) or with any of the jointly predicted
trajectories, it is considered a single overlap. The overlap
rate is computed as the total number of overlaps divided by
the total number of predictions. See the supplementary ma-
terial for details. The overlap is calculated using box inter-
section, with headings inferred from consecutive waypoint
position differences.
Miss rate (MR). A binary match/miss indicator function
ISMATCH(ŝt, st) is assigned to each sample waypoint at
a time t. The average over the dataset creates the miss
rate at that time step. A single distance threshold to de-
termine ISMATCH is insufficient: we want a stricter criteria
for slower moving and closer-in-time predictions, and also
different criteria for lateral deviation (e.g. wrong lane) ver-
sus longitudinal (e.g. wrong speed profile). We define it as:

IsMatch(ŝt, st) = 1[xkt < λlon] · 1[ykt < λlat] (1)

[xkt , y
k
t ] := (ŝt − skt ) ·Rt

where Rt is a 2D rotation matrix defined by the ground
truth heading of the agent at timestamp t. The parame-
ters λlon and λlat are longitudinal and lateral thresholds
that vary with time and velocity. Since agents can have
different speeds at time 0, we scale these thresholds by
their speed so that we do not over-penalize faster agents:
λlon = λlont γ(vx) and λlat = λlatt γ(vy), where γ(v) =
(max(0,min(1, (v−υL)/(υH −υL)))/2+0.5. We set υH
to 11 m/s and υL to 1.4 m/s. The time dependent thresholds
are as follows:

λlatt λlont

T=3 seconds 1 2
T=5 seconds 1.8 3.6
T=8 seconds 3 6

For a particular joint configuration, a miss is assigned for
time t if any of the trajectories don’t match their ground
truth trajectory: MRt = mink ∨a¬IsMatch(ŝt, s

k
a,t).

Mean average precision (mAP). The Average Precision
computes the area under the precision-recall curve by ap-
plying confidence score thresholds ck across a validation
set, and using the definition of Miss Rate above to define
true positives, false positives, etc. Consistent with object
detection mAP metrics [23], only one true positive is al-
lowed for each object and is assigned to the highest confi-
dence prediction, the others are counted as false positives.
Further inspired by object detection literature [13], we seek
an overall metric balanced over semantic buckets, some of
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which may be much more infrequent (e.g., u-turns), so re-
port the mean AP over different driving behaviors. The fi-
nal mAP metric averages over eight different ground truth
trajectory shapes: straight, straight-left, straight-right, left,
right, left u-turn, right u-turn, and stationary.

5. Experiments
In this section, we evaluate various baseline models on

the WAYMO OPEN MOTION DATASET to investigate the
importance of rich map annotations (e.g. 3D road graph,
traffic signal states), interaction context, and joint model-
ing (Section 5.1). We then compare the standard valida-
tion and interactive validation datasets on conditional be-
havior prediction metrics to show that the interactive valida-
tion dataset is both more challenging and more interactive
(Section 5.2). Furthermore, we show that our offboard per-
ception system achieves a similar accuracy and perception
noise reduction to human labels (Section 5.3). Finally, to
provide insight on the performance measurement of motion
prediction tasks, we empirically analyze minADE vs. mAP
on their ability to reflect the quality of confidence score cal-
ibration (Section 5.4). We explicitly do not compare results
with existing datasets as differences in the data (e.g. per-
ception noise) can dramatically affect metrics results.

5.1. Baseline model performance

In this section, we evaluate several baseline models on
the proposed dataset. First, we consider a Constant Veloc-
ity model in which we assume the agent will maintain its
velocity at the current timestamp for all future steps.
Second, we consider a family of deep-learned models using
various encoders, with a base architecture of an LSTM to
encode a 1-second history of observed state [16, 1]; this in-
cludes agents’ positions, velocity, and 3D bounding boxes.
In order to measure the importance of particular additional
features, we selectively provide additional information:
• Road graph (rg): Encode the 3D map information

with polylines following [14].
• Traffic signals (ts): Encode the traffic signal states

with an LSTM encoder as an additional feature.
• High-order interactions (hi): Model the high-order

interactions between agents with a global interaction
graph following [14].

In experiments, combinations of these encodings are con-
catenated together to create an embedding per-agent. Note
that the model is heavily based on the architecture reported
in [36], which was one of the top entries on Argoverse and
should be considered close to state-of-the-art. We decode
K=6 trajectories for output using another MLP with min-of-
k loss [12, 35]. See the supplementary material for details.

In Table 2 and 3, we report the marginal metrics on the
standard validation/test set and joint metrics on the interac-
tive validation/test set, respectively. Specifically, minADE,

miss rate, and mAP at 8s are chosen to be the representa-
tives, and we break down the metrics across 3 object types.
The constant velocity model performs quite poorly, e.g.,
achieving double digit minADE on vehicles. This shows
that our dataset contains nontrivial trajectories.

We then investigate the importance of encoding 3D map
information, traffic signal states, and high-order interactions
between agents. Intuitively, they should all benefit motion
forecasting, and this is indeed supported by the experimen-
tal results. For example, on the standard validation set (Ta-
ble 2) for vehicle trajectory prediction, minADE improves
from 2.63 to 1.34 and mAP improves from 0.07 to 0.23
when incrementally adding more information in this order.
The same trend holds for pedestrian and cyclist as well.

We only evaluate joint metrics on the interactive sets.
Since making joint predictions is a relatively new practice,
there are no mature, established baselines. In Table 3, we
reuse the models trained to make K marginal predictions;
but when evaluating on the 2 interactive agents, we select
the top K among the K2 possibilities based on the product
of predicted probabilities, as described in [6]. The overall
low performance in Table 3 can be attributed to at least 3
factors: the higher difficulty level of the mined interactive
agents; the requirement to make good predictions for both
agents as dictated by the joint version of the metrics; the
fact that the predictions are post-hoc manipulations rather
than the result of true joint training.

We have argued the importance of jointly predicting in-
teractive behaviors. In Table 4 we provide direct compari-
son between a base LSTM (without rg, ts, or hi) trained
to make marginal or joint predictions for the 2 interactive
agents. In the joint prediction model, the neural features for
the 2 interactive agents are concatenated with each other to
provide the minimal necessary context; the sum of their in-
dividual distances to the ground truth (while matching the
pairs of trajectories jointly) are used for training; the confi-
dence score are jointly predicted for each pair of trajectories
to ensure consistency. When evaluated on the interactive
set using joint metrics, this joint model performs favorably
against its marginal counterpart. We hope this preliminary
experiment can motivate further development of joint mod-
els on our dataset, especially the interactive set.

5.2. Quantifying interactivity

Following [36], we use Conditional Behavior Prediction
(CBP) to quantify the interactivity in our dataset. [36] in-
troduces a model that can produce either unconditional pre-
dictions or predictions conditioned on a “query trajectory”
for one of the agents in the scene. If two agents are not
interacting, then one’s actions have no effect on the other,
so knowledge of that agent’s future should not change pre-
dictions for the other agent. Thus, [36] defines the degree
of influence agent A has on agent B as the KL divergence
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Vehicle Pedestrian Cyclist
Set Model rg ts hi minADE ↓ MR ↓ mAP ↑ minADE ↓ MR ↓ mAP ↑ minADE ↓ MR ↓ mAP ↑

Standard
Validation

Const. Vel. 11.0 0.95 0.02 1.55 0.60 0.07 4.17 0.82 0.02

LSTM

2.63 0.67 0.07 0.73 0.22 0.15 1.86 0.60 0.07
3 1.67 0.40 0.16 0.74 0.18 0.18 1.50 0.40 0.12

3 1.54 0.32 0.19 0.66 0.14 0.23 1.36 0.31 0.17
3 3 1.36 0.26 0.22 0.63 0.14 0.23 1.29 0.30 0.18
3 3 1.52 0.31 0.18 0.65 0.15 0.20 1.34 0.33 0.15
3 3 3 1.34 0.25 0.23 0.63 0.13 0.23 1.26 0.29 0.21

Standard
Test

Const. Vel. 11.0 0.95 0.02 1.58 0.60 0.06 4.12 0.83 0.03

LSTM 3 3 3 1.34 0.24 0.24 0.64 0.13 0.22 1.29 0.28 0.20

Table 2: Marginal metrics on the standard validation and test set. All metrics computed at 8s. rg stands for road graph
information. ts stands for traffic signal states information. hi stands for high-order interactions between agents’ features.
The constant velocity baseline employs K = 1 predicted trajectories; all other models employ K = 6.

Vehicle Pedestrian Cyclist
Set Model rg ts hi minADE ↓ MR ↓ mAP ↑ minADE ↓ MR ↓ mAP ↑ minADE ↓ MR ↓ mAP ↑

Interactive
Validation

Const. Vel. 10.3 0.98 0.00 3.62 1.00 0.00 6.35 1.00 0.00

LSTM

4.16 0.88 0.01 2.45 0.93 0.02 4.00 0.98 0.00
3 2.89 0.75 0.06 2.22 0.93 0.01 3.75 0.94 0.01

3 2.94 0.75 0.04 2.39 0.86 0.06 3.30 0.88 0.02
3 3 2.45 0.66 0.06 2.22 0.86 0.03 3.02 0.83 0.03
3 3 2.92 0.75 0.04 2.69 0.93 0.10 3.24 0.89 0.01
3 3 3 2.42 0.66 0.08 2.73 1.00 0.00 3.16 0.83 0.01

Interactive
Test

Const. Vel. 10.3 0.98 0.01 4.56 1.00 0.00 6.21 1.00 0.00

LSTM 3 3 3 2.46 0.67 0.08 2.47 0.89 0.00 2.96 0.89 0.01

Table 3: Joint metrics on the interactive validation and test set. See Table 2 for abbreviations and details. Note that these
metrics indicate that the interactive split is systematically more challenging.

Vehicle minADE ↓ Vehicle mAP ↑
Model 3s 5s 8s 3s 5s 8s

Marginal 0.65 1.66 4.16 0.08 0.07 0.01
Joint 0.65 1.59 3.81 0.10 0.06 0.03

Table 4: Joint modeling is advantageous on interactive
agents. Numbers are from the interactive validation set.

between the unconditional predictions for B and the predic-
tions for B conditioned on A’s ground truth future trajectory.

We apply this framework to our interactive and standard
validation datasets, computing the KL divergence between
unconditional and conditional predictions for every query
agent/target agent pair in the dataset. We find that the KL
divergences are much larger in the interactive validation
dataset than in the standard validation dataset. In particu-
lar, 73% of agent pairs in the interactive dataset have KL
divergences greater than 10, and 45% have KL divergences
greater than 50; in the standard dataset, these numbers are
48% and 28% respectively. Figure 4 presents a full his-
togram of the KL divergences between unconditional and
conditional prediction for each agent pair. Conditioning on

a query agent’s future trajectories makes little difference
in the standard validation dataset but a large difference in
the interactive validation dataset, providing evidence that
the interactive dataset contains more cases where multiple
agents are interacting with and influencing each other. For
details on the CBP model, see the supplementary material.

5.3. Analysis of perception data quality

In this section, we study the quality of our offboard per-
ception system and compare them with two alternatives –
human labels and baseline detector boxes. Following [26],
we conduct a study on the same five validation set run seg-
ments from the Waymo Open Dataset (WOD) re-labeled by
extra three independent human labelers. With the duplicate
human labels, we can analyze the human label consistency
to understand the “background noise” in label accuracy. In-
stead of comparing detection results in average precision
[26], we evaluate the box distance errors (DE) in meters by
comparing to the original WOD ground truth boxes.

Figure 5 shows that offboard perception achieves an ac-
curacy and distance error distribution similar to human la-
bels. We also show the distance errors of boxes obtained
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Figure 4: The interactive split sees much larger improve-
ments from conditional prediction. Each element in the
histogram is one pair of query agent/target agent, and the
x axis shows the KL divergence between the unconditional
predictions on the target agent and the predictions for the
target agent conditioned on the query agent’s ground truth
future. The higher number of near zero KL divergence ex-
amples in the standard set along with the greater number
of examples with large KL divergence in the interactive set
indicate higher interactivity in the interactive set.

Recall:    99.29%
Mean DE:  0.1849
Std DE:     0.2342

Recall:    93.50%
Mean DE:  0.1958
Std DE:     0.2721

Recall:    87.31%
Mean DE:  0.2738
Std DE:     0.3800

Figure 5: Distance error statistics of vehicle bounding
boxes. We compare three sets of vehicle bounding boxes
with the Waymo Open Dataset (WOD) ground truth boxes
on the 5 selected run segments from the val set. The statis-
tics include the histogram of distance errors (capped at
0.8m), the box recall (using a 3D IoU threshold of 0.03),
mean distance error and standard deviation (std) of the dis-
tance error. Only boxes with at least one point inside are
considered. Note that the DE from different boxes are not
directly comparable as the recalls are different.

from a baseline detector (Multi-view Fusion [41]) with a
Kalman filter-based tracker (the same tracker used in the
offboard perception). Using the baseline (onboard) detec-
tor leads to a significantly higher mean distance error – this
increased perception noise indicates a higher lower-bound
minADE that a behavior model can achieve.

5.4. Comparing mAP with minADE

While minADE is widely adopted for performance mea-
surement in motion forecasting tasks [9, 8, 14, 40], it fails
to measure the quality of confidence score calibration in the
trajectory prediction. In contrast, the mAP metric described
in Section 4 provides a measurement of the quality of the
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Figure 6: Comparison of minADE and mAP across in-
creasing numbers of predictions. Using the best LSTM
baseline model in Section 5.1, the minADE (top) artificially
improves as one allows for increasing numbers of predic-
tions. Conversely, the mAP (bottom) saturates as the model
must produce high quality confidence estimates in addition
to accurate trajectories.

confidence score calibration by design. In this section, we
perform an analysis of minADE vs. mAP with increasing
numbers of predictions at different time steps to show that
minADE does not provide a full picture of the model per-
formance while mAP provides more insight.

As shown in Figure 6, minADE artificially improves as
the number of predictions increase, while the mAP value
peaks at 3 predictions for 3s and 5s, and at 6 predictions for
8s. The minADE scores may improve so long as any of the
predictions are good regardless of their confidence score.
In contrast, mAP penalizes high confidence false positive
predictions and does not continue to improve with the num-
ber of predictions. Precision-recall curves for these experi-
ments are shown in the supplementary material.

6. Discussion

In this work we release the WAYMO OPEN MOTION
DATASET, a large-scale motion forecasting dataset contain-
ing data mined for interactive behaviors across a diverse set
of road geometries from multiple cities. The data comes
with rich 3D object state and HD map information. Object
tracks are generated with a state-of-the-art offboard auto-
matic labeling system which is significantly higher fidelity
than typical onboard 3D perception stacks. For evaluation
we outline a set of metrics for both per-agent and joint tra-
jectory predictions, including a novel mAP metric to mea-
sure performance in a balanced way across driving behav-
iors. We provide baseline models for both individual and
interactive prediction tasks, which we hope provides great
opportunities for advancing motion forecasting research.
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