This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Incorporating Learnable Membrane Time Constant to Enhance Learning of
Spiking Neural Networks

Wei Fang!2, Zhaofei Yu'?3*, Yangi Chen'?, Timothée Masquelier*, Tiejun Huang!>?, Yonghong Tian®?*

'Department of Computer Science and Technology, Peking University, China
ZPeng Cheng Laboratory, China
3Institute for Artificial Intelligence, Peking University, China
Centre de Recherche Cerveau et Cognition (CERCO), UMR5549 CNRS - Univ. Toulouse 3, France

{fwei, yuzfl2, chyq}@pku.edu.cn, timothee.masquelier@cnrs. fr, {tjhuang, yhtian}@pku.edu.cn

Abstract

Spiking Neural Networks (SNNs) have attracted enor-
mous research interest due to temporal information pro-
cessing capability, low power consumption, and high bio-
logical plausibility. However, the formulation of efficient
and high-performance learning algorithms for SNNs is still
challenging. Most existing learning methods learn weights
only, and require manual tuning of the membrane-related
parameters that determine the dynamics of a single spik-
ing neuron. These parameters are typically chosen to be
the same for all neurons, which limits the diversity of neu-
rons and thus the expressiveness of the resulting SNNs. In
this paper, we take inspiration from the observation that
membrane-related parameters are different across brain re-
gions, and propose a training algorithm that is capable of
learning not only the synaptic weights but also the mem-
brane time constants of SNNs. We show that incorporating
learnable membrane time constants can make the network
less sensitive to initial values and can speed up learning.
In addition, we reevaluate the pooling methods in SNNs
and find that max-pooling will not lead to significant in-
formation loss and have the advantage of low computa-
tion cost and binary compatibility. We evaluate the pro-
posed method for image classification tasks on both tradi-
tional static MNIST, Fashion-MNIST, CIFAR-10 datasets,
and neuromorphic N-MNIST, CIFAR10-DVS, DVS128 Ges-
ture datasets. The experiment results show that the pro-
posed method outperforms the state-of-the-art accuracy on
nearly all datasets, using fewer time-steps. Our codes are
available at https://github.com/fangweil234
56/Parametric-Leaky—-Integrate—-and-Fire
-Spiking—-Neuron.

*Corresponding author

0.8

Output Spikes
2)

110101 g
010 06 /
Axon R p——
V 04 /
Soma i —— origin
! w+
1 e b

Dendrite 02

Synapse

0
W 0 50 100 150 200 250

1(1) t [ms]
(a) Spiking neuron (b) The membrane potential of a LIF neuron
Figure 1. (a) A Leaky Integrate-and-Fire (LIF) neuron with mem-
brane potential V, membrane time constant 7, input I(¢) and
synaptic weight w. (b) The membrane potential V' of the LIF neu-
ron when constant input is received. Increasing or decreasing 7
will stretch the v = f(t) curve in the ¢ direction while increasing
or decreasing w will stretch the v = f(¢) curve in the V' direction.

1. Introduction

Spiking Neural Networks (SNNs) are viewed as the third
generation of neural network models, which are closer to
biological neurons in the brain [38]. Together with neu-
ronal and synaptic states, the importance of spike timing
is also considered in SNNs. Due to their distinctive prop-
erties, such as temporal information processing capability,
low power consumption [49], and high biological plausi-
bility [16], SNNs increasingly arouse researchers’ great in-
terest in recent years. Nevertheless, it remains challenging
to formulate efficient and high-performance learning algo-
rithms for SNNs.

Generally, the learning algorithms for SNNs can be
divided into unsupervised learning, supervised learning,
reward-based learning, and Artificial Neural Network
(ANN) to SNN conversion methodologies. Either way,
we find that most existing learning methods only con-
sider learning the synaptic-related parameters like synap-
tic weights and treat the membrane-related parameters as

2661

hyperparameters. These membrane-related parameters like
membrane time constants, which determine the dynamics
of a single spiking neuron, are typically chosen to be the
same for all neurons. Note, however, there exist different
membrane time constants for spiking neurons across brain
regions [39, 9, 30], which are proved to be essential for
the representation of working memory and formulation of
learning [20, 53]. Thus simply ignoring different time con-
stants in SNNs will limit the heterogeneity of neurons and
thus the expressiveness of the resulting SNNs.

In this paper, we propose a training algorithm that is
capable of learning not only the synaptic weights but also
membrane time constants of SNNs. As illustrated in Fig. 1,
we find that adjustments of the synaptic weight and the
membrane time constants have different effects on neuronal
dynamics. We show that incorporating learnable membrane
time constants is able to enhance the learning of SNNs.

The main contributions of this paper can be summarized
as follows:

1) We propose the backpropagation-based learning algo-
rithm using spiking neurons with learnable membrane
parameters, referred to as Parametric Leaky Integrate-
and-Fire (PLIF) spiking neurons, which better repre-
sent the heterogeneity of neurons and thereby enhanc-
ing the expressiveness of the SNNs. We show that the
SNNs made of PLIF neurons are more robust to initial
values and can learn faster than SNNs made of neurons
with a fixed time constant.

2) We reevaluate the pooling methods in SNNs and dis-
credit the previous conclusion that max-pooling results
in significant information loss. We find that compared
to average-pooling, max-pooling is able to better pre-
serve the asynchronous characteristic of neuron firing,
as well as reduce the computation cost. Our exper-
iments show that the performance of max-pooling is
comparable to average-pooling.

3) We evaluate our methods on both traditional static
MNIST [32], Fashion-MNIST [59], CIFAR-10 [31]
datasets widely used in ANNs as benchmarks, and
neuromorphic N-MNIST [44], CIFAR10-DVS [36],
DVS128 Gesture [!] datasets that focus on verifying
the network’s temporal information processing capa-
bility. The proposed method exceeds state-of-the-art
accuracy on nearly all tested datasets, using fewer
time-steps.

2. Related Works

Unsupervised learning of SNNs The unsupervised learn-
ing methods of SNNs are based on biological plausible lo-
cal learning rules, like Hebbian learning [22] and Spike-
Timing-Dependent Plasticity (STDP) [3]. Existing ap-
proaches exploited the self-organization principle [56, |1,

], and STDP-based expectation-maximization algorithm
[43, 17]. However, these methods are only suitable for shal-
low SNNGs, and the performance is far below state-of-the-art
ANN results.

Reward-based learning of SNNs Reward-based learn-
ing of SNNs mimics the way the human brain learns by
taking advantage of the reward or punishment signals in-
duced by dopaminergic, serotonergic, cholinergic, or adren-
ergic neurons [13, 6, 41]. Despite the methods that arise
in reinforcement learning, like policy gradient [52, 28],
temporal-difference learning [46, 14] and Q-learning [6],
some heuristic phenomenological models based on STDP
[15, 62] were proposed recently.

ANN to SNN conversion ANN to SNN conversion
(ANN2SNN) converts a trained non-spiking ANN to an
SNN by using the firing rate of each spiking neuron to ap-
proximate the corresponding ReL.U activation of an analog
neuron [24, 7, 50]. It can get near lossless inference results
as an ANN [51, 10], but there is a trade-off between accu-
racy and latency. To improve accuracy, longer inference
latency is needed [19]. ANN2SNN is restricted to rate-
coding, which loses the processing capability in temporal
tasks. As far as we know, ANN2SNN only works for static
datasets, not neuromorphic datasets.

Supervised learning of SNNs SpikeProp [5] was the first
supervised learning method for SNNs based on backpropa-
gation, which used a linear approximation to overcome the
non-differentiable threshold-triggered firing mechanism of
SNNs. Subsequent works included Tempotron [18], Re-
SuMe [45], and SPAN [40], but they could only be ap-
plied to single-layer SNNs. Recently, the surrogate gradi-
ent method was proposed and provided another solution to
training multi-layer SNNs [35, 26, 64, 57, 54, 34, 27]. It
utilized surrogate derivatives to define the derivative of the
threshold-triggered firing mechanism. Thus the SNNs could
be optimized with gradient descent algorithms as ANNS.
Zenke et al. [03, 42] systematically studied the remark-
able robustness of surrogate gradient learning and showed
that SNNs optimized by the surrogate gradient methods can
achieve competitive performance with ANNs. Compared to
ANN2SNN, the surrogate gradient method has no restric-
tions on simulating time-steps because it is not based on
rate-coding [58, 63].

Spiking neurons and layers of deep SNNs Spiking neu-
ron and layer models play an essential role in SNNs. Cheng
et al. [8] added the lateral interactions between neighbor-
ing neurons and get better accuracy and stronger noise-
robustness. Zimmer et al. [05] firstly adopt the learnable
time constants in LIF neurons for the speech recognition
task. Bellec et al. [2] proposed the adaptive threshold
spiking neuron to enhance computing and learning capa-
bilities of SNNs, which was improved by [61] with learn-
able time constants. Rathi et al. [47] suggested using a

2662

learnable membrane leak and firing threshold to finetune
SNNs converted from ANNs. Despite this, no systematic
research on the effects of learning membrane time constants
to SNNs has been conducted so far, which is exactly the aim
of this paper. Wu et al. [58] found that normalization lay-
ers are also critical for deep SNNs and proposed Neuron
Normalization (NeuNorm) to balance each neuron’s firing
rate to avoid severe information loss. Ledinauskas, E et al.
[33] firstly suggested that using Batch Normalization [25]
in deep SNNss for faster convergence.

3. Methods

In this section, we first briefly review the Leaky
Integrate-and-Fire model in Sec. 3.1, and analyze the effect
of synaptic weight and membrane time constant in Sec. 3.2.
The Parametric Leaky Integrate-and-Fire model and the net-
work structure of the SNNs are then introduced in Sec. 3.3
— Sec. 3.5. At last, we describe the spike max-pooling and
the learning algorithm of SNNs in Sec. 3.6 and Sec. 3.7.

3.1. Leaky Integrate-and-Fire model

The basic computing unit of an SNN is the spiking neu-
ron. Neuroscientists have built several spiking neuron mod-
els for describing the accurate relationships between input
and output signals of the biological neuron. The Leaky
Integrate-and-Fire (LIF) model [16] is one of the simplest
spiking neuron models used in SNNs. The subthreshold dy-
namics of the LIF neuron is defined as:

dV (t)
dt

where V (t) represents the membrane potential of the neu-
ron at time ¢, X (¢) represents the input to neuron at time ¢, 7
is the membrane time constant, and V.. is the resting po-
tential. When the membrane potential V' (¢) exceeds a cer-
tain threshold V};, at time ¢/, the neuron will elicit a spike
and then the membrane potential V' (¢) goes back to a reset
value V,eset < Vin. The LIF neuron achieves a balance
between computing cost and biological plausibility. We set
Viest = Viyeser in this paper, and will not make a distinction
between them in the rest of this paper.

T = —(V(t) _‘/rest)+X(t)7 (1)

3.2. Function comparison of synaptic weight and
membrane time constant

In most of the previous learning algorithms for SNNs
made of LIF neurons, the membrane time constant 7 is re-
garded as a hyper-parameter and chosen to be the same for
all neurons before learning. The learning of SNNs is only
to optimize the synaptic weights. However, it cannot be ig-
nored that the behavior of a spiking neuron for given inputs
depends not only on the weights of connected synapses but
also on the neuron’s inherent dynamics controlled by the
membrane time constant 7.

origin — origin

0.2 T+ 0.2

0.1 5

0

050 100 150 200 050 100 150 200
t [ms] t [ms]

Figure 2. The membrane potential V' of a LIF neuron when instant
spikes at £ = 5, 80, 85, 90 are received.

In order to compare the effects of synaptic weight and
membrane time constant to the neuronal dynamics, we
consider a simple case where the LIF neuron z; receives
weighted input X (¢) = wl(¢) from a presynaptic neuron
z; (Fig. 1(a)). The rest potential V.. is set to 0. When
the input is constant, namely, I(¢) = I, the membrane po-
tential of the LIF neuron z; changes over time is shown
in Fig. 1(b) (blue curve), which is computed according to
Eq. (1). Increasing or decreasing w, as shown by the w+
and w— curves, will stretch the v = f(¢) curve in the
V' direction. On the contrary, increasing or decreasing T
will stretch the v = f(¢) curve in the ¢ direction, and
will not change the steady-state voltage of the neuron z;
as V(+o00) = wl. Fig. 2 illustrates the response of the neu-
ron z; to instant input spikes at time ¢ = {5, 80, 85,90} ms,
namely, X (t) = w(d(t—>5)40(t—80)+3(t—85)+d(t—90))
I, The neuron’s response to instant input spike at ¢ = 5 indi-
cates that a smaller 7 (the 7— curve) leads to faster charge
to the steady-state voltage and faster decay to the resting
value, making the LIF neuron more sensitive to an instant
spike. This sensitivity helps the neuron to capture instant
variety in the input. In contrast, a smaller w (the w— curve)
leads to a slower charge to the steady-state voltage without
affecting decaying speed. When there are three successive
input spikes, the membrane potential of the neuron with a
smaller 7 (the 7— curve) will reach a higher value at a faster
rate, which makes it easier to fire.

To some extent, the effect of decreasing 7 is similar to
that of increasing w. Nevertheless, adjusting both 7 and w
can bring some superior additional benefits. As mentioned
above, changing both 7 and w can stretch the v = f()
curve, namely the neuron’s response to a given input, in
both ¢ direction and V' direction, which endows the neuron
better fitting ability.

3.3. Parametric Leaky Integrate-and-Fire model

We propose the Parametric Leaky Integrate-and-Fire
(PLIF) spiking neuron model to learn both the synaptic
weights and the membrane time constants of SNNs. The
dynamics of the PLIF neuron can be described by Eq. (1).

The SNNs with PLIF neurons follow the three rules:

15(t) represents Dirac delta function. If x # 0, then §(¢) = O.
S 6 dt =1.

2663

15451
O ®

Figure 3. The general discrete spiking neuron model.

(1). The membrane time constant 7 is optimized auto-
matically during training, rather than being set as a hyper-
parameter manually before training.

(2). The membrane time constant 7 is shared within the
neurons in the same layer in SNNs, which is biologically
plausible as the neighboring neurons have similar proper-
ties.

(3). The membrane time constant 7 of neurons in dif-
ferent layers are distinct, making diverse phase-frequency
responsiveness of neurons.

In fact, the proposed rules are able to increase the hetero-
geneity of neurons and the expressiveness of the resulting
SNNs while effectively controlling computation costs.

For numerical simulations of PLIF neurons in SNNs, we
need to consider a version of the parameters dynamics that
is discrete in time. Specifically, by including the threshold-
triggered firing mechanism and the reset of the membrane
potential after firing, we can describe the dynamics of all
kinds of spiking neurons with the following equations:

Hy = f(Vio1, Xy),)
Sy =0O(H; — Vi), 3)
Vi=H; (1 —=5) + Viesetr St 4

To avoid confusion, we use H; and V; to represent the mem-
brane potential after neuronal dynamics and after the trig-
ger of a spike at time-step t, respectively. X; denotes the
external input, and V;;, denotes the firing threshold. S; de-
notes the output spike at time ¢, which equals 1 if there is
a spike and O otherwise. Eq. (3) describes the spike gen-
erative process, where ©(x) is the Heaviside step function
and is defined by O(z) = 1 for z > 0 and ©(z) = 0 for
x < 0. Eq. (4) illustrates that the membrane potential re-
turns to V,..set after eliciting a spike, which is called hard
reset and widely used in deep SNNs [33].

As shown in Fig. 3, Egs. (2) - (4) build a general model
to describe the discrete spiking neuron’s action: charging,
firing, and resetting. Specifically, Eq. (2) describes the neu-
ronal dynamics, and different spiking neuron models have
different functions f(-). For example, the function f(-) for
the LIF neuron and PLIF neuron is

1
Hy =V + ;(—(Vt—1 — Vieset) + Xt). ®)

[S Naown

Ny

Unfold

<y Naguni Ne <
§ o
£ o, J o & J

N ORI D
[X Neony_

Input Spiking Encoder Classifier Output
Figure 4. The general formulation of our networks and its unfolded
formulation. X Neono indicates there are Neonyw { Conv2d-Spiking
Neurons} connected sequentially. X Ngown and X Ny have the
same meaning. Note that the network’s parameters are shared at
all time-steps.

For PLIF neurons, directly optimizing the membrane
time constant 7 in Eq. (5) may induce numerical instabil-
ity as 7 is in the denominator. Besides, Eq. (5), as the dis-
crete version of Eq. (1), is a valid approximation only when
the time-step dt is smaller than 7, that is, 7 > 1, which is
ignored by [47, 61]. To avoid the above problems, we re-
formulate Eq. (5) to the following equation with a trainable
parameter a:

Ht - ‘/;571 + k(a)(—(‘/;,,l - Vtr‘eset) + Xt) (6)

Here k(a) denotes the clamp function and k(a) € (0,1),

which ensures that 7 = ﬁ € (1,400). In our ex-

periments, k(a) is the sigmoid activation function, that is,
_ 1

k(a’) ~ 14exp(—a)’

3.4. RNN-like Expression of LIF and PLIF

The LIF and PLIF neurons have a similar function as
recurrent neural networks. Specifically, when V,.c5e: = 0,
the neuronal dynamics of the LIF neuron and PLIF neuron
(Eq. (5)) can be written as:

1 1
H; = <1 - > Vicei + =Xy, @)
T T

where the integration progress %Xt makes the LIF and
PLIF neurons able to remember current input information,
while the leakage progress (1 — %)Vt,l can be seen as for-
getting some information from the past. Eq. (7) shows that
the balance between remembrance and forgetting is con-
trolled by the membrane time constant 7, which plays an
analogous role as the gates in Long Short-Term Memory
(LSTM) networks [23].

2664

3.5. Network Formulation

We propose a general formulation to build SNNs in this
paper, which is illustrated in Fig. 4. The SNN includes
a spiking encoder network and a classifier network. The
spiking encoder network consists of Nggy, down-sample
modules, each of which contains N, repeated {Conv2d-
Spiking Neurons} and a pooling layer. The spiking en-
coder can extract features from inputs and convert them
into the firing spikes at different time-steps. The classifier
network consists of Ny, repeated {FC-Spiking Neurons}.
Here Conv2d denotes the 2D convolutional layer and FC
denotes the fully connected layer. Many previous works
[11, 34, 54, 64, 8, 19] used a Poisson encoder to convert
images to spikes as input, while [50] suggested that this en-
coding introduces variability into the firing of the network
and impairs its performance. Similar to [50, 58, 47], the in-
put is directly fed to our network without being firstly con-
verted to spikes. In this situation, the image-spike encod-
ing is done by the first { Conv2d-Spiking Neurons} module,
which can be seen as a learnable encoder. Note that synaptic
connections, including convolutional layers and fully con-
nected layers, are stateless, while the spiking neuron layers
have self-connections in the temporal domain, as the un-
folded network formulation shown in Fig. 4. All parameters
are shared at all time-steps.

3.6. Spike Max-Pooling

The pooling layer is widely used to reduce the size of
feature maps and to extract compact representation in con-
volutional ANNs, as well as SNNs. Most previous studies
[51, 8, 48] preferred to use the average-pooling in SNNs as
they found that max-pooling in SNNs leads to significant in-
formation loss. We argue that the max-pooling is consistent
with the SNNs’ temporal information processing ability and
can increase SNNs’ fitting capability in temporal tasks and
reduce the computation cost for the next layer.

Specifically, the max-pooling layers are behind spiking
neuron layers in our model (Fig. 4), and the max-pooling
operation is carried on spikes. Different from all neurons
that transmit information to the next layer equally in the
average-pooling window, only the neuron that fires a spike
in the max-pooling window can transmit information to the
next layer. Therefore, the max-pooling layer introduces
the winner-take-all mechanism, allowing the fired neuron
to communicate with the next layer and ignoring other neu-
rons in the pooling window. Another attractive property
is that the max-pooling layer will regulate connections dy-
namically (Fig. 5). The spiking neuron’s membrane poten-
tial V; will return to V... after firing a spike. It is hard
for a spiking neuron to fire again as recharging needs time.
However, if the neurons in the max-pooling window fire
asynchronously, they will be connected to the postsynap-
tic neuron in turn, which makes the postsynaptic neuron re-

disconnected synapse
connected synapse
self-connected synapse

-

time window

L=tz
(a) Spike max-pooling

(b) Unfolded computation graph

Figure 5. Spike max-pooling regulates connections dynamically.
(a) An example of three presynaptic neurons and one postsynap-
tic neuron with spike max-pooling. At every time-step, only the
neuron that fires a spike can connect to the postsynaptic neuron.
When more than one neuron fire at the same time-step, the neuron
that can connect to the postsynaptic neuron is randomly selected.
(b) The unfolded computation graph of (a).

sembles to connect a continuously firing presynaptic neu-
ron and easier to fire. The winner-take-all mechanism in
the spatial domain and time-variant topology in the tempo-
ral domain achieved by max-pooling can increase SNNs’
fitting capability in temporal tasks, such as classifying the
CIFAR10-DVS dataset. It is worth noting that the outputs
of the max-pooling layer are still binary, while the outputs
of the average-pooling layer are float. The matrix multipli-
cation and element-wise multiplication operation on spikes
can be accelerated by replacing multiplication * with logi-
cal AND &, which is also the advantage of SNNs compared
with ANNs.

3.7. Training Framework

Here we combine the neuron model (Fig. 3) and network
formulation (Fig. 4) to drive the backpropagation training
algorithm for SNNs. Denote the simulating time-steps as T’
and classes number as C, the output O = [o;;]isa C' x T
tensor. For a given input with label [, we encourage the
neuron that represents class ! to have the highest excitatory
level while other neurons should remain silent. So the target
output is defined by Y = [y, ;] with y, ; = 1 for i = [and
yt,; = 0 for i # [. The loss function is defined by the mean
squared error (MSE) L = MSE(O,Y) = + tT;()l L, =
% Zthfol % ic=701 (01.i — yi.)*. And the predicted label Iy
is regarded as the index of the neuron with the maximum
firing rate [, = arg max; 7 ZtT;OI 04.i-

2665

Here we suppose that a’ represents the learnable param-
eter of the PLIF neurons in the ¢-th layer in the network. At
time-step ¢, the vectors H and V'; represent the membrane
potential after neuronal dynamics and after reset, the vector
Vi, and V', represents the threshold and reset potential,
respectively. The weighted inputs from the previous layer
are X! = WL, S} = [s} ;] denotes the output spike at
time-step ¢, where s; ; = 1 if the j-th neuron fires a spike,
else s j = 0. The gradients backward from the next layer

are gs“ According to Fig. 3 and Fig. 4, we can calculate
the grad1ents recursively:
oL 0L 8Ht+1 0Ly)
OH, 0H, ., 0H, 0H,
OHi., _ OH},, 0V; ©
OH! ov; 0H;
L L, 98,
OL, _ 0L 9, (10)
OH, 0S;0H,;
According to Eq. (6), Eq. (3), and Eq. (4) we can get
aHf+1 ;
=1—-k(a* 11
v, (@) i
v, . 08}
=1-8;+ - Hp)—* 12
aHz t (7eset t) 8Hz ()
oS, D i
- =0'(H, -V, 13
omp; ~ O L= Vi) (13)
OH. ,
- = k(a’ 14
ox: =) (14)
0H, i i i i
8ait = (7(t—1 Vreset) +X)k/(a)
15)

oH! Vi | OH! |
OVi_ 0H, ; 0d

Finally, we can get the gradients of the learnable param-
eters:

0L <~ OL OH!
- = , . 16
da’ tz OH; da’ (16)
T-1
oL 8H§ i
i—1 Z i i t (17)
8W — OH} 00X
Note that 25 = 0 whent > T, VZ =V We

St reset*
use derivative of the surrogate function o(z) to define the
derivative of spiking function ©(xz) (see supplementary).

k(z) is the clamp function.

4. Experiments

We evaluate the performance of SNNs with PLIF neu-
rons and spike max-pooling for classification tasks on

Dataset Neonv Naown Nye
*MNIST 1 2 2
CIFAR-10 3 2 2
CIFAR10-DVS 1 4 2
DVS128 Gesture 1 5 2

Table 1. Network structures for different datasets. Neonv, Ndown
and Ny are defined in Fig. 4. *MNIST denotes MNIST, Fashion-
MNIST and N-MNIST datasets.

both traditional static MNIST, Fashion-MNIST, CIFAR-10
datasets, and neuromorphic N-MNIST, CIFAR10-DVS, and
DVS128 Gesture datasets. More details of the training can
be found in the supplementary.

4.1. Network Structure

The network structures of SNNGs for different datasets are
shown in Tab. 1. We set kernel size = 3, stride = 1 and
padding = 1 for all Conv2d layers. The out channels of
Conv2d layers is 256 for CIFAR-10 dataset and 128 for all
other datasets. A batch normalization (BN) layer is added
after each Conv2d layer. As the parameters of a BN layer
can be absorbed in its front Conv2d layer [50], we can re-
move BN in the SNNs for inference. All pooling layers
set kernel size = 2 and stride = 2. For all networks,
the out features of the first F'C' layer is a quarter of the
in features, and the out features of the second F'C' layer
is M - C, where C'is the classes number and M is the neu-
rons of a population to represent one class. A dropout layer
[34] is placed before each F'C layer. A voting layer after
the output spiking neurons layer is used to boost classifying
robustness. The voting layer is implemented by average-
pooling with kernel size = M and stride = M. We set
M = 10 for all datasets. We use the average-pooling to
implement democratic voting, such that the minority is sub-
ordinate to the majority. Using max-pooling to vote may
result in a dictatorship, as the minority will not be involved
in the computation graph (see Fig. 5) and using M neurons
to represent one class will degenerate into using one neuron.

4.2. Comparison with the State-of-the-Art

Tab. 2 shows the accuracies of the proposed methods
(PLIF neurons with 7y = 2, max-pooling) and other com-
paring methods on both traditional static MNIST, Fashion-
MNIST, CIFAR-10 datasets, and neuromorphic N-MNIST,
CIFAR10-DVS, DVS128 Gesture datasets. We set the same
training hyperparameters for all datasets (see supplemen-
tary). As shown in Tab. 2, we achieve the highest accu-
racies on all datasets except for CIFAR-10. The accuracy
on CIFAR-10 is slightly lower than [19], which is based
on ANN2SNN conversion. However, they only applied to
static images as ANN2SNN is ill-suited to neuromorphic
datasets. Different from them, our method is also applicable
to neuromorphic datasets and outperforms the spike-based

2666

Model Method Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
MNIST Fashion-MNIST CIFAR-10 N-MNIST CIFAR10-DVS DVS128 Gesture
[24] ANN2SNN 98.37% - 82.95% - - -
[50] ANN2SNN 99.44% - 88.82% - - -
[51] ANN2SNN - - 91.55% - - -
[19] ANN2SNN - - 93.63 % - - -
[35] Spike-based BP 99.31% - - 98.74% - -
[57] Spike-based BP 99.42% - - 98.78% 50.7% -
[54] Spike-based BP 99.36% - - 99.2% - 93.64%
[27] Spike-based BP - - - 96% - 95.54%
[26] Spike-based BP 99.49% - - 98.84% - -
[64] Spike-based BP 99.62% 90.13% - - - -
[58] Spike-based BP - - 90.53% 99.53% 60.5% -
[34] Spike-based BP 99.59% - 90.95% 99.09% - -

[8] Spike-based BP 99.5% 92.07 % - 99.45% - -
[37] Spike-based BP - - - 96.3% 32.2% -
[60] Spike-based BP - - - - - 92.01%
[12] Spike-based BP 99.46% - - 99.39% - (1360'& 95;%;8)
[21] Spike-based BP - - - 98.28% - 93.40%

ANN2SNN and

[+7] Spike-based BP)) 92.64%) i)
[55] HATS - - - 99.1% 52.4% -

[4] GCN - - - 99.0% 54.0% -
Ours Spike-based BP 99.72% 94.38% 93.50% 99.61% 74.80% 97.57%

Table 2. Performance comparison between the proposed method and the state-of-the-art methods on different datasets. The highest accu-

racies of previous works are in bold.

Dataset SOTA SOTA’sT oursT
MNIST [64] 400 8
Fashion-MNIST [8] 20 8
CIFAR-10 [19] 2048 8
N-MNIST [58] 59-64 10
CIFAR10-DVS [58] 230-292 20
500(training)
DVS128 Gesture [27] 1800(tes tini)

Table 3. The time-steps of previous SOTA works and ours on each
dataset.

BP SOTA accuracy.

Tab. 3 compares the number of time-steps of our method
and the previous works that achieve the best performance
on each dataset. It can be found that the proposed method
takes fewer time-steps than all the other methods. For ex-
ample, our method uses up to 256 x fewer inference time-
steps compared to ANN2SNN conversion [19]. Thus our
method can not only decrease the memory consumption and
the training time but also increase inference speed greatly.

4.3. Ablation Study

We conduct extensive ablation studies to evaluate PLIF
neurons and max-pooling on four challenging datasets. We

Neuron Fashion-MNIST CIFAR-10 CIFAR10-DVS DVS128 Gesture

PLIF(mg = 2) 94.38% 93.50% 74.80% 97.57%
LIF(T = 2) 94.17% 93.03% 73.60% 96.88%
PLIF(ry = 16) 94.65% 93.23% 70.50% 92.01%
LIF(T = 16) 94.47% 47.50% 62.40% 76.74%

Table 4. Accuracy of using PLIF/LIF.

first study the effect of PLIF neurons. In this experiment,
we train the same SNNs with PLIF neurons and LIF neu-
rons respectively, and compare the test accuracy. As shown
in Tab. 4, if the initial membrane time constant 7y of PLIF
neurons is set equal to the membrane time constant 7 of LIF
neurons, the test accuracy of the SNNs with PLIF neurons is
always higher than that with LIF neurons. This is due to the
membrane time constants of PLIF neurons in different lay-
ers can be different after learning, which better represents
the heterogeneity of neurons. Fig. 6 illustrates the test ac-
curacy of PLIF vs. LIF neurons during training. As can be
seen, the accuracy and convergence speed of the SNNs with
LIF neurons decrease seriously if the initial value of the
membrane time constant is not reasonable (red curve). In
contrast, the PLIF neurons can learn the appropriate mem-
brane time constants and achieve better performance (green
curve).

To analyze the influence of initial values in PLIF neu-

2667

test accuracy (%)

10 L
0 200 400 600 800 1000 0 200 100 600 800 1000
epoch

epoch

(a) Fashion-MNIST (b) CIFAR-10

—— PLIF, 70 =2 —— PLIF, 7, = 16 LIF, 7 =2 — LIF, 7 =16

100

200 100 600 800 1000 0 200 100 600 800 1000
epoch epoch

(c) CIFAR10-DVS (d) DVS128 Gesture
Figure 6. The test accuracy of PLIF vs. LIF neurons on different

datasets during training. The shaded curves indicate the origin
data. The solid curves are 64-epoch moving averages.

020 500 70 1000 0 20 500 70 1000 0 250 500

0
0 20 500 750 1000 0 20 500 750 1000 0 20 500 750 1000 0 250 500 780 1000

epoch epoch epoch epoch

(a) The change of 7(4) during training on CIFAR-10.

—— PLIF, 7 =2

10 1] &
7(0) (1) 7(2)
5 t—_____.,_,___‘ 5 1 5

T)
0 500 1000 €
10 ' 1

—— PLIF, 7y = 16

10

7(3) T(4)
5]
5

§

L/

n n v v
0 500 1000 0 500 1000 0 500 1000

epoch epoch epoch

(b) The change of 7(7) during training on CIFAR10-DVS.

Figure 7. The change of membrane time constants in different lay-
ers during training with different initial values. 7(¢) represents the
membrane time constant 7 of the ¢-th PLIF neurons layer.

rons, we show how the membrane time constants of the
neurons in each layer change during learning with respect
to different initial values. As shown in Fig. 7, the mem-
brane time constants with different initial values in each
layer tend to gather during training, which indicates that the

T 1 T 1
500 1000 0 500 1000

Pooling Fashion-MNIST CIFAR-10 CIFAR10-DVS DVS128 Gesture

Average 94.74% 93.30% 72.70% 97.22%
Max 94.38% 93.50% 74.80% 97.57%

Table 5. Accuracy of using max-pooling/average-pooling.

PLIF neurons are robust to initial values. Note that 7(6) in
Fig. 7(a) and 7(4) in Fig. 7(b) tend to infinity. This could
be explained as follows. The PLIF neurons with the mem-
brane time constants 7(4) and 7(6) in two SNNs are behind
the first FC layer with weight Wy.. We check the train-
ing logs and find that the distribution, mean and variance
of @(T = 7(4) or 7(6)) converge after dozens of epochs
(see supplementary). Refer to the dynamics of PLIF neu-
rons (Eq. (5)) with X; = Wy I; and % — 0, we can find
H, =V, + W;f < I;. It means that the PLIF neurons after
the first FC layer are learning to become the Non-Leaky-
Integrate-and-Fire neurons.

We further study the effect of max-pooling. Tab. 5
compares the accuracy of the proposed SNNs with max-
pooling/average-pooling on four challenging datasets. The
performance of max-pooling is similar to that of average-
pooling, which indicates that the previous conclusion that
max-pooling results in significant information loss in SNNs
is not reasonable. Remarkably, the max-pooling gets
slightly higher accuracies on CIFAR-10, CIFAR10-DVS,
and DVS128 Gesture datasets, showing its better fitting ca-
pability in complex tasks.

5. Conclusion

In this work, we proposed the Parametric Leaky
Integrate-and-Fire (PLIF) neuron to incorporate the learn-
able membrane time parameter into SNNs. We show that
the SNNs with the PLIF neurons outperform state-of-the-
art comparing methods on both static and neuromorphic
datasets. Besides, we show that the SNNs made of PLIF
neurons are more robust to initial values and can learn
faster than SNNss consist of LIF neurons. We also reevalu-
ate the performance of max-pooling and average-pooling in
SNNs and find the previous works underestimate the perfor-
mance of max-pooling. We recommend using max-pooling
in SNNss for its lower computation cost, higher temporal fit-
ting capability, and the characteristic to receive spikes and
output spikes rather than floating values as average-pooling.

6. Acknowledgment

This work is supported by grants from the Na-
tional Natural Science Foundation of China under
contracts No0.62027804, No.61825101, and No.62088102.

2668

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

(14]

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jef-
frey McKinstry, Carmelo Di Nolfo, Tapan Nayak, Alexander
Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al.
A low power, fully event-based gesture recognition system.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7243-7252, 2017. 2
Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert
Legenstein, and Wolfgang Maass. Long short-term mem-
ory and learning-to-learn in networks of spiking neurons. In
Advances in Neural Information Processing Systems, pages
787-797,2018. 2

Guo-qiang Bi and Mu-ming Poo. Synaptic modifications in
cultured hippocampal neurons: dependence on spike timing,
synaptic strength, and postsynaptic cell type. Journal of Neu-
roscience, 18(24):10464-10472, 1998. 2

Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze,
and Yiannis Andreopoulos. Graph-based object classifica-
tion for neuromorphic vision sensing. In Proceedings of the
IEEE International Conference on Computer Vision, pages
491-501, 2019. 7

Sander M Bohte, Joost N Kok, and Han La Poutre. Error-
backpropagation in temporally encoded networks of spiking
neurons. Neurocomputing, 48(1-4):17-37, 2002. 2
Matthew Botvinick, Jane X. Wang, Will Dabney, Kevin J.
Miller, and Zeb Kurth-Nelson. Deep reinforcement learn-
ing and its neuroscientific implications. Neuron, 107(4):603—
616, 2020. 2

Yonggiang Cao, Yang Chen, and Deepak Khosla. Spiking
deep convolutional neural networks for energy-efficient ob-
ject recognition. International Journal of Computer Vision,
113(1):54-66, 2015. 2

Xiang Cheng, Yunzhe Hao, Jiaming Xu, and Bo Xu. LISNN:
Improving Spiking Neural Networks with Lateral Interac-
tions for Robust Object Recognition. In IJCAI, pages 1519—
1525. International Joint Conferences on Artificial Intelli-
gence Organization, 7 2020. 2, 5,7

Gustavo Deco, Josephine Cruzat, and Morten L Kringel-
bach. Brain songs framework used for discovering the rele-
vant timescale of the human brain. Nature Communications,
10(1):1-13, 2019. 2

Shikuang Deng and Shi Gu. Optimal conversion of conven-
tional artificial neural networks to spiking neural networks.
In International Conference on Learning Representations,
2021. 2

Peter U Diehl and Matthew Cook. Unsupervised learning
of digit recognition using spike-timing-dependent plasticity.
Frontiers in Computational Neuroscience, 9:99, 2015. 2, 5
Haowen Fang, Amar Shrestha, Ziyi Zhao, and Qinru Qiu.
Exploiting Neuron and Synapse Filter Dynamics in Spatial
Temporal Learning of Deep Spiking Neural Network. arXiv
preprint arXiv:2003.02944, 2020. 7

Nicolas Frémaux and Wulfram Gerstner. Neuromodulated
spike-timing-dependent plasticity, and theory of three-factor
learning rules. Frontiers in Neural Circuits, 9:85, 2016. 2
Nicolas Frémaux, Henning Sprekeler, and Wulfram Gerst-
ner. Reinforcement learning using a continuous time actor-

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]
(23]

(24]

[25]

[26]

(27]

(28]

[29]

2669

critic framework with spiking neurons. PLoS Computational
Biology, 9(4):¢1003024, 2013. 2

Johannes Friedrich, Robert Urbanczik, and Walter Senn.
Spatio-temporal credit assignment in neuronal population
learning. PLoS Computational Biology, 7(6):¢1002092,
2011. 2

Waulfram Gerstner, Werner M Kistler, Richard Naud, and
Liam Paninski. Neuronal dynamics: From single neurons
to networks and models of cognition. Cambridge University
Press, 2014. 1,3

Shangqi Guo, Zhaofei Yu, Fei Deng, Xiaolin Hu, and Feng
Chen. Hierarchical bayesian inference and learning in spik-
ing neural networks. IEEE Transactions on Cybernetics,
49(1):133-145,2017. 2

Robert Giitig and Haim Sompolinsky. The tempotron: a neu-
ron that learns spike timing—based decisions. Nature Neuro-
science, 9(3):420-428, 2006. 2

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy.
RMP-SNN: Residual Membrane Potential Neuron for En-
abling Deeper High-Accuracy and Low-Latency Spiking
Neural Network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 13558—
13567, 2020. 2,5, 6,7

Michael E Hasselmo and Chantal E Stern. Mechanisms un-
derlying working memory for novel information. Trends in
Cognitive Sciences, 10(11):487-493, 2006. 2

Weihua He, Yulie Wu, Lei Deng, Guoqi Li, Haoyu
Wang, Yang Tian, Wei Ding, Wenhui Wang, and Yuan
Xie. Comparing SNNs and RNNs on Neuromorphic Vi-
sion Datasets: Similarities and Differences. arXiv preprint
arXiv:2005.02183, 2020. 7

Donald Olding Hebb. The organization of behavior: A neu-
ropsychological theory. Psychology Press, 2005. 2

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735-1780, 1997. 4
Eric Hunsberger and Chris Eliasmith. Spiking deep networks
with LIF neurons. arXiv preprint arXiv:1510.08829, 2015.
2,7

Sergey loffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015. 3
Yingyezhe Jin, Wenrui Zhang, and Peng Li. Hybrid
macro/micro level backpropagation for training deep spiking
neural networks. In Advances in Neural Information Pro-
cessing Systems, pages 7005-7015, 2018. 2,7

Jacques Kaiser, Hesham Mostafa, and Emre Neftci. Synap-
tic Plasticity Dynamics for Deep Continuous Local Learning
(DECOLLE). Frontiers in Neuroscience, 14:424, 2020. 2,7
David Kappel, Robert Legenstein, Stefan Habenschuss,
Michael Hsieh, and Wolfgang Maass. A dynamic con-
nectome supports the emergence of stable computational
function of neural circuits through reward-based learning.
eNeuro, 5(2), 2018. 2

Saeed Reza Kheradpisheh, Mohammad Ganjtabesh, Simon J
Thorpe, and Timothée Masquelier. Stdp-based spiking deep
convolutional neural networks for object recognition. Neural
Networks, 99:56-67, 2018. 2

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

[43]

[44]

[45]

Christof Koch, Moshe Rapp, and Idan Segev. A brief history
of time (constants). Cerebral Cortex, 6(2):93-101, 1996. 2
Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, 2009.
2

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
2

Eimantas Ledinauskas, Julius Ruseckas, Alfonsas Jur§énas,
and Giedrius Buracas. Training Deep Spiking Neural Net-
works. arXiv preprint arXiv:2006.04436, 2020. 3, 4
Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda,
Gopalakrishnan Srinivasan, and Kaushik Roy. Enabling
spike-based backpropagation for training deep neural net-
work architectures. Frontiers in Neuroscience, 14, 2020. 2,
5,6,7

Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Train-
ing deep spiking neural networks using backpropagation.
Frontiers in Neuroscience, 10:508, 2016. 2, 7

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and
Luping Shi. Cifar10-dvs: an event-stream dataset for ob-
ject classification. Frontiers in Neuroscience, 11:309, 2017.
2

Qianhui Liu, Haibo Ruan, Dong Xing, Huajin Tang, and
Gang Pan. Effective AER Object Classification Using Seg-
mented Probability-Maximization Learning in Spiking Neu-
ral Networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 1308-1315, 2020. 7

Wolfgang Maass. Networks of spiking neurons: the third
generation of neural network models. Neural Networks,
10(9):1659-1671, 1997. 1

Maurizio Mattia and Paolo Del Giudice. Population dy-
namics of interacting spiking neurons. Physical Review E,
66(5):051917, 2002. 2

Ammar Mohemmed, Stefan Schliebs, Satoshi Matsuda, and
Nikola Kasabov. Span: Spike pattern association neuron for
learning spatio-temporal spike patterns. International Jour-
nal of Neural Systems, 22(04):1250012, 2012. 2

Milad Mozafari, Mohammad Ganjtabesh, Abbas Nowzari-
Dalini, Simon J Thorpe, and Timothée Masquelier. Bio-
inspired digit recognition using reward-modulated spike-
timing-dependent plasticity in deep convolutional networks.
Pattern Recognition, 94:87-95, 2019. 2

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke.
Surrogate gradient learning in spiking neural networks. IEEE
Signal Processing Magazine, 36:61-63, 2019. 2

Bernhard Nessler, Michael Pfeiffer, Lars Buesing, and Wolf-
gang Maass. Bayesian computation emerges in generic corti-
cal microcircuits through spike-timing-dependent plasticity.
PLoS Computational Biology, 9(4):¢1003037, 2013. 2
Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and
Nitish Thakor. Converting static image datasets to spiking
neuromorphic datasets using saccades. Frontiers in Neuro-
science, 9:437, 2015. 2

Filip Ponulak and Andrzej Kasifiski. Supervised learning
in spiking neural networks with ReSuMe: sequence learn-

[46]

(47]

(48]

(49]

(50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

2670

ing, classification, and spike shifting. Neural Computation,
22(2):467-510, 2010. 2

Wiebke Potjans, Markus Diesmann, and Abigail Morri-
son. An imperfect dopaminergic error signal can drive
temporal-difference learning. PLoS Computational Biology,
7(5):e1001133,2011. 2

Nitin Rathi and Kaushik Roy. DIET-SNN: Direct Input En-
coding With Leakage and Threshold Optimization in Deep
Spiking Neural Networks. arXiv preprint arXiv:2008.03658,
2020. 2,4,5,7

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini
Panda, and Kaushik Roy. Enabling deep spiking neural net-
works with hybrid conversion and spike timing dependent
backpropagation. arXiv preprint arXiv:2005.01807, 2020. 5
Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda.
Towards spike-based machine intelligence with neuromor-
phic computing. Nature, 575(7784):607-617, 2019. 1

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu,
Michael Pfeiffer, and Shih-Chii Liu. Conversion of
continuous-valued deep networks to efficient event-driven
networks for image classification. Frontiers in Neuroscience,
11:682,2017. 2,5,6,7

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and
Kaushik Roy. Going deeper in spiking neural networks: Vgg
and residual architectures. Frontiers in Neuroscience, 13:95,
2019. 2,5,7

H Sebastian Seung. Learning in spiking neural networks by
reinforcement of stochastic synaptic transmission. Neuron,
40(6):1063-1073, 2003. 2

Karthik H Shankar and Marc W Howard. A scale-
invariant internal representation of time. Neural Computa-
tion, 24(1):134-193, 2012. 2

Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer
error reassignment in time. Advances in Neural Information
Processing Systems, 31:1412-1421, 2018. 2, 5,7

Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier
Lagorce, and Ryad Benosman. HATS: Histograms of aver-
aged time surfaces for robust event-based object classifica-
tion. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1731-1740, 2018. 7

Narayan Srinivasa and Youngkwan Cho. Self-organizing
spiking neural model for learning fault-tolerant spatio-motor
transformations. IEEFE Transactions on Neural Networks and
Learning Systems, 23(10):1526-1538, 2012. 2

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping
Shi. Spatio-temporal backpropagation for training high-
performance spiking neural networks. Frontiers in Neuro-
science, 12:331, 2018. 2,7

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Lup-
ing Shi. Direct training for spiking neural networks: Faster,
larger, better. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, pages 1311-1318, 2019. 2,3,5,7

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747,2017.
2

[60]

[61]

[62]

[63]

[64]

[65]

Yannan Xing, Gaetano Di Caterina, and John Soraghan. A
new spiking convolutional recurrent neural network (scrnn)
with applications to event-based hand gesture recognition.
Frontiers in Neuroscience, 14:1143, 2020. 7

Bojian Yin, Federico Corradi, and Sander M Bohté. Ef-
fective and Efficient Computation with Multiple-timescale
Spiking Recurrent Neural Networks. arXiv preprint
arXiv:2005.11633,2020. 2, 4

Mengwen Yuan, Xi Wu, Rui Yan, and Huajin Tang. Re-
inforcement Learning in Spiking Neural Networks with
Stochastic and Deterministic Synapses. Neural Computa-
tion, 31(12):2368-2389, 2019. 2

Friedemann Zenke and Tim P Vogels. The remarkable ro-
bustness of surrogate gradient learning for instilling complex
function in spiking neural networks. BioRxiv, 2020. 2
Wenrui Zhang and Peng Li. Spike-train level backpropaga-
tion for training deep recurrent spiking neural networks. In
Advances in Neural Information Processing Systems, pages
7802-7813, 2019. 2, 5,7

Romain Zimmer, Thomas Pellegrini, Srisht Fateh Singh, and
Timothée Masquelier. Technical report: supervised train-
ing of convolutional spiking neural networks with PyTorch.
arXiv preprint arXiv:1911.10124, 2019. 2

2671

