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Abstract

Common deep neural networks (DNNs) for image clas-

sification have been shown to rely on shortcut opportunities
(SO) in the form of predictive and easy-to-represent visual

factors. This is known as shortcut learning and leads to im-

paired generalization. In this work, we show that common

DNNs also suffer from shortcut learning when predicting

only basic visual object factors of variation (FoV) such as

shape, color, or texture. We argue that besides shortcut op-

portunities, generalization opportunities (GO) are also an

inherent part of real-world vision data and arise from par-

tial independence between predicted classes and FoVs. We

also argue that it is necessary for DNNs to exploit GO to

overcome shortcut learning. Our core contribution is to in-

troduce the Diagnostic Vision Benchmark suite DiagViB-6,

which includes datasets and metrics to study a network’s

shortcut vulnerability and generalization capability for six

independent FoV. In particular, DiagViB-6 allows control-

ling the type and degree of SO and GO in a dataset. We

benchmark a wide range of popular vision architectures and

show that they can exploit GO only to a limited extent.

1. Introduction
Despite their state-of-the-art performance on object clas-

sification tasks, deep neural networks (DNN) are highly
prone to shortcut learning [8, 33, 11]. Instead of learning
holistic representations and decision rules that can gener-
alize beyond the training data, DNNs overly rely on so-
called shortcut opportunities (SO), which occur when the
target class is highly correlated to one or very few easy-to-
represent input factors [12]. This leads to poor generaliza-
tion on many out-of-distribution (OOD) settings, e.g. Ima-
geNet trained DNNs are biased towards texture and fail to
generalize under texture-shape cue conflict evaluation [8].

While humans are also prone to shortcut learning in cer-
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Figure 1: Exemplar study in our proposed benchmark. The
network is trained to predict factor classes 2, 4, 3 for the
shape factor with varying hue. All five depicted train-
ing combinations are uniformly shown during training. The
shape 2 co-occurs solely with the blue class of the hue
factor, which poses a shortcut opportunity. The shapes 4
and 3 occur uniformly with hue red and green; these
combinations pose a generalization opportunity, since they
reduce the predictiveness of the hue factor for the shape
factor. Test accuracy is computed on examples from OOD
factor combinations to evaluate a model’s shortcut vulnera-
bility in the context of the given generalization opportunity.

tain cases, such as object classification under context-based
cue conflict settings [29], the biological model remains
largely unaffected by shortcuts when it comes to predict-
ing basic object factors of variation (FoV) such as shape,
hue or texture. This “shortcut-immunity” w.r.t. basic
FoV is just as necessary for intelligent systems; thus, ef-
forts towards improving model generalization are of utmost
importance.

Existing literature studies shortcut behavior in DNNs
mainly in the context of object classification. In this work,
we address a more fundamental variant of shortcut learning,
focusing specifically on the prediction of basic FoV them-
selves, similar to [12]. In the context of FoV prediction, we
refer to different manifestations of a factor as factor classes.
For example, “red” and “green” are factor classes for the
factor hue, whereas “circle” and “elephant shape” are fac-
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tor classes for the factor shape. Object classes such as
“elephant” or “car” are characterized by the co-occurrence
of certain factor classes, e.g. “gray”, “elephant shape”, and
“elephant texture” characterize an elephant. SO arise from
this co-occurrence of different factor classes.

As stated in [7], SO are a property of real-world vision
data. In this work, we propose to additionally consider gen-

eralization opportunities (GO), which are a relaxation of the
strict correlation (or co-occurrence) between a target class
and an input FoV at training time. For instance, consider
the object “car” with factors shape and color; cars ap-
pearing in different colors during training would induce a
GO compared to cars appearing only in one color. We refer
to such cases as compositional-based GO. Correlations can
also be violated in the form of outliers consisting of rare
combinations of factor classes, e.g. a “white elephant”. We
refer to these cases as frequency-based GO.

A straightforward approach to introduce GO in the train-
ing data is data augmentation. For example, [21] applies
random color transformations to the training images, re-
moving a potential correlation between the target class and
the factor color. However, data augmentation results in
models that are invariant with respect to the augmented fac-
tor. Such models lose important information that may be
needed to properly identify and reason about OOD sam-
ples. In contrast to being invariant, we argue that a good vi-
sion model needs to have an explicit representation of these
FoV. Our work aims at analyzing a model’s capability to
exploit the GO already present in the data, as opposed to
adding more GO to a dataset, as done in data augmenta-
tion. While several synthetic benchmark datasets for com-
positional generalization and cue-conflict settings already
exist [12, 2, 28], none of them enables sufficient and sys-
tematic control over the SO and GO present in the dataset
for a broad set of different visual object FoV.

Inspired by prior work on shortcut learning and compo-
sitional generalization [7, 12], we present a synthetic but
diagnostic benchmark suite DiagViB-61that includes dif-
ferent studies to evaluate a model’s shortcut vulnerabil-
ity under varying degrees of GO. Figure 1 illustrates an
exemplar study in our benchmark. The benchmark suite
contains an image-generating function that allows direct
and independent control over the six basic, visual object
FoV: position, hue, lightness, scale, shape,
and texture (Fig. 2). Additionally, our framework pro-
vides a dataset-generating function that enables a user to
control the nature of SO and GO appearing in a dataset.
This is achieved by introducing different degrees of corre-
lation between factors, and inducing co-occurrences of cer-
tain factor class combinations. Furthermore, the benchmark
suite provides metrics to evaluate a model’s shortcut vulner-
ability under different GO for each factor.

1https://github.com/boschresearch/diagvib-6

Figure 2: Image space traversal across all six FoV and four
corresponding class labels used in this work. Along each
column only the corresponding factor is varied, while all
others are fixed. Note that some factors have more than the
four classes shown here (refer Tab. 1).

We evaluate a wide range of common deep learning vi-
sion models on our benchmark and perform an exhaustive
investigation of their shortcut vulnerability w.r.t. the six
stated FoV. We show that while they exploit frequency GO,
they exploit the more relevant compositional GO only to a
limited extent. This holds true also for approaches specifi-
cally designed to counteract shortcut learning.

We admit that this benchmark suite does not sufficiently

and directly prove a vision model’s ability to generalize
on real-world data (e.g. object classification on ImageNet).
However, it serves as a critical diagnosis that is necessary

in order to study a model’s shortcut vulnerability and gen-
eralization ability under various controlled tasks and data
setups. Ultimately, the design of our benchmark suite al-
lows a user to control different degrees of SO and GO in a
dataset (not commonly available in real-world data), in or-
der to assess a model’s behavior under different conditions.

Our contributions in this work can be summarized as fol-
lows: We propose a benchmark suite to create datasets that
enable the user to independently combine six visual FoV, al-
lowing explicit control over which SO and GO are present
in the resulting data. We establish suitable metrics to evalu-
ate both a model’s shortcut vulnerability, and its capability
to exploit GO in the data. Lastly, we provide empirical evi-
dence that common vision architectures exploit GO only to
a limited extent, especially compositional-based GO.

2. Related work
Compositional generalization in visual attribute predic-
tion Our work is formulated under the general framework
of visual attribute prediction. In contrast to classical ob-
ject recognition, the task is to learn semantic attributes of
a given object [6, 32]. By learning such class-agnostic vi-
sual object attributes, models can make useful predictions
about object classes that have not been seen at training
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time. We are interested in specific scenarios, called com-

positional generalization, in which only a limited number
of attribute combinations are provided during training. The
model needs to generalize during training in order to han-
dle inputs with unseen attribute combinations during testing
[27, 28, 35, 24, 1, 2, 36]. While most of these works use a
multi-task setup requiring object and attribute annotations
for every image during training, we consider a single-task
prediction, in which only one factor is predicted. In addi-
tion, we consider predicting more fundamental factors (e.g.
lightness, scale, hue) that are independent of each other and
can be applied to all types of objects, as opposed to high-
level visual attributes (e.g. glossy, furry, smooth).

Shortcut learning In recent years, multiple works have
shown that DNNs are vulnerable to shortcut learning on
several real-world and synthetic datasets [3, 8, 11, 7, 12].
As a result, many studies investigate the reasons for short-
cut learning, and propose methods to alleviate such vulner-
abilities. It is suggested in [11] that differences between
humans and DNNs may arise from differences in the data
that they see. [12] investigated how a model’s represen-
tations are shaped by inductive biases in the presence of
SO. A common attempt to overcome shortcut learning is
to augment the training data with handcrafted transforma-
tions in order to reduce the importance of each individ-
ual factor (e.g. shape or texture) [8, 23]. This approach
has further been extended to generative model-based aug-
mentations [31, 34, 33]. Recently, [26] showed that for
self-supervised learning, certain shortcut features can be re-
moved automatically, under the assumption that such fea-
tures are most vulnerable to adversarial attacks. Most of
the aforementioned works on shortcut learning are bench-
marked on black-box datasets (e.g. Stylized ImageNet [8]),
leading to a limited, implicit knowledge of the SO and GO
introduced in both the training and test data. In contrast,
our DiagViB-6 enables explicit image generation, allowing
shortcuts learned from individual FoV to be evaluated.

Benchmarks Numerous works exist on related areas,
such as compositional generalization or disentanglement of
FoV, that introduce datasets which allow to control image
factors to some extent [12, 16, 2, 17, 20, 3, 13, 22, 15, 36].
However, these all contain shortcomings that we try to ad-
dress in our work.

In contrast to [12, 2, 17, 20, 3, 13], our dataset contains
a richer intra-factor class variation. E.g. for the shape
factor, each digit class of MNIST specifies a factor class.
During image generation we use different instances of each
individual factor class. Similarly, for red, we use differ-
ent tones of red. Other datasets only provide for example
a single cylinder shape or red tone. For an overview of the
variation provided for each of our six factors see Sec. A.1.

Unlike the datasets in [12, 20, 3, 22], which use only 2-3

Fi Si Ni Ci,1 Si,1

position [0, 1]2 9 top-left [0.1, 0.3]⇥ [0.1, 0.3]
hue [0, 2⇡) 6 red [345°, 15°]

lightness [0, 1]2 4 dark [0, 0.1]⇥ [0.4, 0.5]
scale [0.69, 1.45] 5 small [0.69, 0.74]
shape MNIST 10 ‘0’ digits ‘0’
texture textures 5 tiles tiles texture crops

Table 1: Overview of factors Fi, respective factor spaces
Si, and number of classes Ni. Ci,1 & Si,1 are exemplary
factor classes and factor space regions of class label 1.

FoV, DiagViB-6 includes six fundamental FoV that all good
vision models should be shortcut-robust towards.

Some works, e.g. [12], investigate the internal feature
representations of DNNs at certain layers, whereas our
benchmark depends only on a model’s predictions and is
therefore architecture agnostic.

In contrast to multi-attribute prediction [2, 15, 36], we
evaluate a model’s shortcut behavior w.r.t. a single factor
under different correlations to other FoV. This allows for
a more structured and comprehensive analysis of shortcut
behavior, where the interaction between individual factors
can be investigated.

3. Diagnostic vision benchmark suite
This section describes our benchmark suite DiagViB-6,

used to examine the shortcut vulnerability and general-
ization capability of DNNs over six different independent
FoV. The suite consists of different image datasets tailored
for different diagnostic studies, as well as suitable metrics
for measuring shortcut vulnerability. We begin with an
overview of the image generation process in our benchmark
studies (Sec. 3.1), describe the benchmark setup in Sec. 3.2,
introduce different studies in Sec. 3.3, and lastly establish
the metrics to evaluate DNNs on our studies in Sec. 3.4.

3.1. Prerequisite
Fundamentals Datasets in our benchmark suite consist
of images with a single object described by a fixed, pre-
defined set of six independent factors. Each factor Fi, i 2
{1, . . . , 6} corresponds to a semantically meaningful im-
age attribute: shape, texture, hue, lightness,
position and scale. Every factor Fi is associated
with a certain factor space Si from which factor realiza-
tions fib=fFi 2 Si that describe the objects are sampled.
For example, lightness of an object flightness can be realized
as a scalar sampled from Slightness = [0, 1]. We assign Ni

discrete factor class labels for each factor, denoted as Ci,j ,
j 2 {1, . . . ,Ni}, which correspond to regions Si,j ⇢ Si 8j
and Si,j \ Si,k = ;, j 6= k. Similar to factors, each fac-
tor class Ci,j corresponds to a semantically meaningful at-
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tribute class (e.g. Clightness,1 refers to “dark” and Chue,3 refers
to “green”). Note that our choice of classes for each factor is
arbitrary and based on human intuition (similar to [12]) and
thus our work does not evaluate a factor’s general ability to
act as a shortcut over another.

Table 1 provides an overview of the list of factors,
their corresponding factor spaces, and the number of fac-
tor classes used throughout this work. As examples, the
factor spaces Si,1 and the factor classes Ci,1 are also pro-
vided. A comprehensive overview of factor spaces for all
factor classes is provided in Sec. A.1.

Image generation An image is generated by defining a
combination of factor classes C = (C1,j , C2,k, . . . , C6,l),
one from each factor Fi. This is done by first sam-
pling factor realizations fi from the corresponding re-
gions (S1,j ,S2,k, ...,S6,l) and then generating unique im-
ages from those sampled fi using an image-generating
function I : (f1, f2..., f6) ! I with I 2 [0, 1]H⇥W⇥3,
where H = W = 128. The six FoV are incorporated
into the image as follows: fshape is always an instance of
a digit in the MNIST dataset, which is then thresholded to
yield a binary segmentation. From the two lightness val-
ues flightness = (f (1)

lightness, f
(2)
lightness) two colors with equal hue

fhue are generated. The ftexture’s are crops of histogram-
normalized grey-scale texture images and their pixel values
serve as the coefficients of a convex combination between
the two aforementioned colors, resulting in the final color.
The object is then either up or down-sampled depending on
the chosen scale realization fscale, and placed at a specific
position fposition on a greyscale background.

Figure 2 illustrates the variation over the six different
FoV. In particular, the first column is generated with fac-
tor class labels C = (Cpos.,j , Chue,1, Clightn.,3, Cscale,5,
Cshape,1, Ctext.,2) with j 2 {1, 2, 3, 4}. Similarly, the
other columns show images varying one factor while keep-
ing the classes of all other factors fixed. Note that the six
different FoV are independent, and thus different images
can be generated for each of the

Q
i
Ni = 54000 different

factor class combinations.

3.2. Benchmark setup
In this section we lay out the fundamentals used in Sec.

3.3 to design and conduct studies analyzing different as-
pects of a DNN’s shortcut behavior.

For all studies, we select a subset of three factor classes
from the Ni available for each factor Fi, which are then
used during training, validation and testing. For example,
as depicted in Fig. 1 and 3, we select the factor classes
{Blue,Red,Green} and {2, 4, 3} for factors Fhue and
Fshape, respectively, and similarly for the other factors.
This results in 36 = 729 different factor class combinations
out of the mentioned 54000 being used for a single exper-
iment. Choosing the same number of factor classes across

factors simplifies evaluation and removes the number of fac-
tor classes as a source of variation. To account for random-
ness introduced by this selection of factor classes, we draw
five random dataset samples of selected factor classes, over
which reported results are averaged.

As mentioned in Sec. 1, we want to evaluate a network’s
shortcut behavior when predicting an FoV in the presence
of varying amounts of SO and GO in the training data. In
this work, we consider the interplay between all possible

pairings of two factors (Fi,Fj). For each pairing, the task
is to predict the class of the first factor Fi, where SO and
GO are induced by a specified co-occurrence pattern of fac-
tor class combinations for Fi and Fj . For example, con-
sider the setup in Fig. 1, with Fi: shape and Fj : hue.
Only five out of the nine possible combinations of factor
classes (dashed rectangles in Fig. 1) are shown during train-
ing, which induces a shortcut opportunity for the blue “2”.
During testing, we then evaluate the networks performance
on the OOD combinations (solid rectangles in Fig. 1). The
other 4 factors are not correlated with Fi or Fj ; their factor
classes all appear with the same uniform probability. We
conduct an exhaustive analysis of all possible factor pair-
ings, resulting in 6 ⇥ (6 � 1) = 30 different settings, i.e.
6� 1 possible pairings for each target factor.

We generate validation data following the same distribu-
tion as the training data. In contrast, test data is designed to
analyze a model’s shortcut behaviour by violating the pair-
wise correlations existing in the training data, and thus con-
tain OOD samples in the 3 ⇥ 3 matrix (cf. ⇥ for training
and � for testing in Fig. 3). We always generate 43 740
training, 8748 validation, and 10 000 test samples.

3.3. Benchmark studies
Having introduced the general structure of our bench-

mark, we now provide an overview of the five studies it en-
ables (see Fig. 3 for illustration).

Zero Shortcut Opportunities (ZSO) The goal of this
first study is to measure a network’s factor classification
performance in the absence of any SO. In the ZSO training
data, each class of the target factor Fi co-occurs uniformly
with all possible classes of Fj , as indicated by the positions
of ⇥s in the top-right of Fig. 3. Thus, Fj is not predictive
for Fi, 8i 6= j. After training, the factor-classification per-
formance of the model is tested on a dataset that shares the
same distribution as the training data (see � in Fig. 3).

Zero Generalization Opportunities (ZGO) This study
can be considered an “opposite” of the ZSO study. In the
ZGO training data, the target FoV Fi is perfectly correlated
with Fj , i.e. each class of Fi can only co-occur exclusively
with one particular class of Fj (see ZGO in Fig. 3). Since
both factors contain redundant information for the predic-
tion task, Fj can be exploited as a shortcut to predict Fi.
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Figure 3: Schematic overview of conducted studies (cf.
Fig. 1). For a combination of two factors Fi,Fj (x- and
y-axis), we select three factor classes (rows and columns)
for each factor and predict the first (y-axis) factor. Differ-
ent selections from the resulting nine combinations of factor
classes for training and test datasets (⇥ and �) yield differ-
ent GO and SO settings: The zero SO (ZSO), the three de-
grees of frequency GO (FGO) (increasing size of crosses ⇥,
⇥, ⇥ indicate increasing OOD frequency during training), the
zero GO (ZGO), the three compositional GO (CGO-1/2/3)
settings and the compositional hybrid GO (CHGO).

Compositional Generalization Opportunities (CGO)
With the ZSO and ZGO studies capturing the two extremes,
we continue with more realistic setups where both SO and
GO are present in the training data. As mentioned in Sec.
1, one way to introduce GO is through compositions. The
CGO study does exactly this, addressing compositional GO
by successively adding more factor class combinations for
Fi, Fj into the training set. In particular, we generate three
sub-studies CGO-c, c 2 {1, 2, 3} with increasing degree
of GO (Fig. 3); the added combination is picked at ran-
dom. For each class of the target factor, we hold out at least
one unseen combination for testing, as indicated by the �
symbols in each row in the CGO-c diagrams of Fig. 3. For
c = 0, no GO are provided and thus CGO-0 is identical to
the ZGO study discussed above. The goal of the CGO stud-
ies is to quantify a model’s generalization capability, i.e. the
capability to efficiently exploit the GO present in the data.
We would expect a good vision model to perform well on
these generalization tasks, especially as the number of SO
decreases and the number of GO increases.

Compositional Hybrid GO (CHGO) This is a special
case of CGO-2, for which both SO and GO are present, but
explicitly separated, as depicted in Fig. 3 (bottom-left). One

can think of this as a mixture of ZSO and ZGO, in which
one of the classes of Fi is exclusively coupled with a certain
class of Fj (ZGO), while the remaining two target factor
classes co-occur uniformly with the remaining two classes
of Fj (ZSO). The goal of CHGO is to examine whether a
model can become immune to an extreme SO by exploiting
GO available for other classes of the same factors.

As pointed out in Sec. 1, this heterogeneous mixture of
SO and GO comes closest to real-world data. For instance,
school buses might always be “yellow” while other cars
appear in arbitrary colors besides yellow. Considering a
model that predicts object shape, the yellow buses allow the
model to shortcut its bus-shape prediction by solely relying
on object color. A good vision model should now be able to
exploit the provided GO, in the form of differently colored
cars, to also predict the correct shape for an OOD “red” bus.

Frequency-based Generalization Opportunities (FGO)
Orthogonal to the CGO study, GO may also be introduced
in a frequency-based manner i.e., controlling the proportion
of a correlation introduced in the training data (cf. [12, 4]).
These sub-studies can also be seen as a transition from ZGO
to ZSO by gradually increasing the frequency of correla-
tions in the training data. We generate three sub-studies
FGO-f, f = {5, 10, 20}, where the strict correlation from
the ZGO is relaxed by means of low frequency violations
(in f % of the samples) of this combination during training.
Unlike CGO, all combinations are seen during training; we
test on those combinations that are underrepresented.

3.4. Metrics
We benchmark a model on the studies described above,

starting with evaluating the mean per-class accuracy acci,j
for the factor pair (Fi,Fj), i, j 2 {1, . . . , 6}, i 6= j, where
Fi gets predicted. We define the prediction accuracy Pi,j

on the test dataset in a given study as the expectation over
the five corresponding dataset samples: Pi,j = E [acci,j ].
In the case of ZSO, the prediction accuracy of Fi is defined
as Pi = E [acci], with acci being the accuracy of predicting
Fi on a single dataset sample. We also define two different
metrics to summarize a factor’s shortcut vulnerability with
respect to the other factors:

i) The Factor-Aggregated Average accuracy (FAAvg)

FAAvg
i
= E


mean

j2{1,...,6},j 6=i

acci,j
�

(1)

measures the average accuracy of predicting factor Fi

over all possible correlations with other factors Fj , j 2
{1, . . . , 6}, j 6= i. It can also be seen as a measure of the
average shortcut vulnerability of the factor on a given study.

ii) The Factor-Aggregated Minimum accuracy (FAMin)

FAMini = E


min
j2{1,...,6},j 6=i

acci,j
�

(2)
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(a)

(b)

Figure 4: Best viewed in color. (a) For the RN18 baseline, we show mean accuracies Pi for all factors Fi on the ZSO study
and mean accuracies Pi,j for all factor pairings (Fi,Fj), i 6= j on the CGO-c and ZGO studies. (b) Aggregating model
behavior over the studies, we compare all baselines using our benchmark metrics FAAvg and FAMin. Note that in (b) error
bars are omitted to improve visibility of individual baselines; standard errors are reported in Sec. A.3 and A.4.

measures the minimum accuracy among the correlations,
and can therefore be used as a measure of the maximum
shortcut vulnerability of the factor on a given study. In the
case of ZSO, FAAvg

i
= FAMini = Pi.

4. Baseline setup
This section provides an overview of the baseline net-

work architectures we evaluate on our benchmark. We
consider popular, vision-based DNN architectures (not pre-
trained) from PyTorch’s torchvision package [30]: AlexNet
[21], ResNet18 (RN18), ResNet50 (RN50) [10], Wide
ResNet50-2 (WideRN) [37], and DenseNet-161 [14]. We
also include RN50 with pretrained weights on ImageNet
[5] (RN50-IN), with frozen convolutional layers and a ran-
domly initialized fully connected layer to adapt to our
benchmark. We also use the prior work Automatic Short-
cut Removal (ASR) [26] as a baseline for our studies. In
addition, since generative models, in particular those with
interpretable factorised latent representations, are promis-
ing approaches to overcome shortcut learning on classifi-
cation tasks [7], we evaluate a standard VAE [19] and a
Factor-VAE [17] on our benchmark. More details on the
training and setup of baselines are provided in Sec. A.2.

5. Results
We evaluate the baselines described in Sec. 4 on our

benchmark suite described in Sec. 3.3. We start with the
extreme cases of zero SO (ZSO) and zero GO (ZGO), fol-
lowed by the other studies that introduce compositional and
frequency-based GO to the training dataset.

ZSO and ZGO Results for the ResNet18 baseline on both
these studies are presented in Fig. 4a. A comparison of all
baselines using the metrics described in Sec. 3.4 is provided
in Fig. 4b. The factor-wise results for each baseline are pre-
sented in Sec. A.3 and A.4.

The ZSO study evaluates how well a model can predict
each factor in the absence of SO. This yields a single mean
accuracy Pi for each factor Fi, visualized as a vector on the
very left in Fig. 4a. Here, RN18 achieves high accuracies
(� 99%) for predicting all factors except texture, for
which the mean accuracy is lower (62± 6)%. A similar
behavior can be observed for most other baselines (leftmost
point in each plot of Fig. 4b) with a few exceptions: VAE,
Factor-VAE and ASR are worse at predicting texture,
with 34%, 34%, and 45% accuracy, respectively. This
is likely due to a limited capability in representing high-
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frequency structures (Sec. A.3). In summary, considering
the aforementioned exceptions, all baselines can predict all
factors to a reasonable extent.

The ZGO study evaluates a model’s ability to predict a
factor Fi when each of its three factor classes co-occurs
exclusively with a certain factor class of another factor Fj

during training. Each such pairing (Fi,Fj) corresponds to
a single cell in the rightmost matrix plot in Fig. 4a, where
Fi are the rows and Fj are the columns. The color coded
value in each cell indicates mean accuracy Pi,j , i 6= j on
OOD test samples, for which this correlation is violated.

For RN18, we observe that for some factor combinations
(e.g. (Fi,Fj): (shape, texture)) the model does not ex-
ploit the provided SO, and instead preferentially learns the
actual task, leading to similar mean accuracies on OOD test
samples compared to the corresponding ZSO accuracies for
this factor. On the other hand, for other factor combinations
(e.g. (texture, shape)) the model does exploit the pro-
vided SO, yielding OOD accuracies close to zero thus below
chance level. texture and position factors play a spe-
cial role: While position is exploited as a shortcut when
predicting any other factor, texture is never exploited as
shortcut, but is easy to shortcut by any other factor. Inter-
estingly, Pi,j ⇡ 1 � Pj,i seems to hold for all factor com-
binations, i.e., if Fi is exploited as a shortcut for predicting

Fj , then Fj is not exploited as shortcut for predicting Fi.
We argue that during training either (a) the representa-

tion gets dominated by a single factor ignoring the other or
(b) is a superposition of both factors, i.e., both factors share
capacity of the representation. The extent a factor is repre-
sented depends on its overall ”difficulty”, i.e., texture
appears relatively difficult to learn, and how strongly Fi

and Fj compete over the same capacities. During testing,
Pi,j ⇡ 1 � Pj,i holds now for (a) but not for (b). For
lightness and position, ZGO findings indicate (b),
and a superposition of both factors is learnt, utilising differ-
ent capacities.

This yields a dataset-dependent ranking among factors,
which we use to order the rows of plots in Fig. 4a, start-
ing with the most shortcut-robust factor position, and
ending with the most shortcut-vulnerable factor texture.
Since a model’s ability to represent a factor in the presence
of SO is related to its inductive bias, the ZGO study could
be used to diagnose the efficiency of inductive biases of vi-
sion models in future work.

ZSO and ZGO findings transfer to most baselines, with a
few exceptions: On RN50-IN, position is less often ex-
ploited as shortcut; the model instead exploits hue as short-
cut when predicting position (Sec. A.4, matrix plots).

CGO We now evaluate the capability of common vi-
sion models to exploit GO provided in the form of addi-
tional factor-class combinations. Here, the three benchmark
datasets (CGO-1,2,3) successively add factor-class combi-

pos. hue lightn. scale shape text.

RN18 0± 0 2± 3 27± 21 �1± 14 2± 5 �1± 2

RN50 0± 0 3± 5 26± 21 �1± 16 2± 5 �2± 2

RN50-IN �1± 11 5± 6 15± 17 �7± 11 0± 8 �1± 1

AlexNet �4± 8 1± 4 24± 19 �1± 12 3± 6 �2± 2

DenseNet 2± 3 �3± 5 24± 21 �3± 13 2± 5 �1± 1

WRN 1± 1 �2± 4 23± 22 1± 14 3± 6 �2± 2

ASR 1± 1 12± 15 32± 18 1± 15 1± 2 0± 2

F-VAE 0± 0 2± 5 19± 17 �3± 11 1± 8 2± 1

VAE 0± 0 2± 5 18± 15 �3± 12 0± 9 2± 1

Table 2: Mean accuracy improvement and its standard de-
viation of the CHGO study over the ZGO study.

nations to the ZGO study. Results for RN18 are shown in
Fig. 4a, and a comparison of all baselines using aggregated
metrics is presented in Fig. 4b. The factor-wise results for
each baseline are shown in Sec. A.4.

For RN18, we find that most factor combinations ex-
hibit a monotonic improvement with increasing number of
GO, e.g. (scale,hue) : 0.01, 0.19, 0.42, 0.53 for ZGO,
CGO-1,2,3, respectively. However, for some factor combi-
nations the accuracy on OOD cases does not improve with
an increasing number of GO, and for some factor com-
binations, e.g. (texture,hue) or (shape,position)
shortcut learning occurs also for CGO-3.

This can also be seen for RN18 in the two aggregated
benchmark metrics FAAvg and FAMin in Fig. 4b. We find
that FAAvg stays far below ZSO accuracy for most base-
lines up until three GO are added. For texture, FAAvg
is below chance level for all baselines and studies, reflect-
ing our earlier finding that all other factors are exploited
as shortcuts when predicting texture. Moreover, FAMin
stays below chance level for all baselines for texture,
shape and scale factors, up until three GO are added.

In contrast to texture, for position, none of the
baselines exploit shortcuts, with RN50-IN being the only
exception (Fig. 4b, leftmost column). This phenomenon
is likely due to ImageNet containing limited explicit lo-
calization information [9], facilitating a partial invariance
of the learned representations in RN50-IN. From the CGO
study, we conclude that all baselines are unable to exploit
compositional-based GO for most FoV used in this work.

CHGO A special case of the CGO-2 study is the CHGO
study, in which two classes of the predicted factor are
provided with GO, while one class is presented with SO
only (see Fig. 1 and 3). Comparing the accuracy on the
OOD test samples for the latter with the average accuracy
on the ZGO study (Tab. 2), we find no improvement for
most factors on all baselines, and only minor improvements
for lightness, albeit with large variance across the five
dataset subsets. We conclude that all the baselines evaluated
in this work do not transfer GO across classes.
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(a)

(b)

Figure 5: Best viewed in color. Similar to Fig. 4a and 4b, we show mean accuracies for the RN18 (a) and a comparison of all
baselines (b) on the ZSO, FGO and ZGO studies. Error estimates are provided in Sec. A.3 and A.5.

FGO An orthogonal approach to providing GO through
additional class-combinations during training is to relax
the strict correlation between factors by means of low-
frequency violations of this correlation at training time.
We generated three benchmark datasets (FGO-f, f 2
{5, 10, 20}), with f indicating the frequency of the corre-
lation violation at training time. Results for RN18 and a
comparison of all baselines are presented in Fig. 5a and 5b.
The factor-wise results for each baseline are presented in
Sec. A.5.

For the RN18, the classification for all factors improves
significantly with only 5% of the training samples for each
class of the predicted factor violating the strict correlation
from ZGO (e.g. (shape,hue) : 0., 0.98 for ZGO and
FGO-5, respectively). When f � 10, none of the factors
except texture are vulnerable to shortcut learning. A
similar behavior can be observed for most factors and base-
lines (Fig. 4b), where we find that FAAvg is above chance
for all factors except texture for f = 5. However, we
find that ASR fails to exploit the presented GO for hue and
lightness when compared to other baselines, a behav-
ior which is likely attributed to the pixel-wise reconstruc-
tion loss that is used as a regularizer in the ASR objective.
In summary, most baselines are able to exploit frequency-
based GO to a certain extent on our benchmark.

6. Conclusion
We addressed the lack of a suitable benchmark to evalu-

ate the shortcut behavior of vision models on a diverse set
of basic visual FoV. To this end, we introduced DiagViB-6,
a benchmark suite designed to evaluate two crucial model
performance criteria: shortcut vulnerability and generaliza-
tion capability. Our framework allows the user to create
benchmark datasets by independently combining six visual
FoV, thereby precisely controlling the SO and GO present in
the dataset. Upon evaluation of the most commonly used vi-
sion architectures on DiagViB-6, we discovered that while
they usually can exploit frequency-based GO, their ability
to exploit compositional-based GO is limited. This finding
also holds for some recent, promising approaches that have
been proposed to overcome shortcut learning.

The design of DiagViB-6 is versatile, and leads to cer-
tain natural extensions. Three such promising future di-
rections are: (a) including more complex correlation struc-
tures, potentially between more than two FoV; (b) transfer-
ring the benchmark design to other research areas like do-
main generalization and multitask learning; (c) extending to
additional factors like background and natural corruptions.
Lastly, we believe that our benchmark suite will inspire and
help to build shortcut-robust solutions for vision models.
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