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Figure 1: The RS image is generated by continuously synthesizing the GS image row by row, while our rolling shutter
temporal super-resolution (RSSR) pipeline reverses this process, i.e., extracting the latent GS image sequence from two
consecutive RS images. Please see the arXiv version to be able to view the GS video image (bottom right) as a video.

Abstract

Rolling shutter (RS) images can be viewed as the result
of the row-wise combination of global shutter (GS) images
captured by a virtual moving GS camera over the period
of camera readout time. The RS effect brings tremendous
difficulties for the downstream applications. In this pa-
per, we propose to invert the above RS imaging mechanism,
i.e., recovering a high framerate GS video from consecutive
RS images to achieve RS temporal super-resolution (RSSR).
This extremely challenging problem, e.g., recovering 1440
GS images from two 720-height RS images, is far from be-
ing solved end-to-end. To address this challenge, we ex-
ploit the geometric constraint in the RS camera model, thus
achieving geometry-aware inversion. Specifically, we make
three contributions in resolving the above difficulties: (i)
formulating the bidirectional RS undistortion flows under
the constant velocity motion model, (ii) building the connec-
tion between the RS undistortion flow and optical flow via a
scaling operation, and (iii) developing a mutual conversion
scheme between varying RS undistortion flows that corre-
spond to different scanlines. Building upon these formu-
lations, we propose the first RS temporal super-resolution
network in a cascaded structure to extract high framerate
global shutter video. Our method explores the underly-
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ing spatio-temporal geometric relationships within a deep
learning framework, where no extra supervision besides the
middle-scanline ground truth GS image is needed. Essen-
tially, our method can be very efficient for explicit propa-
gation to generate GS images under any scanline. Experi-
mental results on both synthetic and real data show that our
method can produce high-quality GS image sequences with
rich details, outperforming state-of-the-art methods.

1. Introduction

Many consumer cameras such as webcams or mobile
phones are generally built upon CMOS sensors due to their
low cost and simplicity in manufacturing, which commonly
adopt the rolling shutter (RS) mechanism. Unlike its global
shutter (GS) counterpart, an RS camera generates an image
row-by-row sequentially, which gives rise to the so-called
RS effect (e.g., stretch, wobble) in images and videos cap-
tured by a moving RS camera. The RS effect is increasingly
becoming a nuisance in photography. Simply ignoring the
RS effect in computer vision applications leads to perfor-
mance degradation or even failure [2, 6, 19]. However, the
RS image combines information about both the scene ge-
ometry and the concealed motion [43], according to which
the RS effect can be removed by single frame [18,28,29,43]
or multiple frames [20, 30, 36, 41, 42]. As single-view RS
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correction is inherently a highly ill-posed problem, follow-
ing [20, 41, 42], using at least two consecutive frames can
make it tractable. Intuitively, observing a pair of consecu-
tive RS images, humans seem to be able to infer a plausible
explanation for the underlying geometry (i.e., camera mo-
tion and scene structure).

In this paper, we propose to invert the rolling shutter
imaging mechanism, i.e., recovering the high framerate
global shutter video from consecutive rolling shutter im-
ages, as illustrated in Fig. 1. Essentially, this inversion pro-
cess mimics the above human ability. This paper aims at
recovering a temporal sequence of latent GS image frames
from two consecutive RS images, i.e., performing RS tem-
poral super-resolution (RSSR). This task involves solving
the underlying RS geometry, which is arduous for existing
methods (e.g., [41]) to achieve robust and accurate estima-
tion due to subtle intra-frame motions, requiring non-trivial
camera calibration and iterative optimizations.

To some extent, RSSR relates to two-view RS correction
[20, 41, 42] and GS video interpolation [4, 5, 15, 24]. How-
ever, our task contains additional complexity, because be-
yond eliminating the geometric RS distortion, we also want
to generate a set of high framerate GS images in chrono-
logical order. This is particularly challenging as we have
to ensure the temporal smoothness of the output sequence.
Unfortunately, the artifacts appear in the pure geometric
methods [41, 42] due to inaccurate RS geometric estima-
tion. Only one reliable GS image can be recovered by [20].
See supplementary materials for more analyses. Also, dif-
ferent from the slight and controllable pixel displacement in
the GS video interpolation task, which is located inside its
optical flow, the pixel displacement when correcting the RS
image may exceed its local neighborhood defined by its op-
tical flow, depending on the type of motion, the 3D structure
and the scanline time. Specifically, we identify (for the first
time) that the RS-aware pixel displacement can be obtained
by scaling the corresponding optical flow vector under the
constant velocity motion model, but the size and sign of the
scaling factor are determined by the intrinsic RS geometry.

To address the above challenges, we formulate the bidi-
rectional RS undistortion flows to characterize the pixel-
wise RS-aware pixel displacement, and further advance a
calculation method for the mutual conversion between vary-
ing RS undistortion flows corresponding to different scan-
lines. In particular, we prove that the scaling factor is in
the interval of (−1, 1) when correcting an RS image to its
middle-scanline GS image. As a result of utilizing these
parameterizations, we propose a data-driven solution for
RSSR with good interpretability, which intrinsically encap-
sulates the complete underlying RS geometry that more so-
phisticated methods (e.g., [41, 42]) struggle to learn away.

The proposed geometry-aware RSSR pipeline employs a
cascaded architecture to extract a latent high framerate GS

video sequence from two consecutive RS images. Firstly,
we estimate the bidirectional optical flows by using the clas-
sic PWC-Net [34]. Secondly, we design a UNet-like net-
work to learn the scaling factor of each pixel (i.e., middle-
scanline correlation map in Sec. 4) such that the middle-
scanline RS undistortion flows can be inferred. At the same
time, RS undistortion flows for any scanline can be associ-
ated and propagated explicitly. Finally, the softmax splat-
ting [24] is used to produce the high framerate GS video
frames at arbitrary scanlines. Our RSSR network can be
trained end-to-end and only the middle-scanline GS images
are needed for supervision. Since none of the learned net-
work parameters are time-dependent, it can synthesize as
many GS frames as needed. Extensive experimental results
demonstrate that our approach is superior to the state-of-
the-art methods in removing the RS artifacts, and it can gen-
erate a coherent video sequence as well.

Our main contributions are summarized as follows:

• We identify and establish a detailed proof of the
scanline-dependent nature of the bidirectional RS
undistortion flows, which is essential for understand-
ing the intrinsic geometrical properties of RS correc-
tion problem [20, 41–43].

• From the theoretical perspective, we provide a sound
motivation for our first learning-based RSSR solution
for latent GS video sequence extraction from two con-
secutive RS images, which brings RS images alive.

• Our approach not only outperforms the state-of-the-art
methods in both RS effect removal and inference effi-
ciency, but also can produce a smooth and continuous
video sequence far beyond the reach of [20].

2. Related Work
Geometric model based RS correction. Over the last
decade, several works have revisited the RS geometric
model to remove the RS effect [3, 9, 11, 14, 18, 19, 27, 29,
30, 32, 37]. Grundmann et al. [12] employed a homogra-
phy mixture to achieve joint RS removal and video stabi-
lization. The occlusion-aware undistortion method [36] re-
moved the depth-dependent RS distortions from a specific
setting of ≥ 3 RS images, assuming a piece-wise planar
3D scene. Zhuang et al. [41] proposed estimating the full
camera motion by a differential formulation to remove RS
distortions in two consecutive RS images. Such a model has
achieved considerable success, but the further improvement
has appeared challenging, due to the difficulties of making
it robust and efficient to various situations (e.g., relying too
much on the initial optical flow estimation [42]). Subse-
quently, Zhuang and Tran [42] presented a differential RS
homography to model the underlying scanline-varying RS
camera poses, which can be used to perform RS-aware im-
age stitching and correction. Albl et al. [1] explored a sim-
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ple two-camera rig, mounted to have different shutter direc-
tions, to undistort the RS images acquired by a smartphone.
Deep learning based RS correction. Recently, convolu-
tional neural networks (CNN) have been used to achieve
more flexible and efficient RS correction. Rengarajan et
al. [28] proposed the first CNN to correct a single RS im-
age by assuming a simple affine model. Zhuang et al. [43]
extended [28] to learn the RS geometry from a single frame
through two independent networks, yielding geometrically
more correct results. Zhong et al. [40] jointly handled RS
correction and deblurring. Liu et al. [20] and Fan et al. [8]
used two consecutive RS images as input and designed spe-
cialized CNNs to predict one GS image. To the best of our
knowledge, our RSSR model is the first that is developed to
learn the mapping from two consecutive RS frames to high
framerate GS video frames corresponding to any scanline.

3. Differential Forward RS Geometry

GS-aware forward warping. Assuming that the GS cam-
era experiences constant linear velocity v = [v1, v2, v3]

T

and angular velocity ω = [ω1, ω2, ω3]
T over two consecu-

tive frames 1 and 2, a 3D point X with depth Z is observed
by the camera to move with the 3D velocity as −v−ω×X
[22]. Projecting this 3D velocity into the 2D image plane
yields the image motion field f , which is usually approxi-
mated by the optical flow vector (fu, fv)T under the bright-
ness constancy assumption, at pixel x = (x, y) as [22]:

f =
Av

Z
+Bω

Δ
= π(v,ω,x, Z, f), (1)

where

A =

[ −f 0 x
0 −f y

]
,

B =

⎡
⎣ xy

f −
(
f + x2

f

)
y(

f + y2

f

)
−xy

f −x

⎤
⎦ .

(2)

Here, (x, y) is the normalized image coordinate and f de-
notes the focal length.
RS forward motion parameterization. Since all RS scan-
lines are successively and instantaneously exposed one by
one at different times, each scanline possesses a different
optical center. To account for the scanline-varying camera
poses, we make full use of the small motion hypothesis.
Given the inter-frame camera velocities (v,ω) between the
two first scanlines of two consecutive RS images, the subtle
intra-frame relative motion could be obtained by interpo-
lation [26, 32, 41, 42]. Specifically, [41] derived a linear
interpolation scheme under the constant velocity motion.
Formally, the camera position and rotation (ps1

1 , rs11 ) (resp.
(ps2

2 , rs22 )) of s1-th (resp. s2-th) scanline in frame 1 (resp.

2) w.r.t. the first scanline of frame 1 can be expressed as:

ps1
1 = λs1

1 v, rs11 = λs1
1 ω,

ps2
2 = λs2

2 v, rs22 = λs2
2 ω,

(3)

where
λs1
1 = γs1

h , λs2
2 = 1 + γs2

h . (4)

Here, γ = hτr/τ is the readout time ratio [41], i.e., the
ratio between the total readout time and the total time τ in
an RS frame, which can be calibrated by [23, 25]. τr is the
readout time of a single scanline and h is the total number
of scanlines in an image. Consequently, the relative motion
between s1-th and s2-th scanlines satisfies:

vs1s2 = ps2
2 − ps1

1 = (λs2
2 − λs1

1 )v,

ωs1s2 = rs22 − rs11 = (λs2
2 − λs1

1 )ω.
(5)

Further details may be found in [41].
RS-aware forward warping. As fv = s2 − s1, plugging
Eqs. (4) and (5) into Eq. (1), we can relate the forward op-
tical flow of pixel x in frame 1 in terms of the RS camera
velocity and the 3D point as:[

fu
fv

]
= α

[
πu(v,ω,x, Z, f)
πv(v,ω,x, Z, f)

]
, (6)

where
α = 1 +

γfv
h

(7)

represents the RS-aware forward interpolation factor un-
der the constant velocity motion model, which depends on
the scanline involved in the optical flow. πu(·) and πv(·)
denotes the first and second entries of π(·), respectively.
Hence, the geometric inaccuracies induced by the RS effect
could be compensated by simply scaling the optical flow
vector of each pixel x.

4. RS Undistortion Flow vs Optical Flow
RS imaging mechanism. As shown in Fig. 1, RS camera
exposes each scanline in sequence, which results in a dif-
ferent local frame for each scanline. The RS image Ir can
therefore be regarded as the result of a continuous row-wise
combination of multiple virtual GS images over the period
of camera readout time, i.e., formulating the RS imaging
model as:

�Ir(x)�s =
⌊
Isg(x)

⌋
s
, 0 ≤ s ≤ h− 1, (8)

where Isg is the virtual GS image captured at time sτr. �·�s
indicates extracting the s-th scanline. On the contrary, the
RSSR aims to reverse the above RS imaging formulation,
i.e., estimating the displacement vectors ur→s of pixel x
from the RS image to the virtual GS image at s-th scanline
such that

Ir(x) = Isg(x+ ur→s), 0 ≤ s ≤ h− 1. (9)
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Specifically, it is to estimate the dense RS undistortion flow
Ur→s that corresponds to scanline s by stacking ur→s for
all pixels in matrix form. Note that similar to [20], Ur→s is
a forward warping operation, e.g., softmax splatting [24].
Bidirectional RS undistortion flows. To deliver each RS
pixel x on κ-th scanline in frame 1 to its GS canvas defined
by the pose corresponding to s-th scanline of frame 1, the
RS-aware forward warping displacement vector of pixel x
can be formulated as:

[
uu

uv

]
= β

[
πu(v,ω,x, Z, f)
πv(v,ω,x, Z, f)

]
, (10)

where

β =
γ(s− κ)

h
(11)

represents the RS-aware forward undistortion factor, which
depends on the scanline offset between the target scanline s
and the current scanline κ. Note that 0 ≤ s, κ ≤ h − 1
and the pixels in s-th scanline of the RS image remain
unchanged. Stacking the forward warping displacement
vectors of all pixels in frame 1, we can obtain the pixel-
wise forward RS undistortion flow U1→s of frame 1, which
could be used to restore the GS image corresponding to any
scanline s ∈ [0, h− 1] of frame 1.

Unfortunately, Eqs. (6) and (10) describe merely the for-
ward optical flow (i.e., from frame 1 to frame 2) and the
forward RS undistortion flow (i.e., from frame 1 to scan-
line s), respectively. We cannot remove the geometric RS
distortion in frame 2 based on two input consecutive RS
images alone. Therefore, we further propose a RS-aware
backward warping model1 accounting for frame 2, which
solely needs to negative for the readout time ratio γ. Ac-
cordingly, Z refers to the depth of each pixel in frame 2 and
(v,ω) need to be reversed. As a consequence, Eq. (6) indi-
cates the backward optical flow from frame 2 to frame 1 and
Eq. (10) models the backward RS undistortion flow U2→s

in frame 2 (i.e., from frame 2 to scanline s). Similarly, the
GS image corresponding to any scanline s ∈ [0, h − 1] of
frame 2 can be recovered.

Heretofore, we have obtained bidirectional RS undistor-
tion flows U1→s and U2→s, which can warp two consec-
utive RS images to GS images corresponding to their re-
spective scanlines s ∈ [0, h− 1], i.e., activating the rolling
shutter temporal super-resolution.
Connection between RS undistortion flow and optical
flow. Note that the optical flow in Eq. (6) exhibits the pixel
displacement over two consecutive RS frames, while the RS
undistortion flow in Eq. (10) models the pixel displacement
between the RS frame 1 (or frame 2) and the GS frame at
scanline s. Without loss of generality, taking the forward
warping as an example (note that the backward warping is

1The derivation is available in the supplementary material.

Optical Flow RS Undistortion Flow 
(first scanline)

RS Undistortion Flow 
(middle scanline)

RS Undistortion Flow 
(last scanline)

Figure 2: RS undistortion flow versus optical flow. Here,
forward flows are visualized according to [33]. Compared
to the isotropically smooth optical flow map, the RS undis-
tortion flow map exhibits a more significant scanline depen-
dence. On the one hand, the RS undistortion flows near the
target scanline appear as lighter colors (i.e., smaller warping
displacement values). On the other hand, the RS undistor-
tion flows corresponding to pixels smaller than and larger
than the target scanline show different colors (i.e., different
warping displacement directions).

similar, except that γ is negative). First, eliminating fv on
the right hand side of Eq. (6), the optical flow of pixel x can
be rewritten as:[

fu
fv

]
=

h

h− γπv

[
πu

πv

]
, (12)

where πu and πv are abbreviations, determined by camera
parameters, camera motions and 3D depths. Then, through
Eqs. (10) and (12), we establish the connection between the
forward/backward RS undistortion flow (uu,uv)

T and the
forward/backward optical flow (fu, fv)

T at pixel x as:
[

uu

uv

]
= c

[
fu
fv

]
, (13)

where

c =
γ(s− κ)(h− γπv)

h2
(14)

represents the forward/backward correlation factor between
bidirectional RS undistortion flow and bidirectional optical
flow, which are distinguished by the sign of γ. Stacking c
for all pixels yields the forward and backward correlation
maps C1→s and C2→s, respectively.

Consequently, after obtaining the bidirectional optical
flows between two consecutive RS frames (e.g. via PWC-
Net [34] or RAFT [35]), we can scale them to obtain the
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bidirectional RS undistortion flows to further recover the
latent GS images corresponding to specific scanline s ∈
[0, h − 1]. Note that the size and sign of the scaling factor
(i.e., correlation factor c) rely on the underlying RS geome-
try. As illustrated in Fig. 2, we can intuitively observe that,
compared to the isotropically smooth optical flow map, the
RS undistortion flow is more typically scanline-dependent.
The closer the pixel to scanline s (assuming to correction to
s-th scanline, e.g., the first scanline), the smaller the value of
the RS undistortion flow is generally. Moreover, we point
out that Eq. (13) is essentially the core of RS correction
in [41], but it requires sophisticated processing (such as
RANSAC [10], non-convex optimization, etc.) to estimate
dense depth as well as accurate camera motion based on
the optical flow map. Nevertheless, potential gross errors in
optical flow estimations could lead to severe artifacts [42].
Interconversion between varying RS undistortion flows.
Eq. (10) defines the RS undistortion flow that warps the RS
frame to its GS counterpart corresponding to scanline s. As-
suming that two GS images corresponding to s1-th scanline
and s2-th scanline are to be restored, it can be seen from
Eqs. (13) and (14) that the difference in the warping dis-
placement vector of the same pixel x is only (s1 − κ) and
(s2 − κ). Note that x lies in scanline κ. Therefore, we can
simply extend the RS undistortion flow of pixel x facing
scanline s1 to that for scanline s2 by[

us2
u

us2
v

]
=

s2 − κ

s1 − κ

[
us1
u

us1
v

]
. (15)

In other words, the resulting RS undistortion flows cor-
responding to different scanlines can be converted to each
other, which is also the key to achieve our RSSR solution.
An example is shown in Fig. 2. One can find that the differ-
ence between varying RS undistortion flows is not only re-
flected in the distribution of the warping displacement size,
but also the warping displacement direction is closely re-
lated to the scanline, as elucidated in Proposition 1.

Proposition 1 Given bidirectional optical flows F1→2 and
F2→1, to recover the GS image corresponding to the cam-
era pose of the middle scanline, the forward correlation
map C1→m (resp. backward correlation map C2→m) for
the forward RS undistortion flow U1→m (resp. backward
RS undistortion flow U2→m) in Eq. (13) satisfies:

�C1→m�i,j ∈
⎧⎨
⎩

(0, 1) if i < h
2

0 if i = h
2

(−1, 0) if i > h
2

, (16)

resp.

�C2→m�i,j ∈
⎧⎨
⎩

(−1, 0) if i < h
2

0 if i = h
2

(0, 1) if i > h
2

, (17)

where �·�i,j is the entry in i-th row and j-th column.

Proof 1 We first decompose cm defined in Eq. (14) into

cm =
s− κ

h
· γ(h− γπv)

h

Δ
= cam · cbm. (18)

Taking the case of i < h
2 in Eq. (16) as an example, i.e.,

0 ≤ κ < h
2 . Since the GS image corresponding to the mid-

dle scanline is to be restored, s = h
2 . Thus, 0 < cam ≤ 1

2 . In
practice, πv indicates the prediction of the inter-frame ver-
tical optical flow value (see Eq. (1)), which is usually much
smaller than the total number of image scanlines h. Also,
the readout time ratio γ is less than or equal to 1 for a nor-
mal RS camera [13,14,41], so γ ∈ (0, 1] when modeling the
RS-aware forward warpings. We thus arrive at 0 < cbm < 2.
To sum up, cm ∈ (0, 1), i.e., �C1→m�i,j ∈ (0, 1) holds
when i < h

2 . Other cases can be proved similarly. Note
that γ ∈ [−1, 0) when modeling the RS-aware backward
warpings.

5. RS Temporal Super-Resolution
Since DiffSfM [41] struggles to efficiently and accu-

rately estimate the correlation factor defined in Eq. (14),
requiring non-trivial readout calibration and cumbersome
calculations, we propose to elaborate a concise and effec-
tive end-to-end CNN to mine the inherent regularity of data
to account for Proposition 1. Inspired by the cascaded archi-
tecture for video interpolation in [4, 5, 15, 24], we carefully
design an RSSR network to encapsulate the complete un-
derlying RS geometry, as illustrated in Fig. 3. Our network
takes two consecutive RS images I1r and I2r as input and pre-
dicts the GS image corresponding to any scanline (i.e., gen-
erating a high framerate GS video). The proposed RSSR
pipeline can be distilled down to two main submodules: the
optical flow estimation network F and the middle-scanline
RS undistortion flow estimation network U . We first uti-
lize F to obtain bidirectional optical flows, and then en-
code the relation between optical flows and middle-scanline
RS undistortion flows by the middle-scanline correlation
maps over U . Finally, we compute the middle-scanline RS
undistortion flows to produce two target middle-scanline
GS frames by the softmax splatting [24]. Below we de-
scribe the details of each sub-network.
Optical flow estimator. We employ the classical PWC-Net
[34] as our optical flow estimation network F . As learning
optical flow without ground truth supervision is extremely
difficult, we fine-tune F on the RS benchmarks from the
pre-trained model of PWC-Net in a self-supervised manner
[21, 38].
Middle-scanline RS undistortion flow estimator. We
adopt the hourglass architecture [15, 31] as our backbone
network U to predict the correlation maps, modifying the
last layer to output 6-channel predictions. To comply with
Proposition 1, we fetch the first two channels in the output
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Figure 3: Overview of our RSSR network architecture.
Given two input consecutive RS frames, we first estimate
the bidirectional optical flows. Then, we use the UNet ar-
chitecture associated with Eq. (19) to resolve the correla-
tion maps. Next, the middle-scanline RS undistortion flows
can be calculated explicitly by Eq. (20), while being cer-
tifiable. Finally, we adopt softmax splatting to generate
the target middle-scanline GS frames. Note that our main
network is designed to predict the latent GS images cor-
responding to the middle scanline during training. In par-
ticular, in the test phase, the RS undistortion flows for any
scanline s ∈ [0, h − 1] can be propagated through Eq. (15)
(dashed arrow), followed by the recovery of the GS image
corresponding to scanline s.

of network U , followed by a Sigmoid operation to map to
the interval of (0, 1), resulting in Ĉ1→m and Ĉ2→m. After-
ward, inspired by [20], we multiply them with their respec-
tive normalized scanline offsets (i.e., T1→m and T2→m,
�T�i,j ∈ [−1, 1]), which is defined as the normalized scan-
line offset between the captured pixel and that of the middle
scanline. Note that T1→m = −T2→m, and their values in
middle-scanline are set to be small enough (not to be zero)
for subsequent flow propagation. The final correlation maps
C1→m and C2→m thus can be recovered as:

C1→m = T1→m � Ĉ1→m,

C2→m = T2→m � Ĉ2→m,
(19)

where � is an element-wise multiplier. It is easy to ver-
ify that they all naturally fit for the theoretical bounds of
Proposition 1. Furthermore, we use the last four channels
of network U to estimate optical flow residuals ΔF1→2 and
ΔF2→1 to enhance the alignment of edge details and the
generality of the proposed model. Finally, according to
Eq. (13), the bidirectional RS undistortion flows U1→m and
U2→m can be obtained as:

U1→m = C1→m � (F1→2 +ΔF1→2) ,
U2→m = C2→m � (F2→1 +ΔF2→1) .

(20)

Finally, the softmax splatting [24] is used to warp the RS
image I1r (resp. I2r) to the target middle-scanline GS image
I1g (resp. I2g) through U1→m (resp. U2→m).

Extend to GS images under arbitrary scanlines. As the
resulting RS undistortion flows corresponding to different
scanlines can be converted to each other, based on Eq. (15),
we can propagate the middle-scanline RS undistortion flows
obtained above to arrive at the RS undistortion flows U1→s

and U2→s for any scanline s ∈ [0, h− 1]. Then, the corre-
sponding high framerate GS images can be warped from the
original two RS images, in the same vein, by using softmax
splatting, i.e., achieving the rolling shutter temporal super-
resolution in a temporally coherent manner.

6. Experiments
6.1. Implementation Details

Loss function. Our loss function L is a linear combina-
tion of the reconstruction loss Lr, perceptual loss Lp [16],
warping loss Lw and smoothness loss Ls, i.e.,

L = μrLr + μpLp + μwLw + μsLs, (21)

where we set μr = 10, μp = 1, μw = 10 and μs = 0.1.
The details can be found in our supplementary material.
Training dataset. We evaluate our model on the Carla-
RS and Fastec-RS datasets [20] that provide ground truth
(GT) middle-scanline GS supervisory signals. The Carla-
RS dataset is generated from a virtual 3D environment us-
ing the Carla simulator [7], involving general six degrees
of freedom motions. The Fastec-RS dataset contains real-
world RS images synthesized by a professional high-speed
GS camera. Following [20], the Carla-RS dataset is divided
into a training set of 210 sequences and a test set of 40 se-
quences, and the Fastec-RS dataset has 56 sequences for
training and 20 sequences for test. We train our network on
both two benchmarks to predict the middle-scanline GS im-
ages (i.e., s = h/2). At the test time, our model is able to
be extended to generate arbitrary corrected GS frames for
any scanline s ∈ [0, h− 1].
Training strategy. Our pipeline is implemented in Py-
Torch. We use the Adam optimizer [17] to optimize the
proposed network. The learning rate is initially set to 10−4

and decreases by a factor of 0.8 every 50 epochs. The op-
tical flow estimation network F is first fine-tuned for 100
epochs from the pre-trained model of [34], and then the en-
tire model is jointly trained for another 200 epochs. The
batch size is set as 6. We use a uniform random crop at a
horizontal resolution of 256 pixels for data augmentation.
Note that we do not change the longitudinal resolution to
warrant the scanline dependence of RS camera.

6.2. Evaluation Protocols

We compute the average Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS) [39] between
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Figure 4: Visual comparisons on Fastec-RS testing set. We zoom in the correction results according to the blue boxes. While
other methods cause various artifacts, our method produces best effects.

Table 1: Quantitative comparisons on recovering GS images corresponding to the first scanline of the second RS frame. The numbers
in red and blue represent the best and second-best performance. Note that we cannot benchmark the Fastec-RS dataset due to its lack of
training ground truth. Regardless of the black edges of corrected images, our approach performs favorably against other methods.

Method PSNR↑ SSIM↑ LPIPS↓
CRM CR FR CR FR CR FR

DeepUnrollNet [20] 26.90 26.46 26.52 0.81 0.79 0.0703 0.1222
DiffHomo [42] 19.60 18.94 18.68 0.61 0.61 0.1798 0.2229
DiffSfM-PWCNet [41] 19.53 18.62 18.59 0.69 0.63 0.2042 0.2416
DiffSfM-RAFT [41] 24.20 21.28 20.14 0.78 0.70 0.1322 0.1789
RSSR (Ours) 30.17 24.78 21.26 0.87 0.78 0.0695 0.1424

predictions and GT GS images. Higher PSNR/SSIM or
lower LPIPS scores indicate better performance. Note that
unless otherwise stated, all competing methods refer to the
GS image corresponding to the first scanline of the sec-
ond RS frame for consistent comparisons. See our sup-
plementary material for more instructions on DeepUnroll-
Net [20]. Since the Carla-RS dataset provides the GT occlu-
sion masks, for better evaluation, we conduct quantitative
experiments including: the Carla-RS dataset with occlusion
mask (CRM), the Carla-RS dataset without occlusion mask
(CR), and the Fastec-RS dataset (FR).

6.3. Ablation Studies

To demonstrate the effectiveness of each component in
our proposed network, we evaluate the controlled compar-
isons over network F , network U , and loss function L, re-
spectively. We train these variations using the same strategy
as aforementioned in Subsec. 6.1. Please refer to the sup-
plementary materials for an in-depth analysis.

6.4. Comparisons with Existing Methods
We evaluate the proposed RSSR method against the fol-

lowing RS correction algorithms:

- SMARSC [43]: The state-of-the-art single-view RS
correction method. We follow the reimplementation
by [20] as it is not open-sourced.

- DeepUnrollNet [20]: The state-of-the-art two-view
RS correction method. However, it has no ability to
produce high framerate GS video sequences.

- DiffSfM [41] and DiffHomo [42]: Pure geometric RS
correction methods. They are difficult to robustly esti-
mate the accurate RS geometry from two consecutive
frames and rely on complicated handling. Also, we
implement two versions of DiffSfM by using PWC-
Net [34] and RAFT [35] as inputs respectively.

We report the quantitative results in Table 1. The bet-
ter optical flow obtained by RAFT can improve the estima-
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Figure 5: Interpolating GS video frames by applying our method. We zoom in the correction results according to the orange
boxes. For example, “I1→0.3h” denotes the corrected GS image corresponding to 0.3h-th scanline of frame 1. Our method
not only preserves the temporal smoothness but also corrects the RS artifacts.

tion accuracy of RS geometry, thus promoting the perfor-
mance of RS correction in DiffSfM, which also indicates
the importance of mining RS geometry. Our model per-
forms favorably against all the compared methods in the
Carla-RS dataset and competes on par with DeepUnroll-
Net in the Fastec-RS dataset, since the Carla-RS dataset is
more consistent with the constant motion assumption. Note
that, compared with DeepUnrollNet, the black edges in our
corrected GS images will reduce the PSNR score of our
method without using masks. Very importantly, our method
can generate high framerate and visually pleasing GS video
frames. We also provide the visual results on images with
noticeable RS distortions in Fig. 4, where DiffHomo and
DiffSfM fail to correct the geometric RS distortions and
DeepUnrollNet causes loss of local image details. More
results are shown in our supplementary materials. Overall,
our method can produce more correct and reliable results.

6.5. Generating Multiple GS Video Frames
We generate multiple GS video frames corresponding to

different scanlines, as shown in Fig. 5. Our method not only
produces smooth and continuous video sequences but also
removes the RS artifacts successfully.

6.6. Inference Times
Our method can simultaneously predict two middle-

scanline GS images with a resolution of 640 × 480 pix-
els in near real-time on an NVIDIA GeForce RTX 2080Ti
GPU (average 0.12 seconds), which is faster than the av-
erage 0.34 seconds of [20] to restore a single GS image.
Further, we can extend to generate a GS image correspond-
ing to any certain scanline, using an average runtime of
1.75 milliseconds, because only simple explicit matrix op-
erations are required. Therefore, our RSSR method can effi-
ciently produce 960 GS video frames in about 1.80 seconds.
DiffSfM [41], however, takes about 467.26 seconds to re-

cover a single GS image on an Intel Core i7-7700K CPU,
which is a disadvantage for time-constrained tasks, such as
real-time robotic visual localization.

6.7. Limitations
The main limitation of our approach is that it is not ro-

bust to heavy occlusions and moving objects. This is a com-
mon challenge for RS correction algorithms [20,28,41–43].
In these challenging scenes, the RS undistortion flow of the
corresponding region can not be well estimated, resulting in
ambiguous object boundaries.

7. Conclusion
In this paper, we tackle the challenging task of RS image

inversion, i.e., converting consecutive RS images to high
framerate GS images. To this end, we have confirmed and
discussed the inherent connection between bidirectional RS
undistortion flow and optical flow. We presented the first
novel and intuitive RS temporal super-resolution framework
that extracts a latent GS image sequence from two consec-
utive RS images, which is guided by the underlying ge-
ometrical properties of the problem itself. Our pipeline
owns good interpretability and generalization ability due
to RS geometry-aware learning. It does not require ex-
tra supervision other than the middle-scanline GT GS im-
ages. We have demonstrated that our approach can not
only reconstruct geometrically and temporally consistent
video sequences but also remove RS artifacts, achieving a
favourable performance.
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