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Abstract

Spiking Neural Networks (SNNs) have attracted enor-
mous research interest due to temporal information pro-
cessing capability, low power consumption, and high bio-
logical plausibility. However, the formulation of efficient
and high-performance learning algorithms for SNNs is still
challenging. Most existing learning methods learn weights
only, and require manual tuning of the membrane-related
parameters that determine the dynamics of a single spik-
ing neuron. These parameters are typically chosen to be
the same for all neurons, which limits the diversity of neu-
rons and thus the expressiveness of the resulting SNNs. In
this paper, we take inspiration from the observation that
membrane-related parameters are different across brain re-
gions, and propose a training algorithm that is capable of
learning not only the synaptic weights but also the mem-
brane time constants of SNNs. We show that incorporating
learnable membrane time constants can make the network
less sensitive to initial values and can speed up learning.
In addition, we reevaluate the pooling methods in SNNs
and find that max-pooling will not lead to significant in-
formation loss and have the advantage of low computa-
tion cost and binary compatibility. We evaluate the pro-
posed method for image classification tasks on both tradi-
tional static MNIST, Fashion-MNIST, CIFAR-10 datasets,
and neuromorphic N-MNIST, CIFAR10-DVS, DVS128 Ges-
ture datasets. The experiment results show that the pro-
posed method outperforms the state-of-the-art accuracy on
nearly all datasets, using fewer time-steps. Our codes are
available at https://github.com/fangweil234
56/Parametric-Leaky—-Integrate—-and-Fire
-Spiking—-Neuron.
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Figure 1. (a) A Leaky Integrate-and-Fire (LIF) neuron with mem-
brane potential V, membrane time constant 7, input I(¢) and
synaptic weight w. (b) The membrane potential V' of the LIF neu-
ron when constant input is received. Increasing or decreasing 7
will stretch the v = f(t) curve in the ¢ direction while increasing
or decreasing w will stretch the v = f(¢) curve in the V' direction.

1. Introduction

Spiking Neural Networks (SNNs) are viewed as the third
generation of neural network models, which are closer to
biological neurons in the brain [38]. Together with neu-
ronal and synaptic states, the importance of spike timing
is also considered in SNNs. Due to their distinctive prop-
erties, such as temporal information processing capability,
low power consumption [49], and high biological plausi-
bility [16], SNNs increasingly arouse researchers’ great in-
terest in recent years. Nevertheless, it remains challenging
to formulate efficient and high-performance learning algo-
rithms for SNNs.

Generally, the learning algorithms for SNNs can be
divided into unsupervised learning, supervised learning,
reward-based learning, and Artificial Neural Network
(ANN) to SNN conversion methodologies. Either way,
we find that most existing learning methods only con-
sider learning the synaptic-related parameters like synap-
tic weights and treat the membrane-related parameters as
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hyperparameters. These membrane-related parameters like
membrane time constants, which determine the dynamics
of a single spiking neuron, are typically chosen to be the
same for all neurons. Note, however, there exist different
membrane time constants for spiking neurons across brain
regions [39, 9, 30], which are proved to be essential for
the representation of working memory and formulation of
learning [20, 53]. Thus simply ignoring different time con-
stants in SNNs will limit the heterogeneity of neurons and
thus the expressiveness of the resulting SNNs.

In this paper, we propose a training algorithm that is
capable of learning not only the synaptic weights but also
membrane time constants of SNNs. As illustrated in Fig. 1,
we find that adjustments of the synaptic weight and the
membrane time constants have different effects on neuronal
dynamics. We show that incorporating learnable membrane
time constants is able to enhance the learning of SNNs.

The main contributions of this paper can be summarized
as follows:

1) We propose the backpropagation-based learning algo-
rithm using spiking neurons with learnable membrane
parameters, referred to as Parametric Leaky Integrate-
and-Fire (PLIF) spiking neurons, which better repre-
sent the heterogeneity of neurons and thereby enhanc-
ing the expressiveness of the SNNs. We show that the
SNNs made of PLIF neurons are more robust to initial
values and can learn faster than SNNs made of neurons
with a fixed time constant.

2) We reevaluate the pooling methods in SNNs and dis-
credit the previous conclusion that max-pooling results
in significant information loss. We find that compared
to average-pooling, max-pooling is able to better pre-
serve the asynchronous characteristic of neuron firing,
as well as reduce the computation cost. Our exper-
iments show that the performance of max-pooling is
comparable to average-pooling.

3) We evaluate our methods on both traditional static
MNIST [32], Fashion-MNIST [59], CIFAR-10 [31]
datasets widely used in ANNs as benchmarks, and
neuromorphic N-MNIST [44], CIFAR10-DVS [36],
DVS128 Gesture [!] datasets that focus on verifying
the network’s temporal information processing capa-
bility. The proposed method exceeds state-of-the-art
accuracy on nearly all tested datasets, using fewer
time-steps.

2. Related Works

Unsupervised learning of SNNs The unsupervised learn-
ing methods of SNNs are based on biological plausible lo-
cal learning rules, like Hebbian learning [22] and Spike-
Timing-Dependent Plasticity (STDP) [3]. Existing ap-
proaches exploited the self-organization principle [56, |1,

], and STDP-based expectation-maximization algorithm
[43, 17]. However, these methods are only suitable for shal-
low SNNGs, and the performance is far below state-of-the-art
ANN results.

Reward-based learning of SNNs Reward-based learn-
ing of SNNs mimics the way the human brain learns by
taking advantage of the reward or punishment signals in-
duced by dopaminergic, serotonergic, cholinergic, or adren-
ergic neurons [13, 6, 41]. Despite the methods that arise
in reinforcement learning, like policy gradient [52, 28],
temporal-difference learning [46, 14] and Q-learning [6],
some heuristic phenomenological models based on STDP
[15, 62] were proposed recently.

ANN to SNN conversion ANN to SNN conversion
(ANN2SNN) converts a trained non-spiking ANN to an
SNN by using the firing rate of each spiking neuron to ap-
proximate the corresponding ReL.U activation of an analog
neuron [24, 7, 50]. It can get near lossless inference results
as an ANN [51, 10], but there is a trade-off between accu-
racy and latency. To improve accuracy, longer inference
latency is needed [19]. ANN2SNN is restricted to rate-
coding, which loses the processing capability in temporal
tasks. As far as we know, ANN2SNN only works for static
datasets, not neuromorphic datasets.

Supervised learning of SNNs SpikeProp [5] was the first
supervised learning method for SNNs based on backpropa-
gation, which used a linear approximation to overcome the
non-differentiable threshold-triggered firing mechanism of
SNNs. Subsequent works included Tempotron [18], Re-
SuMe [45], and SPAN [40], but they could only be ap-
plied to single-layer SNNs. Recently, the surrogate gradi-
ent method was proposed and provided another solution to
training multi-layer SNNs [35, 26, 64, 57, 54, 34, 27]. It
utilized surrogate derivatives to define the derivative of the
threshold-triggered firing mechanism. Thus the SNNs could
be optimized with gradient descent algorithms as ANNS.
Zenke et al. [03, 42] systematically studied the remark-
able robustness of surrogate gradient learning and showed
that SNNs optimized by the surrogate gradient methods can
achieve competitive performance with ANNs. Compared to
ANN2SNN, the surrogate gradient method has no restric-
tions on simulating time-steps because it is not based on
rate-coding [58, 63].

Spiking neurons and layers of deep SNNs Spiking neu-
ron and layer models play an essential role in SNNs. Cheng
et al. [8] added the lateral interactions between neighbor-
ing neurons and get better accuracy and stronger noise-
robustness. Zimmer et al. [05] firstly adopt the learnable
time constants in LIF neurons for the speech recognition
task. Bellec et al. [2] proposed the adaptive threshold
spiking neuron to enhance computing and learning capa-
bilities of SNNs, which was improved by [61] with learn-
able time constants. Rathi et al. [47] suggested using a
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learnable membrane leak and firing threshold to finetune
SNNs converted from ANNs. Despite this, no systematic
research on the effects of learning membrane time constants
to SNNs has been conducted so far, which is exactly the aim
of this paper. Wu et al. [58] found that normalization lay-
ers are also critical for deep SNNs and proposed Neuron
Normalization (NeuNorm) to balance each neuron’s firing
rate to avoid severe information loss. Ledinauskas, E et al.
[33] firstly suggested that using Batch Normalization [25]
in deep SNNss for faster convergence.

3. Methods

In this section, we first briefly review the Leaky
Integrate-and-Fire model in Sec. 3.1, and analyze the effect
of synaptic weight and membrane time constant in Sec. 3.2.
The Parametric Leaky Integrate-and-Fire model and the net-
work structure of the SNNs are then introduced in Sec. 3.3
— Sec. 3.5. At last, we describe the spike max-pooling and
the learning algorithm of SNNs in Sec. 3.6 and Sec. 3.7.

3.1. Leaky Integrate-and-Fire model

The basic computing unit of an SNN is the spiking neu-
ron. Neuroscientists have built several spiking neuron mod-
els for describing the accurate relationships between input
and output signals of the biological neuron. The Leaky
Integrate-and-Fire (LIF) model [16] is one of the simplest
spiking neuron models used in SNNs. The subthreshold dy-
namics of the LIF neuron is defined as:

dV (t)
dt

where V (t) represents the membrane potential of the neu-
ron at time ¢, X (¢) represents the input to neuron at time ¢, 7
is the membrane time constant, and V.. is the resting po-
tential. When the membrane potential V' (¢) exceeds a cer-
tain threshold V};, at time ¢/, the neuron will elicit a spike
and then the membrane potential V' (¢) goes back to a reset
value V,eset < Vin. The LIF neuron achieves a balance
between computing cost and biological plausibility. We set
Viest = Viyeser in this paper, and will not make a distinction
between them in the rest of this paper.

T = —(V(t) _‘/rest)+X(t)7 (1)

3.2. Function comparison of synaptic weight and
membrane time constant

In most of the previous learning algorithms for SNNs
made of LIF neurons, the membrane time constant 7 is re-
garded as a hyper-parameter and chosen to be the same for
all neurons before learning. The learning of SNNs is only
to optimize the synaptic weights. However, it cannot be ig-
nored that the behavior of a spiking neuron for given inputs
depends not only on the weights of connected synapses but
also on the neuron’s inherent dynamics controlled by the
membrane time constant 7.
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Figure 2. The membrane potential V' of a LIF neuron when instant
spikes at £ = 5, 80, 85, 90 are received.

In order to compare the effects of synaptic weight and
membrane time constant to the neuronal dynamics, we
consider a simple case where the LIF neuron z; receives
weighted input X (¢) = wl(¢) from a presynaptic neuron
z; (Fig. 1(a)). The rest potential V.. is set to 0. When
the input is constant, namely, I(¢) = I, the membrane po-
tential of the LIF neuron z; changes over time is shown
in Fig. 1(b) (blue curve), which is computed according to
Eq. (1). Increasing or decreasing w, as shown by the w+
and w— curves, will stretch the v = f(¢) curve in the
V' direction. On the contrary, increasing or decreasing T
will stretch the v = f(¢) curve in the ¢ direction, and
will not change the steady-state voltage of the neuron z;
as V(+o00) = wl. Fig. 2 illustrates the response of the neu-
ron z; to instant input spikes at time ¢ = {5, 80, 85,90} ms,
namely, X (t) = w(d(t—>5)40(t—80)+3(t—85)+d(t—90))
I, The neuron’s response to instant input spike at ¢ = 5 indi-
cates that a smaller 7 (the 7— curve) leads to faster charge
to the steady-state voltage and faster decay to the resting
value, making the LIF neuron more sensitive to an instant
spike. This sensitivity helps the neuron to capture instant
variety in the input. In contrast, a smaller w (the w— curve)
leads to a slower charge to the steady-state voltage without
affecting decaying speed. When there are three successive
input spikes, the membrane potential of the neuron with a
smaller 7 (the 7— curve) will reach a higher value at a faster
rate, which makes it easier to fire.

To some extent, the effect of decreasing 7 is similar to
that of increasing w. Nevertheless, adjusting both 7 and w
can bring some superior additional benefits. As mentioned
above, changing both 7 and w can stretch the v = f()
curve, namely the neuron’s response to a given input, in
both ¢ direction and V' direction, which endows the neuron
better fitting ability.

3.3. Parametric Leaky Integrate-and-Fire model

We propose the Parametric Leaky Integrate-and-Fire
(PLIF) spiking neuron model to learn both the synaptic
weights and the membrane time constants of SNNs. The
dynamics of the PLIF neuron can be described by Eq. (1).

The SNNs with PLIF neurons follow the three rules:

15(t) represents Dirac delta function. If x # 0, then §(¢) = O.
S 6 dt =1.

2663



15451
O ®

Figure 3. The general discrete spiking neuron model.

(1). The membrane time constant 7 is optimized auto-
matically during training, rather than being set as a hyper-
parameter manually before training.

(2). The membrane time constant 7 is shared within the
neurons in the same layer in SNNs, which is biologically
plausible as the neighboring neurons have similar proper-
ties.

(3). The membrane time constant 7 of neurons in dif-
ferent layers are distinct, making diverse phase-frequency
responsiveness of neurons.

In fact, the proposed rules are able to increase the hetero-
geneity of neurons and the expressiveness of the resulting
SNNs while effectively controlling computation costs.

For numerical simulations of PLIF neurons in SNNs, we
need to consider a version of the parameters dynamics that
is discrete in time. Specifically, by including the threshold-
triggered firing mechanism and the reset of the membrane
potential after firing, we can describe the dynamics of all
kinds of spiking neurons with the following equations:

Hy = f(Vio1, Xy), )
Sy =0O(H; — Vi), 3)
Vi=H; (1 —=5) + Viesetr St 4

To avoid confusion, we use H; and V; to represent the mem-
brane potential after neuronal dynamics and after the trig-
ger of a spike at time-step t, respectively. X; denotes the
external input, and V;;, denotes the firing threshold. S; de-
notes the output spike at time ¢, which equals 1 if there is
a spike and O otherwise. Eq. (3) describes the spike gen-
erative process, where ©(x) is the Heaviside step function
and is defined by O(z) = 1 for z > 0 and ©(z) = 0 for
x < 0. Eq. (4) illustrates that the membrane potential re-
turns to V,..set after eliciting a spike, which is called hard
reset and widely used in deep SNNs [33].

As shown in Fig. 3, Egs. (2) - (4) build a general model
to describe the discrete spiking neuron’s action: charging,
firing, and resetting. Specifically, Eq. (2) describes the neu-
ronal dynamics, and different spiking neuron models have
different functions f(-). For example, the function f(-) for
the LIF neuron and PLIF neuron is

1
Hy =V + ;(—(Vt—1 — Vieset) + Xt). ®)
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Figure 4. The general formulation of our networks and its unfolded
formulation. X Neono indicates there are Neonyw { Conv2d-Spiking
Neurons} connected sequentially. X Ngown and X Ny have the
same meaning. Note that the network’s parameters are shared at
all time-steps.

For PLIF neurons, directly optimizing the membrane
time constant 7 in Eq. (5) may induce numerical instabil-
ity as 7 is in the denominator. Besides, Eq. (5), as the dis-
crete version of Eq. (1), is a valid approximation only when
the time-step dt is smaller than 7, that is, 7 > 1, which is
ignored by [47, 61]. To avoid the above problems, we re-
formulate Eq. (5) to the following equation with a trainable
parameter a:

Ht - ‘/;571 + k(a)(—(‘/;,,l - Vtr‘eset) + Xt) (6)

Here k(a) denotes the clamp function and k(a) € (0,1),

which ensures that 7 = ﬁ € (1,400). In our ex-

periments, k(a) is the sigmoid activation function, that is,
_ 1

k(a’) ~ 14exp(—a)’

3.4. RNN-like Expression of LIF and PLIF

The LIF and PLIF neurons have a similar function as
recurrent neural networks. Specifically, when V,.c5e: = 0,
the neuronal dynamics of the LIF neuron and PLIF neuron
(Eq. (5)) can be written as:

1 1
H; = <1 - > Vicei + =Xy, @)
T T

where the integration progress %Xt makes the LIF and
PLIF neurons able to remember current input information,
while the leakage progress (1 — %)Vt,l can be seen as for-
getting some information from the past. Eq. (7) shows that
the balance between remembrance and forgetting is con-
trolled by the membrane time constant 7, which plays an
analogous role as the gates in Long Short-Term Memory
(LSTM) networks [23].
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3.5. Network Formulation

We propose a general formulation to build SNNs in this
paper, which is illustrated in Fig. 4. The SNN includes
a spiking encoder network and a classifier network. The
spiking encoder network consists of Nggy, down-sample
modules, each of which contains N, repeated {Conv2d-
Spiking Neurons} and a pooling layer. The spiking en-
coder can extract features from inputs and convert them
into the firing spikes at different time-steps. The classifier
network consists of Ny, repeated {FC-Spiking Neurons}.
Here Conv2d denotes the 2D convolutional layer and FC
denotes the fully connected layer. Many previous works
[11, 34, 54, 64, 8, 19] used a Poisson encoder to convert
images to spikes as input, while [50] suggested that this en-
coding introduces variability into the firing of the network
and impairs its performance. Similar to [50, 58, 47], the in-
put is directly fed to our network without being firstly con-
verted to spikes. In this situation, the image-spike encod-
ing is done by the first { Conv2d-Spiking Neurons} module,
which can be seen as a learnable encoder. Note that synaptic
connections, including convolutional layers and fully con-
nected layers, are stateless, while the spiking neuron layers
have self-connections in the temporal domain, as the un-
folded network formulation shown in Fig. 4. All parameters
are shared at all time-steps.

3.6. Spike Max-Pooling

The pooling layer is widely used to reduce the size of
feature maps and to extract compact representation in con-
volutional ANNs, as well as SNNs. Most previous studies
[51, 8, 48] preferred to use the average-pooling in SNNs as
they found that max-pooling in SNNs leads to significant in-
formation loss. We argue that the max-pooling is consistent
with the SNNs’ temporal information processing ability and
can increase SNNs’ fitting capability in temporal tasks and
reduce the computation cost for the next layer.

Specifically, the max-pooling layers are behind spiking
neuron layers in our model (Fig. 4), and the max-pooling
operation is carried on spikes. Different from all neurons
that transmit information to the next layer equally in the
average-pooling window, only the neuron that fires a spike
in the max-pooling window can transmit information to the
next layer. Therefore, the max-pooling layer introduces
the winner-take-all mechanism, allowing the fired neuron
to communicate with the next layer and ignoring other neu-
rons in the pooling window. Another attractive property
is that the max-pooling layer will regulate connections dy-
namically (Fig. 5). The spiking neuron’s membrane poten-
tial V; will return to V... after firing a spike. It is hard
for a spiking neuron to fire again as recharging needs time.
However, if the neurons in the max-pooling window fire
asynchronously, they will be connected to the postsynap-
tic neuron in turn, which makes the postsynaptic neuron re-

disconnected synapse
connected synapse
self-connected synapse

-

time window

L=tz
(a) Spike max-pooling

(b) Unfolded computation graph

Figure 5. Spike max-pooling regulates connections dynamically.
(a) An example of three presynaptic neurons and one postsynap-
tic neuron with spike max-pooling. At every time-step, only the
neuron that fires a spike can connect to the postsynaptic neuron.
When more than one neuron fire at the same time-step, the neuron
that can connect to the postsynaptic neuron is randomly selected.
(b) The unfolded computation graph of (a).

sembles to connect a continuously firing presynaptic neu-
ron and easier to fire. The winner-take-all mechanism in
the spatial domain and time-variant topology in the tempo-
ral domain achieved by max-pooling can increase SNNs’
fitting capability in temporal tasks, such as classifying the
CIFAR10-DVS dataset. It is worth noting that the outputs
of the max-pooling layer are still binary, while the outputs
of the average-pooling layer are float. The matrix multipli-
cation and element-wise multiplication operation on spikes
can be accelerated by replacing multiplication * with logi-
cal AND &, which is also the advantage of SNNs compared
with ANNs.

3.7. Training Framework

Here we combine the neuron model (Fig. 3) and network
formulation (Fig. 4) to drive the backpropagation training
algorithm for SNNs. Denote the simulating time-steps as T’
and classes number as C, the output O = [o;;]isa C' x T
tensor. For a given input with label [, we encourage the
neuron that represents class ! to have the highest excitatory
level while other neurons should remain silent. So the target
output is defined by Y = [y, ;] with y, ; = 1 for i = [ and
yt,; = 0 for i # [. The loss function is defined by the mean
squared error (MSE) L = MSE(O,Y) = + tT;()l L, =
% Zthfol % ic=701 (01.i — yi.)*. And the predicted label Iy
is regarded as the index of the neuron with the maximum
firing rate [, = arg max; 7 ZtT;OI 04.i-
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Here we suppose that a’ represents the learnable param-
eter of the PLIF neurons in the ¢-th layer in the network. At
time-step ¢, the vectors H and V'; represent the membrane
potential after neuronal dynamics and after reset, the vector
Vi, and V', represents the threshold and reset potential,
respectively. The weighted inputs from the previous layer
are X! = WL, S} = [s} ;] denotes the output spike at
time-step ¢, where s; ; = 1 if the j-th neuron fires a spike,
else s j = 0. The gradients backward from the next layer

are gs“ According to Fig. 3 and Fig. 4, we can calculate
the grad1ents recursively:
oL 0L 8Ht+1 0Ly )
OH, 0H, ., 0H, 0H,
OHi., _ OH},, 0V; ©
OH! ov; 0H;
L L, 98,
OL, _ 0L 9, (10)
OH, 0S;0H,;
According to Eq. (6), Eq. (3), and Eq. (4) we can get
aHf+1 ;
=1—-k(a* 11
v, (@) i
v, . 08}
=1-8;+ - Hp)—* 12
aHz t ( 7eset t) 8Hz ( )
oS, D i
- =0'(H, -V, 13
omp; ~ O L= Vi) (13)
OH. ,
- = k(a’ 14
ox: = ) (14)
0H, i i i i
8ait = (7( t—1 Vreset) +X )k/(a )
15)

oH! Vi | OH! |
OVi_ 0H, ; 0d

Finally, we can get the gradients of the learnable param-
eters:

0L <~ OL OH!
- = , . 16
da’ tz OH; da’ (16)
T-1
oL 8H§ i
i—1 Z i i t (17)
8W — OH} 00X
Note that 25 = 0 whent > T, VZ =V We

St reset*
use derivative of the surrogate function o(z) to define the
derivative of spiking function ©(xz) (see supplementary).

k(z) is the clamp function.

4. Experiments

We evaluate the performance of SNNs with PLIF neu-
rons and spike max-pooling for classification tasks on

Dataset Neonv  Naown Nye
*MNIST 1 2 2
CIFAR-10 3 2 2
CIFAR10-DVS 1 4 2
DVS128 Gesture 1 5 2

Table 1. Network structures for different datasets. Neonv, Ndown
and Ny are defined in Fig. 4. *MNIST denotes MNIST, Fashion-
MNIST and N-MNIST datasets.

both traditional static MNIST, Fashion-MNIST, CIFAR-10
datasets, and neuromorphic N-MNIST, CIFAR10-DVS, and
DVS128 Gesture datasets. More details of the training can
be found in the supplementary.

4.1. Network Structure

The network structures of SNNGs for different datasets are
shown in Tab. 1. We set kernel size = 3, stride = 1 and
padding = 1 for all Conv2d layers. The out channels of
Conv2d layers is 256 for CIFAR-10 dataset and 128 for all
other datasets. A batch normalization (BN) layer is added
after each Conv2d layer. As the parameters of a BN layer
can be absorbed in its front Conv2d layer [50], we can re-
move BN in the SNNs for inference. All pooling layers
set kernel size = 2 and stride = 2. For all networks,
the out features of the first F'C' layer is a quarter of the
in features, and the out features of the second F'C' layer
is M - C, where C'is the classes number and M is the neu-
rons of a population to represent one class. A dropout layer
[34] is placed before each F'C layer. A voting layer after
the output spiking neurons layer is used to boost classifying
robustness. The voting layer is implemented by average-
pooling with kernel size = M and stride = M. We set
M = 10 for all datasets. We use the average-pooling to
implement democratic voting, such that the minority is sub-
ordinate to the majority. Using max-pooling to vote may
result in a dictatorship, as the minority will not be involved
in the computation graph (see Fig. 5) and using M neurons
to represent one class will degenerate into using one neuron.

4.2. Comparison with the State-of-the-Art

Tab. 2 shows the accuracies of the proposed methods
(PLIF neurons with 7y = 2, max-pooling) and other com-
paring methods on both traditional static MNIST, Fashion-
MNIST, CIFAR-10 datasets, and neuromorphic N-MNIST,
CIFAR10-DVS, DVS128 Gesture datasets. We set the same
training hyperparameters for all datasets (see supplemen-
tary). As shown in Tab. 2, we achieve the highest accu-
racies on all datasets except for CIFAR-10. The accuracy
on CIFAR-10 is slightly lower than [19], which is based
on ANN2SNN conversion. However, they only applied to
static images as ANN2SNN is ill-suited to neuromorphic
datasets. Different from them, our method is also applicable
to neuromorphic datasets and outperforms the spike-based
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Model Method Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
MNIST Fashion-MNIST CIFAR-10 N-MNIST CIFAR10-DVS DVS128 Gesture
[24] ANN2SNN 98.37% - 82.95% - - -
[50] ANN2SNN 99.44% - 88.82% - - -
[51] ANN2SNN - - 91.55% - - -
[19] ANN2SNN - - 93.63 % - - -
[35] Spike-based BP  99.31% - - 98.74% - -
[57] Spike-based BP  99.42% - - 98.78% 50.7% -
[54] Spike-based BP  99.36% - - 99.2% - 93.64%
[27] Spike-based BP - - - 96% - 95.54%
[26] Spike-based BP  99.49% - - 98.84% - -
[64] Spike-based BP  99.62% 90.13% - - - -
[58] Spike-based BP - - 90.53% 99.53% 60.5% -
[34] Spike-based BP  99.59% - 90.95% 99.09% - -

[8] Spike-based BP 99.5% 92.07 % - 99.45% - -
[37] Spike-based BP - - - 96.3% 32.2% -
[60] Spike-based BP - - - - - 92.01%
[12] Spike-based BP  99.46% - - 99.39% - (1360'& 95;%;8)
[21] Spike-based BP - - - 98.28% - 93.40%

ANN2SNN and

[+7] Spike-based BP ) ) 92.64% ) i )
[55] HATS - - - 99.1% 52.4% -

[4] GCN - - - 99.0% 54.0% -
Ours  Spike-based BP  99.72% 94.38% 93.50% 99.61% 74.80% 97.57%

Table 2. Performance comparison between the proposed method and the state-of-the-art methods on different datasets. The highest accu-

racies of previous works are in bold.

Dataset SOTA SOTA’sT  oursT
MNIST [64] 400 8
Fashion-MNIST  [8] 20 8
CIFAR-10 [19] 2048 8
N-MNIST [58] 59-64 10
CIFAR10-DVS [58] 230-292 20
500(training)
DVS128 Gesture [27] 1800(tes tini)

Table 3. The time-steps of previous SOTA works and ours on each
dataset.

BP SOTA accuracy.

Tab. 3 compares the number of time-steps of our method
and the previous works that achieve the best performance
on each dataset. It can be found that the proposed method
takes fewer time-steps than all the other methods. For ex-
ample, our method uses up to 256 x fewer inference time-
steps compared to ANN2SNN conversion [19]. Thus our
method can not only decrease the memory consumption and
the training time but also increase inference speed greatly.

4.3. Ablation Study

We conduct extensive ablation studies to evaluate PLIF
neurons and max-pooling on four challenging datasets. We

Neuron Fashion-MNIST CIFAR-10 CIFAR10-DVS DVS128 Gesture

PLIF(mg = 2) 94.38% 93.50% 74.80% 97.57%
LIF(T = 2) 94.17% 93.03% 73.60% 96.88%
PLIF(ry = 16) 94.65% 93.23% 70.50% 92.01%
LIF(T = 16) 94.47% 47.50% 62.40% 76.74%

Table 4. Accuracy of using PLIF/LIF.

first study the effect of PLIF neurons. In this experiment,
we train the same SNNs with PLIF neurons and LIF neu-
rons respectively, and compare the test accuracy. As shown
in Tab. 4, if the initial membrane time constant 7y of PLIF
neurons is set equal to the membrane time constant 7 of LIF
neurons, the test accuracy of the SNNs with PLIF neurons is
always higher than that with LIF neurons. This is due to the
membrane time constants of PLIF neurons in different lay-
ers can be different after learning, which better represents
the heterogeneity of neurons. Fig. 6 illustrates the test ac-
curacy of PLIF vs. LIF neurons during training. As can be
seen, the accuracy and convergence speed of the SNNs with
LIF neurons decrease seriously if the initial value of the
membrane time constant is not reasonable (red curve). In
contrast, the PLIF neurons can learn the appropriate mem-
brane time constants and achieve better performance (green
curve).

To analyze the influence of initial values in PLIF neu-

2667



test accuracy (%)
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Figure 6. The test accuracy of PLIF vs. LIF neurons on different

datasets during training. The shaded curves indicate the origin
data. The solid curves are 64-epoch moving averages.
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(a) The change of 7(4) during training on CIFAR-10.
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(b) The change of 7(7) during training on CIFAR10-DVS.

Figure 7. The change of membrane time constants in different lay-
ers during training with different initial values. 7(¢) represents the
membrane time constant 7 of the ¢-th PLIF neurons layer.

rons, we show how the membrane time constants of the
neurons in each layer change during learning with respect
to different initial values. As shown in Fig. 7, the mem-
brane time constants with different initial values in each
layer tend to gather during training, which indicates that the

T 1 T 1
500 1000 0 500 1000

Pooling Fashion-MNIST CIFAR-10 CIFAR10-DVS DVS128 Gesture

Average 94.74% 93.30% 72.70% 97.22%
Max 94.38% 93.50% 74.80% 97.57%

Table 5. Accuracy of using max-pooling/average-pooling.

PLIF neurons are robust to initial values. Note that 7(6) in
Fig. 7(a) and 7(4) in Fig. 7(b) tend to infinity. This could
be explained as follows. The PLIF neurons with the mem-
brane time constants 7(4) and 7(6) in two SNNs are behind
the first FC layer with weight Wy.. We check the train-
ing logs and find that the distribution, mean and variance
of @(T = 7(4) or 7(6)) converge after dozens of epochs
(see supplementary). Refer to the dynamics of PLIF neu-
rons (Eq. (5)) with X; = Wy I; and % — 0, we can find
H, =V, + W;f < I;. It means that the PLIF neurons after
the first FC layer are learning to become the Non-Leaky-
Integrate-and-Fire neurons.

We further study the effect of max-pooling. Tab. 5
compares the accuracy of the proposed SNNs with max-
pooling/average-pooling on four challenging datasets. The
performance of max-pooling is similar to that of average-
pooling, which indicates that the previous conclusion that
max-pooling results in significant information loss in SNNs
is not reasonable. Remarkably, the max-pooling gets
slightly higher accuracies on CIFAR-10, CIFAR10-DVS,
and DVS128 Gesture datasets, showing its better fitting ca-
pability in complex tasks.

5. Conclusion

In this work, we proposed the Parametric Leaky
Integrate-and-Fire (PLIF) neuron to incorporate the learn-
able membrane time parameter into SNNs. We show that
the SNNs with the PLIF neurons outperform state-of-the-
art comparing methods on both static and neuromorphic
datasets. Besides, we show that the SNNs made of PLIF
neurons are more robust to initial values and can learn
faster than SNNss consist of LIF neurons. We also reevalu-
ate the performance of max-pooling and average-pooling in
SNNs and find the previous works underestimate the perfor-
mance of max-pooling. We recommend using max-pooling
in SNNss for its lower computation cost, higher temporal fit-
ting capability, and the characteristic to receive spikes and
output spikes rather than floating values as average-pooling.
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