
Multiscale Vision Transformers

Haoqi Fan *, 1 Bo Xiong *, 1 Karttikeya Mangalam *, 1, 2

Yanghao Li *, 1 Zhicheng Yan 1 Jitendra Malik 1, 2 Christoph Feichtenhofer *, 1

1Facebook AI Research 2UC Berkeley

Abstract
We present Multiscale Vision Transformers (MViT) for

video and image recognition, by connecting the seminal idea
of multiscale feature hierarchies with transformer models.
Multiscale Transformers have several channel-resolution
scale stages. Starting from the input resolution and a small
channel dimension, the stages hierarchically expand the
channel capacity while reducing the spatial resolution. This
creates a multiscale pyramid of features with early lay-
ers operating at high spatial resolution to model simple
low-level visual information, and deeper layers at spatially
coarse, but complex, high-dimensional features. We eval-
uate this fundamental architectural prior for modeling the
dense nature of visual signals for a variety of video recog-
nition tasks where it outperforms concurrent vision trans-
formers that rely on large scale external pre-training and
are 5-10× more costly in computation and parameters. We
further remove the temporal dimension and apply our model
for image classification where it outperforms prior work
on vision transformers. Code is available at: https:
//github.com/facebookresearch/SlowFast.

1. Introduction
We begin with the intellectual history of neural network

models for computer vision. Based on their studies of cat
and monkey visual cortex, Hubel and Wiesel [60] developed
a hierarchical model of the visual pathway with neurons
in lower areas such as V1 responding to features such as
oriented edges and bars, and in higher areas to more spe-
cific stimuli. Fukushima proposed the Neocognitron [37], a
neural network architecture for pattern recognition explic-
itly motivated by Hubel and Wiesel’s hierarchy. His model
had alternating layers of simple cells and complex cells, thus
incorporating downsampling, and shift invariance, thus incor-
porating convolutional structure. LeCun et al. [70] took the
additional step of using backpropagation to train the weights
of this network. But already the main aspects of hierarchy of
visual processing had been established: (i) Reduction in spa-
tial resolution as one goes up the processing hierarchy and
(ii) Increase in the number of different “channels”, with each
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Figure 1. Multiscale Vision Transformers learn a hierarchy from
dense (in space) and simple (in channels) to coarse and complex
features. Several resolution-channel scale stages progressively
increase the channel capacity of the intermediate latent sequence
while reducing its length and thereby spatial resolution.

channel corresponding to ever more specialized features.
In a parallel development, the computer vision com-

munity developed multiscale processing, sometimes called
“pyramid” strategies, with Rosenfeld and Thurston [91], Burt
and Adelson [10], Koenderink [66], among the key papers.
There were two motivations (i) To decrease the computing re-
quirements by working at lower resolutions and (ii) A better
sense of “context” at the lower resolutions, which could then
guide the processing at higher resolutions (this is a precursor
to the benefit of “depth” in today’s neural networks.)

The Transformer [104] architecture allows learning ar-
bitrary functions defined over sets and has been scalably
successful in sequence tasks such as language comprehen-
sion [29] and machine translation [9]. Fundamentally, a
transformer uses blocks with two basic operations. First,
is an attention operation [4] for modeling inter-element re-
lations. Second, is a multi-layer perceptron (MLP), which
models relations within an element. Intertwining these oper-
ations with normalization [2] and residual connections [49]
allows transformers to generalize to a wide variety of tasks.

Recently, transformers have been applied to key com-
puter vision tasks such as image classification. In the spirit
of architectural universalism, vision transformers [28, 101]
approach performance of convolutional models across a va-
riety of data and compute regimes. By only having a first
layer that ‘patchifies’ the input in spirit of a 2D convolu-
tion, followed by a stack of transformer blocks, the vision
transformer aims to showcase the power of the transformer
architecture using little inductive bias.
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In this paper, our intention is to connect the seminal idea
of multiscale feature hierarchies with the transformer model.
We posit that the fundamental vision principle of resolution
and channel scaling, can be beneficial for transformer models
across a variety of visual recognition tasks.

We present Multiscale Vision Transformers (MViT), a
transformer architecture for modeling visual data such as im-
ages and videos. Consider an input image as shown in Fig. 1.
Unlike conventional transformers, which maintain a constant
channel capacity and resolution throughout the network,
Multiscale Transformers have several channel-resolution
‘scale’ stages. Starting from the image resolution and a small
channel dimension, the stages hierarchically expand the
channel capacity while reducing the spatial resolution. This
creates a multiscale pyramid of feature activations inside the
transformer network, effectively connecting the principles
of transformers with multi scale feature hierarchies.

Our conceptual idea provides an effective design advan-
tage for vision transformer models. The early layers of our
architecture can operate at high spatial resolution to model
simple low-level visual information, due to the lightweight
channel capacity. In turn, the deeper layers can effectively
focus on spatially coarse but complex high-level features
to model visual semantics. The fundamental advantage of
our multiscale transformer arises from the extremely dense
nature of visual signals, a phenomenon that is even more
pronounced for space-time visual signals captured in video.

A noteworthy benefit of our design is the presence of
strong implicit temporal bias. We show that vision trans-
former models [28] trained on natural video suffer no per-
formance decay when tested on videos with shuffled frames.
This indicates that these models are not effectively using
the temporal information and instead rely heavily on appear-
ance. In contrast, when testing our MViT models on shuffled
frames, we observe significant accuracy decay, suggesting
reliance on temporal information.

Our focus in this paper is video recognition, and we de-
sign and evaluate MViT for video tasks (Kinetics [64, 12],
Charades [92], SSv2 [43] and AVA [44]). MViT provides
a significant performance gain over concurrent video trans-
formers [84, 8, 1], without any external pre-training data.

In Fig. A.4 we show the computation/accuracy trade-off
for video-level inference, when varying the number of tem-
poral clips used in MViT. The vertical axis shows accuracy
on Kinetics-400 and the horizontal axis the overall infer-
ence cost in FLOPs for different models, MViT and concur-
rent ViT [28] video variants: VTN [84], TimeSformer [8],
ViViT [1]. To achieve similar accuracy level as MViT, these
models require significant more computation and parameters
(e.g. ViViT-L [1] has 6.8× higher FLOPs and 8.5× more pa-
rameters at equal accuracy, more analysis in §A.2) and need
large-scale external pre-training on ImageNet-21K (which
contains around 60× more labels than Kinetics-400).
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Figure 2. Accuracy/complexity trade-off on Kinetics-400 for
varying # of inference clips per video shown in MViT curves.
Concurrent vision-transformer based methods [84,8,1] require over
5× more computation and large-scale external pre-training on
ImageNet-21K (IN-21K), to achieve equivalent MViT accuracy.

We further apply MViT to ImageNet [24] classification,
by simply removing the temporal dimension of the video
architecture, and show significant gains over single-scale vi-
sion transformers for image recognition. Our code and mod-
els are available in PySlowFast [31] and PyTorchVideo [32].

2. Related Work
Convolutional networks (ConvNets). Incorporating down-
sampling, shift invariance, and shared weights, ConvNets
are de-facto standard backbones for computer vision tasks
for image [70, 67, 94, 96, 51, 15, 18, 39, 99, 87, 46] and
video [93, 36, 14, 85, 74, 112, 102, 34, 111, 40, 33, 123, 62].
Self-attention in ConvNets. Self-attention mechanisms has
been used for image understanding [88, 120, 57, 7], unsu-
pervised object recognition [80] as well as vision and lan-
guage [83, 71]. Hybrids of self-attention operations and
convolutional networks have also been applied to image
understanding [56] and video recognition [107].
Vision Transformers. Much of current enthusiasm in ap-
plication of Transformers [104] to vision tasks commences
with the Vision Transformer (ViT) [28] and Detection Trans-
former [11]. We build directly upon [28] with a staged model
allowing channel expansion and resolution downsampling.
DeiT [101] proposes a data efficient approach to training ViT.
Our training recipe builds on, and we compare our image
classification models to, DeiT under identical settings.

An emerging thread of work aims at applying transform-
ers to vision tasks such as object detection [5], semantic
segmentation [121, 105], 3D reconstruction [77], pose esti-
mation [113], generative modeling [17], image retrieval [30],
medical image segmentation [16,103,117], point clouds [45],
video instance segmentation [109], object re-identification
[52], video retrieval [38], video dialogue [69], video object
detection [116] and multi-modal tasks [78, 26, 86, 58, 114].
A separate line of works attempts at modeling visual data
with learnt discretized token sequences [110, 89, 17, 115, 21].

6825



Efficient Transformers. Recent works [106, 65, 20, 100, 23,
19, 72, 6] reduce the quadratic attention complexity to make
transformers more efficient for natural language processing
applications, which is complementary to our approach.

Three concurrent works propose a ViT-based architecture
for video [84, 8, 1]. However, these methods rely on pre-
training on vast amount of external data such as ImageNet-
21K [24], and thus use the vanilla ViT [28] with minimal
adaptations. In contrast, our MViT introduces multiscale
feature hierarchies for transformers, allowing effective mod-
eling of dense visual input without large-scale external data.

3. Multiscale Vision Transformer (MViT)

Our generic Multiscale Transformer architecture builds
on the core concept of stages. Each stage consists of multiple
transformer blocks with specific space-time resolution and
channel dimension. The main idea of Multiscale Transform-
ers is to progressively expand the channel capacity, while
pooling the resolution from input to output of the network.

3.1. Multi Head Pooling Attention

We first describe Multi Head Pooling Attention (MHPA),
a self attention operator that enables flexible resolution mod-
eling in a transformer block allowing Multiscale Transform-
ers to operate at progressively changing spatiotemporal reso-
lution. In contrast to original Multi Head Attention (MHA)
operators [104], where the channel dimension and the spa-
tiotemporal resolution remains fixed, MHPA pools the se-
quence of latent tensors to reduce the sequence length (reso-
lution) of the attended input. Fig. 3 shows the concept.

Concretely, consider a D dimensional input tensor X
of sequence length L, X ∈ RL×D. Following MHA [28],
MHPA projects the input X into intermediate query tensor
Q̂ ∈ RL×D, key tensor K̂ ∈ RL×D and value tensor V̂ ∈
RL×D with linear operations

Q̂ = XWQ K̂ = XWK V̂ = XWV

/ with weights WQ,WK ,WV of dimensions D × D. The
obtained intermediate tensors are then pooled in sequence
length, with a pooling operator P as described below.

Pooling Operator. Before attending the input, the interme-
diate tensors Q̂, K̂, V̂ are pooled with the pooling operator
P(·; Θ) which is the cornerstone of our MHPA and, by ex-
tension, of our Multiscale Transformer architecture.

The operator P(·; Θ) performs a pooling kernel com-
putation on the input tensor along each of the dimensions.
Unpacking Θ as Θ := (k, s,p), the operator employs a
pooling kernel k of dimensions kT × kH × kW , a stride s
of corresponding dimensions sT × sH × sW and a padding
p of corresponding dimensions pT × pH × pW to reduce an
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Figure 3. Pooling Attention is a flexible attention mechanism that
(i) allows obtaining the reduced space-time resolution (T̂ ĤŴ ) of
the input (THW ) by pooling the query, Q = P(Q̂;ΘQ), and/or
(ii) computes attention on a reduced length (T̃ H̃W̃ ) by pooling the
key, K = P(K̂;ΘK), and value, V = P(V̂ ;ΘV ), sequences.

input tensor of dimensions L = T ×H ×W to L̃ given by,

L̃ =

⌊
L + 2p− k

s

⌋
+ 1

with the equation applying coordinate-wise. The pooled
tensor is flattened again yielding the output of P(Y ; Θ) ∈
RL̃×D with reduced sequence length, L̃ = T̃ × H̃ × W̃ .

By default we use overlapping kernels k with shape-
preserving padding p in our pooling attention operators, so
that L̃ , the sequence length of the output tensor P(Y ; Θ),
experiences an overall reduction by a factor of sT sHsW .

Pooling Attention. The pooling operator P (·; Θ) is applied
to all the intermediate tensors Q̂, K̂ and V̂ independently
with chosen pooling kernels k, stride s and padding p. De-
noting θ yielding the pre-attention vectors Q = P(Q̂; ΘQ),
K = P(K̂; ΘK) and V = P(V̂ ; ΘV ) with reduced se-
quence lengths. Attention is now computed on these short-
ened vectors, with the operation,

Attention(Q,K, V ) = Softmax(QKT /
√
D)V.

Naturally, the operation induces the constraints sK ≡ sV
on the pooling operators. In summary, pooling attention is
computed as,

PA(·) = Softmax(P(Q; ΘQ)P(K; ΘK)T /
√
d)P(V ; ΘV ),

where
√
d is normalizing the inner product matrix row-wise.

The output of the Pooling attention operation thus has its
sequence length reduced by a stride factor of sQT s

Q
Hs

Q
W fol-

lowing the shortening of the query vector Q in P(·).
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stage operators output sizes
data layer stride τ×1×1 T×H×W

patch1
1×16×16, D

D×T×H
16
×W

16stride 1×16×16

scale2

[
MHA(D)
MLP(4D)

]
×N D×T×H

16
×W

16

Table 1. Vision Transformers (ViT) base model starts from a
data layer that samples visual input with rate τ×1×1 to T×H×W
resolution, where T is the number of framesH height andW width.
The first layer, patch1 projects patches (of shape 1×16×16) to form
a sequence, processed by a stack of N transformer blocks (stage2)
at uniform channel dimension (D) and resolution (T×H

16
×W

16
).

Multiple heads. As in [104] the computation can be paral-
lelized by considering h heads where each head is perform-
ing the pooling attention on a non overlapping subset ofD/h
channels of the D dimensional input tensor X .

Computational Analysis. Since attention computation
scales quadratically w.r.t. the sequence length, pooling the
key, query and value tensors has dramatic benefits on the
fundamental compute and memory requirements of the Mul-
tiscale Transformer model. Denoting the sequence length
reduction factors by fQ, fK and fV we have,

fj = sjT · s
j
H · s

j
W , ∀ j ∈ {Q,K, V }.

Considering the input tensor to P(; Θ) to have dimensions
D × T × H × W , the run-time complexity of MHPA is
O(THWD/h(D + THW/fQfK)) per head and the mem-
ory complexity is O(THWh(D/h+ THW/fQfK)).

This trade-off between the number of channels D and
sequence length term THW/fQfK informs our design
choices about architectural parameters such as number of
heads and width of layers. We refer the reader to §C for a
detailed analysis and discussions on the runtime-memory
complexity trade-off.

3.2. Multiscale Transformer Networks

Building upon Multi Head Pooling Attention (Sec. 3.1),
we describe the Multiscale Transformer model for visual
representation learning using exclusively MHPA and MLP
layers. First, we present a brief review of the Vision Trans-
former Model that informs our design.

Preliminaries: Vision Transformer (ViT). The Vision
Transformer (ViT) architecture [28] starts by dicing the input
video of resolution T×H×W , where T is the number of
frames H the height and W the width, into non-overlapping
patches of size 1×16×16 each, followed by point-wise ap-
plication of linear layer on the flattened image patches to to
project them into the latent dimension, D, of the transformer.
This is equivalent to a convolution with equal kernel size
and stride of 1×16×16 and is shown as patch1 stage in the
model definition in Table 1.

Next, a positional embedding E ∈ RL×D is added to
each element of the projected sequence of length L with

stages operators output sizes
data layer stride τ×1×1 D×T×H×W

cube1
cT×cH×cW , D

D× T
sT
×H

4
×W

4stride sT×4×4

scale2

[
MHPA(D)
MLP(4D)

]
×N2 D× T

sT
×H

4
×W

4

scale3

[
MHPA(2D)
MLP(8D)

]
×N3 2D× T

sT
×H

8
×W

8

scale4

[
MHPA(4D)
MLP(16D)

]
×N4 4D× T

sT
×H

16
×W

16

scale5

[
MHPA(8D)
MLP(32D)

]
×N5 8D× T

sT
×H

32
×W

32

Table 2. Multiscale Vision Transformers (MViT) base model.
Layer cube1, projects dense space-time cubes (of shape ct×cy×cw)
to D channels to reduce spatiotemporal resolution to T

sT
×H

4
×W

4
.

The subsequent stages progressively down-sample this resolution
(at beginning of a stage) with MHPA while simultaneously increas-
ing the channel dimension, in MLP layers, (at the end of a stage).
Each stage consists ofN∗ transformer blocks, denoted in [brackets].

dimension D to encode the positional information and break
permutation invariance. A learnable class embedding is
appended to the projected image patches.

The resulting sequence of length of L + 1 is then pro-
cessed sequentially by a stack of N transformer blocks, each
one performing attention (MHA [104]), multi-layer percep-
tron (MLP) and layer normalization (LN [3]) operations.
Considering X to be the input of the block, the output of a
single transformer block, Block(X) is computed by

X1 = MHA(LN(X)) +X

Block(X) = MLP(LN(X1)) +X1.

The resulting sequence after N consecutive blocks is layer-
normalized and the class embedding is extracted and passed
through a linear layer to predict the desired output (e.g. class).
By default, the hidden dimension of the MLP is 4D. We
refer the reader to [28, 104] for details.

In context of the present paper, it is noteworthy that ViT
maintains a constant channel capacity and spatial resolution
throughout all the blocks (see Table 1).

Multiscale Vision Transformers (MViT). Our key con-
cept is to progressively grow the channel resolution (i.e. di-
mension), while simultaneously reducing the spatiotemporal
resolution (i.e. sequence length) throughout the network. By
design, our MViT architecture has fine spacetime (and coarse
channel) resolution in early layers that is up-/downsampled
to a coarse spacetime (and fine channel) resolution in late
layers. MViT is shown in Table 2.

Scale stages. A scale stage is defined as a set of N trans-
former blocks that operate on the same scale with identi-
cal resolution across channels and space-time dimensions
D×T×H×W . At the input (cube1 in Table 2), we project
the patches (or cubes if they have a temporal extent) to a
smaller channel dimension (e.g. 8× smaller than a typical
ViT model), but long sequence (e.g. 4×4 = 16× denser than
a typical ViT model; cf. Table 1).
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stage operators output sizes
data stride 8×1×1 8×224×224

patch1
1×16×16, 768

768×8×14×14stride 1×16×16

scale2

[
MHA(768)
MLP(3072)

]
×12 768×8×14×14

(a) ViT-B with 179.6G FLOPs, 87.2M param,
16.8G memory, and 68.5% top-1 accuracy.

stage operators output sizes
data stride 4×1×1 16×224×224

cube1
3×7×7, 96

96×8×56×56stride 2×4×4

scale2

[
MHPA(96)
MLP(384)

]
×1 96×8×56×56

scale3

[
MHPA(192)
MLP(768)

]
×2 192×8×28×28

scale4

[
MHPA(384)
MLP(1536)

]
×11 384×8×14×14

scale5

[
MHPA(768)
MLP(3072)

]
×2 768×8×7×7

(b) MViT-B with 70.5G FLOPs, 36.5M param,
6.8G memory, and 77.2% top-1 accuracy.

stage operators output sizes
data stride 4×1×1 16×224×224

cube1
3×8×8, 128

128×8×28×28stride 2×8×8

scale2

[
MHPA(128)
MLP(512)

]
×3 128×8×28×28

scale3

[
MHPA(256)
MLP(1024)

]
×7 256×8×14×14

scale4

[
MHPA(512)
MLP(2048)

]
×6 512×8×7×7

(c) MViT-S with 32.9G FLOPs, 26.1M param,
4.3G memory, and 74.3% top-1 accuracy.

Table 3. Comparing ViT-B to two instantiations of MViT with varying complexity, MViT-S in (c) and MViT-B in (b). MViT-S operates at
a lower spatial resolution and lacks a first high-resolution stage. The top-1 accuracy corresponds to 5-Center view testing on K400. FLOPs
correspond to a single inference clip, and memory is for a training batch of 4 clips. See Table 2 for the general MViT-B structure.

At a stage transition (e.g. scale1 to scale2 to in Table 2),
the channel dimension of the processed sequence is up-
sampled while the length of the sequence is down-sampled.
This effectively reduces the spatiotemporal resolution of the
underlying visual data while allowing the network to assimi-
late the processed information in more complex features.

Channel expansion. When transitioning from one stage
to the next, we expand the channel dimension by increas-
ing the output of the final MLP layer in the previous stage
by a factor that is relative to the resolution change intro-
duced at the stage. Concretely, if we down-sample the
space-time resolution by 4×, we increase the channel di-
mension by 2×. For example, scale3 to scale4 changes reso-
lution from 2D× T

sT
×H

8 ×
T
8 to 4D× T

sT
×H

16×
T
16 in Table 2.

This roughly preserves the computational complexity across
stages, and is similar to ConvNet design principles [93, 50].

Query pooling. The pooling attention operation affords
flexibility not only in the length of key and value vectors
but also in the length of the query, and thereby output, se-
quence. Pooling the query vector P(Q; k; p; s) with a kernel
s ≡ (sQT , s

Q
H , s

Q
W ) leads to sequence reduction by a factor of

sQT · s
Q
H · s

Q
W . Since, our intention is to decrease resolution

at the beginning of a stage and then preserve this resolution
throughout the stage, only the first pooling attention operator
of each stage operates at non-degenerate query stride sQ > 1,
with all other operators constrained to sQ ≡ (1, 1, 1).

Key-Value pooling. Unlike Query pooling, changing the se-
quence length of keyK and value V tensors, does not change
the output sequence length and, hence, the space-time resolu-
tion. However, they play a key role in overall computational
requirements of the pooling attention operator.

We decouple the usage of K,V and Q pooling, with
Q pooling being used in the first layer of each stage and
K,V pooling being employed in all other layers. Since the
sequence length of key and value tensors need to be identical
to allow attention weight calculation, the pooling stride used
on K and value V tensors needs to be identical. In our
default setting, we constrain all pooling parameters (k; p; s)
to be identical i.e. ΘK ≡ ΘV within a stage, but vary s
adaptively w.r.t. to the scale across stages.

Skip connections. Since the channel dimension and se-
quence length change inside a residual block, we pool the
skip connection to adapt to the dimension mismatch between
its two ends. MHPA handles this mismatch by adding the
query pooling operator P(·; ΘQ) to the residual path. As
shown in Fig. 3, instead of directly adding the input X of
MHPA to the output, we add the pooled input X to the
output, thereby matching the resolution to attended query Q.

For handling the channel dimension mismatch between
stage changes, we employ an extra linear layer that operates
on the layer-normalized output of our MHPA operation. Note
that this differs from the other (resolution-preserving) skip-
connections that operate on the un-normalized signal.

3.3. Network instantiation details

Table 3 shows concrete instantiations of the base mod-
els for Vision Transformers [28] and our Multiscale Vision
Transformers. ViT-Base [28] (Table 3b) initially projects
the input to patches of shape 1×16×16 with dimension
D = 768, followed by stacking N = 12 transformer
blocks. With an 8×224×224 input the resolution is fixed to
768×8×14×14 throughout all layers. The sequence length
(spacetime resolution + class token) is 8 ·14 ·14 + 1 = 1569.

Our MViT-Base (Table 3b) is comprised of 4 scale stages,
each having several transformer blocks of consistent channel
dimension. MViT-B initially projects the input to a channel
dimension of D = 96 with overlapping space-time cubes of
shape 3×7×7. The resulting sequence of length 8∗56∗56+
1 = 25089 is reduced by a factor of 4 for each additional
stage, to a final sequence length of 8 ∗ 7 ∗ 7 + 1 = 393 at
scale4. In tandem, the channel dimension is up-sampled by
a factor of 2 at each stage, increasing to 768 at scale4. Note
that all pooling operations, and hence the resolution down-
sampling, is performed only on the data sequence without
involving the processed class token embedding.

We set the number of MHPA heads to h = 1 in the scale1
stage and increase the number of heads with the channel
dimension (channels per-head D/h remain consistent at 96).

At each stage transition, the previous stage output MLP
dimension is increased by 2× and MHPA pools onQ tensors
with sQ = (1, 2, 2) at the input of the next stage.
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model pre-train top-1 top-5 FLOPs×views Param
Two-Stream I3D [14] - 71.6 90.0 216 × NA 25.0
ip-CSN-152 [102] - 77.8 92.8 109×3×10 32.8
SlowFast 8×8 +NL [34] - 78.7 93.5 116×3×10 59.9
SlowFast 16×8 +NL [34] - 79.8 93.9 234×3×10 59.9
X3D-M [33] - 76.0 92.3 6.2×3×10 3.8
X3D-XL [33] - 79.1 93.9 48.4×3×10 11.0
ViT-B-VTN [84] ImageNet-1K 75.6 92.4 4218×1×1 114.0
ViT-B-VTN [84] ImageNet-21K 78.6 93.7 4218×1×1 114.0
ViT-B-TimeSformer [8] ImageNet-21K 80.7 94.7 2380×3×1 121.4
ViT-L-ViViT [1] ImageNet-21K 81.3 94.7 3992×3×4 310.8
ViT-B (our baseline) ImageNet-21K 79.3 93.9 180×1×5 87.2
ViT-B (our baseline) - 68.5 86.9 180×1×5 87.2
MViT-S - 76.0 92.1 32.9×1×5 26.1
MViT-B, 16×4 - 78.4 93.5 70.5×1×5 36.6
MViT-B, 32×3 - 80.2 94.4 170×1×5 36.6
MViT-B, 64×3 - 81.2 95.1 455×3×3 36.6
Table 4. Comparison with previous work on Kinetics-400. We
report the inference cost with a single “view" (temporal clip with
spatial crop) × the number of views (FLOPs×viewspace×viewtime).
Magnitudes are Giga (109) for FLOPs and Mega (106) for Param.
Accuracy of models trained with external data is de-emphasized.

We employ K,V pooling in all MHPA blocks, with
ΘK ≡ ΘV and sK,V = (1, 8, 8) in scale1 and adaptively
decay this stride w.r.t. to the scale across stages such that the
K,V tensors have consistent scale across all blocks.

4. Experiments: Video Recognition
Datasets. We use Kinetics-400 [64] (K400) (∼240k train-
ing videos in 400 classes) and Kinetics-600 [12]. We fur-
ther assess transfer learning performance for on Something-
Something-v2 [43], Charades [92], and AVA [44].

We report top-1 and top-5 classification accuracy (%) on
the validation set, computational cost (in FLOPs) of a single,
spatially center-cropped clip and the number of clips used.

Training. By default, all models are trained from random
initialization (“from scratch”) on Kinetics, without using
ImageNet [25] or other pre-training. Our training recipe and
augmentations follow [34, 101]. For Kinetics, we train for
200 epochs with 2 repeated augmentation [55] repetitions.

We report ViT baselines that are fine-tuned from Ima-
geNet, using a 30-epoch version of the training recipe in [34].

For the temporal domain, we sample a clip from the full-
length video, and the input to the network are T frames with
a temporal stride of τ ; denoted as T × τ [34].

Inference. We apply two testing strategies following [34,
33]: (i) Temporally, uniformly samples K clips (e.g. K=5)
from a video, scales the shorter spatial side to 256 pixels and
takes a 224×224 center crop, and (ii), the same as (i) tempo-
rally, but take 3 crops of 224×224 to cover the longer spatial
axis. We average the scores for all individual predictions.

All implementation specifics are in §D.

4.1. Main Results

Kinetics-400. Table 4 compares to prior work. From top-
to-bottom, it has four sections and we discuss them in turn.

model pretrain top-1 top-5 GFLOPs×views Param
SlowFast 16×8 +NL [34] - 81.8 95.1 234×3×10 59.9
X3D-M - 78.8 94.5 6.2×3×10 3.8
X3D-XL - 81.9 95.5 48.4×3×10 11.0
ViT-B-TimeSformer [8] IN-21K 82.4 96.0 1703×3×1 121.4
ViT-L-ViViT [1] IN-21K 83.0 95.7 3992×3×4 310.8
MViT-B, 16×4 - 82.1 95.7 70.5×1×5 36.8
MViT-B, 32×3 - 83.4 96.3 170×1×5 36.8
MViT-B-24, 32×3 - 84.1 96.5 236×1×5 52.9

Table 5. Comparison with previous work on Kinetics-600.

The first Table 4 section shows prior art using ConvNets.
The second section shows concurrent work using Vision

Transformers [28] for video classification [84, 8]. Both ap-
proaches rely on ImageNet pre-trained base models. ViT-B-
VTN [84] achieves 75.6% top-1 accuracy, which is boosted
by 3% to 78.6% by merely changing the pre-training from
ImageNet-1K to ImageNet-21K. ViT-B-TimeSformer [8]
shows another 2.1% gain on top of VTN, at higher cost of
7140G FLOPs and 121.4M parameters. ViViT improves
accuracy further with an even larger ViT-L model.

The third section in Table 4 shows our ViT baselines. We
first list our ViT-B, also pre-trained on the ImageNet-21K,
which achieves 79.3%, thereby being 1.4% lower than ViT-B-
TimeSformer, but is with 4.4× fewer FLOPs and 1.4× fewer
parameters. This result shows that simply fine-tuning an
off-the-shelf ViT-B model from ImageNet-21K [28] provides
a strong baseline on Kinetics. However, training this model
from-scratch with the same fine-tuning recipe will result
in 34.3%. Using our “training-from-scratch” recipe will
produce 68.5% for this ViT-B model, using the same 1×5,
spatial × temporal, views for video-level inference.

The final section of Table 4 lists our MViT results. All our
models are trained-from-scratch using this recipe, without
any external pre-training. Our small model, MViT-S pro-
duces 76.0% while being relatively lightweight with 26.1M
param and 32.9×5=164.5G FLOPs, outperforming ViT-B
by +7.5% at 5.5× less compute in identical train/val setting.

Our base model, MViT-B provides 78.4%, a +9.9% accu-
racy boost over ViT-B under identical settings, while having
2.6×/2.4×fewer FLOPs/parameters. When changing the
frame sampling from 16×4 to 32×3 performance increases
to 80.2%. Finally, we take this model and fine-tune it for 5
epochs with longer 64 frame input, after interpolating the
temporal positional embedding, to reach 81.2% top-1 using
3 spatial and 3 temporal views for inference (it is sufficient
test with fewer temporal views if a clip has more frames).
Further quantitative and qualitative results are in §A.

Kinetics-600 [12] is a larger version of Kinetics. Results
are in Table 5. We train MViT from-scratch, without any
pre-training. MViT-B, 16×4 achieves 82.1% top-1 accu-
racy. We further train a deeper 24-layer model with longer
sampling, MViT-B-24, 32×3, to investigate model scale on
this larger dataset. MViT achieves state-of-the-art of 83.4%
with 5-clip center crop testing while having 56.0× fewer
FLOPs and 8.4× fewer parameters than ViT-L-ViViT [1]
which relies on large-scale ImageNet-21K pre-training.
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model pretrain top-1 top-5 FLOPs×views Param
TSM-RGB [76] IN-1K+K400 63.3 88.2 62.4×3×2 42.9
MSNet [68] IN-1K 64.7 89.4 67×1×1 24.6
TEA [73] IN-1K 65.1 89.9 70×3×10 -
ViT-B-TimeSformer [8] IN-21K 62.5 - 1703×3×1 121.4
ViT-B (our baseline) IN-21K 63.5 88.3 180×3×1 87.2
SlowFast R50, 8×8 [34]

K400

61.9 87.0 65.7×3×1 34.1
SlowFast R101, 8×8 [34] 63.1 87.6 106×3×1 53.3
MViT-B, 16×4 64.7 89.2 70.5×3×1 36.6
MViT-B, 32×3 67.1 90.8 170×3×1 36.6
MViT-B, 64×3 67.7 90.9 455×3×1 36.6
MViT-B, 16×4

K600
66.2 90.2 70.5×3×1 36.6

MViT-B, 32×3 67.8 91.3 170×3×1 36.6
MViT-B-24, 32×3 68.7 91.5 236×3×1 53.2

Table 6. Comparison with previous work on SSv2.

Something-Something-v2 (SSv2) [43] is a dataset with
videos containing object interactions, which is known as
a ‘temporal modeling‘ task. Table 6 compares our method
with the state-of-the-art. We first report a simple ViT-B
(our baseline) that uses ImageNet-21K pre-training. Our
MViT-B with 16 frames has 64.7% top-1 accuracy, which is
better than the SlowFast R101 [34] which shares the same
setting (K400 pre-training and 3×1 view testing). With more
input frames, our MViT-B achieves 67.7% and the deeper
MViT-B-24 achieves 68.7% using our K600 pre-trained
model of above. In general, Table 6 verifies the capability of
temporal modeling for MViT.

model pretrain mAP FLOPs×views Param
Nonlocal [107]

IN-1K+K400
37.5 544×3×10 54.3

STRG +NL [108] 39.7 630×3×10 58.3
Timeception [61]

K400

41.1 N/A×N/A N/A
LFB +NL [111] 42.5 529×3×10 122
SlowFast 50, 8×8 [34] 38.0 65.7×3×10 34.0
SlowFast 101+NL, 16×8 [34] 42.5 234×3×10 59.9
X3D-XL [33] 43.4 48.4×3×10 11.0
MViT-B, 16×4 40.0 70.5×3×10 36.4
MViT-B, 32×3 44.3 170×3×10 36.4
MViT-B, 64×3 46.3 455×3×10 36.4
SlowFast R101+NL, 16×8 [34]

K600

45.2 234×3×10 59.9
X3D-XL [33] 47.1 48.4×3×10 11.0
MViT-B, 16×4 43.9 70.5×3×10 36.4
MViT-B, 32×3 47.1 170×3×10 36.4
MViT-B-24, 32×3 47.7 236×3×10 53.0

Table 7. Comparison with previous work on Charades.

Charades [92] is a dataset with longer range activities. We
validate our model in Table 7. With similar FLOPs and
parameters, our MViT-B 16×4 achieves better results (+2.0
mAP) than SlowFast R50 [34]. As shown in the Table, the
performance of MViT-B is further improved by increasing
the number of input frames and MViT-B layers and using
K600 pre-trained models.

AVA [44] is a dataset with for spatiotemporal-localization
of human actions. We validate our MViT on this detection
task. Details about the detection architecture of MViT can
be found in §D.2. Table 8 shows the results of our MViT
models compared with SlowFast [34] and X3D [33]. We
observe that MViT-B can be competitive to SlowFast and
X3D using the same pre-training and testing strategy.

model pretrain val mAP FLOPs Param
SlowFast, 4×16, R50 [34]

K400

21.9 52.6 33.7
SlowFast, 8×8, R101 [34] 23.8 138 53.0
MViT-B, 16×4 24.5 70.5 36.4
MViT-B, 32×3 26.8 170 36.4
MViT-B, 64×3 27.3 455 36.4
SlowFast, 8×8 R101+NL [34]

K600

27.1 147 59.2
SlowFast, 16×8 R101+NL [34] 27.5 296 59.2
X3D-XL [33] 27.4 48.4 11.0
MViT-B, 16×4 26.1 70.5 36.3
MViT-B, 32×3 27.5 170 36.4
MViT-B-24, 32×3 28.7 236 52.9

Table 8. Comparison with previvous work on AVA v2.2. All
methods use single center crop inference following [33].

4.2. Ablations on Kinetics

We carry out ablations on Kinetics-400 (K400) using 5-
clip center 224×224 crop testing. We show top-1 accuracy
(Acc), as well as computational complexity measured in
GFLOPs for a single clip input of spatial size 2242. Infer-
ence computational cost is proportional as a fixed number
of 5 clips is used (to roughly cover the inferred videos with
T×τ=16×4 sampling.) We also report Parameters in M(106)
and training GPU memory in G(109) for a batch size of 4. By
default all MViT ablations are with MViT-B, T×τ=16×4
and max-pooling in MHSA.

model shuffling FLOPs (G) Param (M) Acc
MViT-B

70.5 36.5
77.2

MViT-B X 70.1 (−7.1)
ViT-B

179.6 87.2
68.5

ViT-B X 68.4 (−0.1)
Table 9. Shuffling frames in inference. MViT-B severely drops
(−7.1%) for shuffled temporal input, but ViT-B models appear to
ignore temporal information as accuracy remains similar (−0.1%).

Frame shuffling. Table 9 shows results for randomly shuf-
fling the input frames in time during testing. All models are
trained without any shuffling and have temporal embeddings.
We notice that our MViT-B architecture suffers a significant
accuracy drop of -7.1% (77.2 → 70.1) for shuffling infer-
ence frames. By contrast, ViT-B is surprisingly robust for
shuffling the temporal order of the input.

kernel k pooling func Param Acc
s max 36.5 76.1

2s+ 1 max 36.5 75.5
s+ 1 max 36.5 77.2
s+ 1 average 36.5 75.4
s+ 1 conv 36.6 78.3

3×3×3 conv 36.6 78.4

Table 10. Pooling function: Varying the kernel k as a function of
stride s. Functions are average or max pooling and conv which is a
learnable, channel-wise convolution.

Pooling function. The ablation in Table 10 looks at the
kernel size k w.r.t. the stride s, and the pooling function
(max/average/conv). First, we see that having equivalent
kernel and stride k=s provides 76.1%, increasing the kernel
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size to k=2s+1 decays to 75.5%, but using a kernel k=s+1
gives a clear benefit of 77.2%. This indicates that overlap-
ping pooling is effective, but a too large overlap (2s+1) hurts.
Second, we investigate average instead of max-pooling and
observe that accuracy decays by from 77.2% to 75.4%.

Third, we use conv-pooling by a learnable, channelwise
convolution followed by LN. This variant has +1.2% over
max pooling and is used for all experiments in §4.1 and §5.

model clips/sec Acc FLOPs×views Param
X3D-M [33] 7.9 74.1 4.7×1×5 3.8
SlowFast R50 [34] 5.2 75.7 65.7×1×5 34.6
SlowFast R101 [34] 3.2 77.6 125.9×1×5 62.8
ViT-B [28] 3.6 68.5 179.6×1×5 87.2
MViT-S, max-pool 12.3 74.3 32.9×1×5 26.1
MViT-B, max-pool 6.3 77.2 70.5×1×5 36.5
MViT-S, conv-pool 9.4 76.0 32.9×1×5 26.1
MViT-B, conv-pool 4.8 78.4 70.5×1×5 36.6

Table 11. Speed-Accuracy tradeoff on Kinetics-400. Training
throughput is measured in clips/s. MViT is fast and accurate.

Speed-Accuracy tradeoff. In Table 11, we analyze the
speed/accuracy trade-off of our MViT models, along with
their counterparts vision transformer (ViT [28]) and Con-
vNets (SlowFast 8×8 R50, SlowFast 8×8 R101 [34], &
X3D-L [33]). We measure training throughput as the num-
ber of video clips per second on a single M40 GPU.

We observe that both MViT-S and MViT-B models are
not only significantly more accurate but also much faster
than both the ViT-B baseline and convolutional models. Con-
cretely, MViT-S has 3.4× higher throughput speed (clips/s),
is +5.8% more accurate (Acc), and has 3.3× fewer param-
eters (Param) than ViT-B. Using a conv instead of max-
pooling in MHSA, we observe a training speed reduction of
∼20% for convolution and additional parameter updates.

5. Experiments: Image Recognition
We apply our video models on static image recognition by

using them with single frame, T = 1, on ImageNet-1K [25].

Training. Our recipe is identical to DeiT [101] and summa-
rized in §D.5. Training is for 300 epochs and results improve
for training longer [101].

5.1. Main Results

For this experiment, we take our models which were de-
signed by ablation studies for video classification on Kinetics
and simply remove the temporal dimension. Then we train
and validate them (“from scratch”) on ImageNet.

Table 12 shows the comparison with previous work.
From top to bottom, the table contains RegNet [87] and
EfficientNet [99] as ConvNet examples, and DeiT [101],
with DeiT-B being identical to ViT-B [28] but trained with
the improved recipe in [101]. Therefore, this is the vision
transformer counterpart we are interested in comparing to.

model Acc FLOPs (G) Param (M)
RegNetZ-4GF [27] 83.1 4.0 28.1
RegNetZ-16GF [27] 84.1 15.9 95.3
EfficientNet-B7 [99] 84.3 37.0 66.0
DeiT-S [101] 79.8 4.6 22.1
DeiT-B [101] 81.8 17.6 86.6
DeiT-B ↑ 3842 [101] 83.1 55.5 87.0
Swin-B (concurrent) [79] 83.3 15.4 88.0
Swin-B ↑ 3842 (concurrent) [79] 84.2 47.0 88.0
MViT-B-16, max-pool 82.5 7.8 37.0
MViT-B-16 83.0 7.8 37.0
MViT-B-24 84.0 14.7 72.7
MViT-B-24-3202 84.8 32.7 72.9

Table 12. Comparison to prior work on ImageNet. RegNet
and EfficientNet are ConvNet examples that use different training
recipes. DeiT/MViT are ViT-based and use identical recipes [101].

The bottom section in Table 12 shows results for our
Multiscale Vision Transformer (MViT) models.

We show models of different depth, MViT-B-Depth, (16
and 24 layers), where MViT-B-16 is our base model and the
deeper variant is simply created by repeating the number of
blocksN∗ in each scale stage (cf. Table 3b) and using a larger
channel dimension of D = 112. All our models are trained
using the identical 300-epoch recipe as DeiT [101], except
repeated augmentation which we found not beneficial.

We make the following observations:

(i) Our lightweight MViT-B-16 achieves 82.5% top-1
accuracy, with only 7.8 GFLOPs, which outperforms the
DeiT-B counterpart by +0.7% with lower computation cost
(2.3×fewer FLOPs and Parameters). If we use conv instead
of max-pooling, this number is increased by +0.5% to 83.0%.

(ii) Our deeper model MViT-B-24, provides a gain of
+1.0% accuracy at slight increase in computation.

(iii) A larger model, MViT-B-24-3202 with input resolu-
tion 3202 reaches 84.8%, corresponding to a +1.7% gain, at
1.7×fewer FLOPs, over DeiT-B↑3842. These results suggest
that Multiscale Vision Transformers have an architectural
advantage over Vision Transformers.

Finally, compared to the best model of concurrent
Swin [79] (which was designed for image recognition),
MViT has +0.6% better accuracy at 1.4×less computation.

6. Conclusion

We have presented Multiscale Vision Transformers that
aim to connect the fundamental concept of multiscale feature
hierarchies with the transformer model. MViT hierarchically
expands the feature complexity while reducing visual reso-
lution. In empirical evaluation, MViT shows a fundamental
advantage over single-scale vision transformers for video
and image recognition. We hope that our approach will foster
further research in visual recognition.
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