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Abstract

Embedding data in hyperbolic spaces has proven ben-
eficial for many advanced machine learning applications
such as image classification and word embeddings. How-
ever, working in hyperbolic spaces is not without difficul-
ties as a result of its curved geometry (e.g., computing the
Frechet mean of a set of points requires an iterative algo-
rithm). Furthermore, in Euclidean spaces, one can resort to
kernel machines that not only enjoy rich theoretical prop-
erties but that can also lead to superior representational
power (e.g., infinite-width neural networks). In this paper,
we introduce positive definite kernel functions for hyper-
bolic spaces. This brings in two major advantages, 1. ker-
nelization will pave the way to seamlessly benefit from ker-
nel machines in conjunction with hyperbolic embeddings,
and 2. the rich structure of the Hilbert spaces associated
with kernel machines enables us to simplify various opera-
tions involving hyperbolic data. That said, identifying valid
kernel functions on curved spaces is not straightforward
and is indeed considered an open problem in the learning
community. Our work addresses this gap and develops sev-
eral valid positive definite kernels in hyperbolic spaces, in-
cluding the universal ones (e.g., RBF). We comprehensively
study the proposed kernels on a variety of challenging tasks
including few-shot learning, zero-shot learning, person re-
identification and knowledge distillation, showing the supe-
riority of the kernelization for hyperbolic representations.

1. Introduction
This paper proposes a family of positive definite (pd)

kernels to map the representations in hyperbolic spaces into
Reproducing Kernel Hilbert Spaces (RKHSs), which en-
ables us to seamlessly benefit from kernel machines to ana-
lyze hyperbolic spaces.

In the machine learning community, the Euclidean space
has been the “workhorse” for feature embeddings. This is
mainly because the high-dimensional vector space is a natu-
ral generalization from the familiar three-dimensional space

we live in and performing basic operations for comparison
(e.g., calculating distances and similarities) is straightfor-
ward. However, embedding in Euclidean spaces can harm
and distort the encoding of structured data, thereby losing
the complex geometric information inherently present in the
data. For example, the Euclidean space fails to encode the
hierarchical information in graph-structured data [38].

Several recent studies in computer vision suggest that
embedding images and video using hyperbolic geometry
can be beneficial compared to the common practice of us-
ing Euclidean geometry. This includes tasks such as textual
entailment [18], image classification and retrieval [32], and
graph classification [38] to name a few.

The hyperbolic space is characterized by a constant neg-
ative sectional curvature (in contrast to the flat structure of
the Euclidean space), and does not satisfy Euclid’s parallel
postulate. One intriguing property of hyperbolic spaces is
their capacity of encoding hierarchical data, as the volume
of hyperbolic space expands exponentially [22], thereby
increasing their representation power. Although several
studies have successfully employed the hyperbolic geom-
etry for inference [18, 32, 8], the difficulties of working
with such non-linear spaces still overwhelm their wider
use. For example, while averaging in Euclidean geometry
is straightforward, its counterpart in hyperbolic space is ap-
proximated by the Frechet mean. Computing the Frechet
mean requires an iterative algorithm and could easily be-
come costly [31, 40]. This motivates us to develop kernels
to make it possible to seamlessly benefit and employ kernel
machines towards analyzing hyperbolic data.

To be able to make use of kernel machines, one needs to
have a pd kernel function at its disposal. Loosely speaking,
a kernel function is a measure of similarity. Many famil-
iar kernels in the Euclidean space are defined as functions
of the Euclidean distance (which is indeed the geodesic
distance of the space). Take the RBF kernel k(x,y) =
exp(−ξd2(x,y)) as an example. This might imply that
valid pd kernels in curved spaces, the hyperbolic space
being one, can be constructed once the geodesic distance
is known. Unfortunately, this is not the case as shown
in [30, 15] (c.f ., theorem 6.2 in [30]), because such curved
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Table 1. Summary of the proposed positive definite kernels in hyperbolic spaces and their properties.
Kernel Formulation: k(zi, zj) Condition Properties

fD(z) = tanh−1(
√
c‖z‖) z√

c‖z‖ , c > 0 and z ∈ Dnc
Hyperbolic tangent kernel ktan(zi, zj) = 〈fD(zi), fD(zj)〉 - pd

Hyperbolic RBF kernel krbf(zi, zj) = exp
(
− ξ‖fD(zi), fD(zj)‖2

)
ξ > 0 pd, universal

Hyperbolic Laplace kernel klap(zi, zj) = exp
(
− ξ‖fD(zi), fD(zj)‖

)
ξ > 0 pd, universal

Generalized Hyperbolic Laplace kernel kglap(zi, zj) = exp
(
− ξ‖fD(zi), fD(zj)‖2α

)
ξ > 0, 0 < α < 1 pd, universal

Hyperbolic binomial kernel kbin(zi, zj) =
(
1− 〈fD(zi), fD(zj)〉

)−α
α > 0 pd, universal

spaces are not isometric to flat Euclidean spaces. Inter-
estingly, the difficulty of defining pd kernels on curved
spaces is now considered an open problem in machine
learning [14].

In this paper, we address the design challenge of pd
kernels for hyperbolic representations using the Poincaré
model. Here, we propose several valid pd hyperbolic ker-
nels, including the powerful universal ones. To this end, we
first make use of a lemma to construct a valid linear-like
kernel. Leveraging this lemma, we further define valid RBF
and Laplace kernels for the hyperbolic geometry. Finally,
we propose the binomial kernel. Table 1 summarizes the
proposed kernels. The contributions of this work include:

• We propose four pd kernels for the hyperbolic spaces,
namely, the hyperbolic tangent kernel, the hyperbolic
RBF kernel, the hyperbolic Laplace and the hyperbolic
binomial kernel, in conjunction with their theoretical
analysis. To the best of our knowledge, this is the first
work to develop pd kernels in hyperbolic spaces.

• To evaluate the power of the proposed kernels, we con-
duct thorough experiments on various vision tasks in-
cluding few-shot learning, zero-shot learning, person
re-identification, and knowledge distillation, and em-
ploy the kernels along deep neural networks (DNNs)
to attain rich models for inference. Empirically, we ob-
served the superiority of the kernelization for the rep-
resentation learning in hyperbolic spaces.

2. Related Work
Geometric Constraint Learning. Geometric constraints
have been studied extensively in deep learning, which
pushes the network to encode complex structures of the
data. The representation power of a set is improved by fit-
ting a subspace [47]. In SVDNet, the orthogonality con-
straint enforces the fully connected layer lying on the Grass-
mannian manifold, which de-correlates the features among
entries [50]. The works in [39, 41] also show that embed-
ding in a spherical space is particularly effective for simi-
larity learning (e.g., face verification, clustering) compared
to using Euclidean spaces.

In recent years, hyperbolic geometry has gained substan-
tial interest thanks to its tree-like nature, and the ability to

encode hierarchical relationships in the data. Generalizing
the basic operations in Euclidean geometry, the work [18]
develops hyperbolic layers in neural networks. The follow-
ing works further show the success of hyperbolic embed-
dings for graph-structured data, language data, visual data
as well as 3D data [38, 21, 32, 4]. More complex structures
of data are also studied in [20, 48], which represents the
data in a mixed-curvature geometry.

Kernel Methods. Kernel methods have been studied exten-
sively and proven its success in a broad range of machine
learning approaches, e.g., SVM, PCA and clustering [26].
The main idea of kernel methods is to project the input sam-
ples, to a high-dimensional (or even infinite-dimensional)
Reproducing Kernel Hilbert Space (RKHS), where the pro-
jected data can be analyzed with linear models. To avoid
explicit lifting to RKHS, the kernel trick provides a simple
way to generate the similarity measure of pairs in RKHS.

As of late, attempts to boost the representational power
of structured-data by generalizing the kernel methods to
non-linear geometries have gained increasing attention. The
common strategy to define a valid pd kernel on non-
Euclidean geometries is to adopt a proper distance metric.
In [29], the authors propose the main theoretical framework
to design the Gaussian kernel on symmetric positive definite
matrices. The proposed theory is further verified to develop
the Gaussian kernel on the Grassmann manifold [30]. Ker-
nels for the Grassmann manifold are studied in [23]. The
kernels using the Fisher information metric are developed
for the persistence diagrams in [35]. The closest study to
our work is the work of Cho et al. [8], which formulates the
support vector machine (SVM) in hyperbolic spaces. To fa-
cilitate the nonlinear decision boundaries, the kernel SVM
for the hyperbolic space is also introduced in [8]. However,
the proposed indefinite kernel is not universal and hence vi-
olates the universal approximation property [42].

In contrast to existing works, our work develops the the-
oretical framework for positive definite kernels on the hy-
perbolic geometry. As a complementary concept to the in-
definite kernel, our work kernelizes the hyperbolic space,
and thus to embed hyperbolic data into a high, possibly in-
finite, dimensional Hilbert space. In the remainder of this
paper, we will present the developed theory and evaluate the
algorithms across different challenging applications.
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3. Preliminaries and Background
3.1. Notations

Formally, we use Hn, Rn, Rm×n and H to denote n-
dimensional hyperbolic spaces, n-dimensional Euclidean
spaces, the space of m×n real matrices and Hilbert spaces.
Throughout the paper, the matrices and vectors are denoted
by bold capital letters (e.g., X) and bold lower-case letters
(e.g., x), respectively. The transpose of a matrix (e.g., X)
or a vector (e.g., x) is denoted by the superscript >, e.g.
X> or x>. tanh(·) : R → R, tanh(x) := e2x−1

e2x+1 refers to
the hyperbolic tangent function.

3.2. Hyperbolic Geometry

An n-dimensional hyperbolic space Hn is a Rieman-
nian manifold with a constant negative curvature [1]. The
Poincaré ball is a model of n-dimensional hyperbolic ge-
ometry in which all points are embedded within an n-
dimensional sphere (or inside a circle in the 2D case which
is called the Poincaré disk model). Formally, the Poincaré
ball model, with curvature c, is defined as a manifold
Dnc = {z ∈ Rn : c‖z‖ < 1}, with the Riemannian metric
gDc (z) = λ2c(z) ·gE , in which λc(z) is the conformal factor,
defined as 2

1−c‖z‖2 , and gE = In is the Euclidean metric
tensor. Furthermore and to facilitate vector operations, the
Möbius gyrovector space may come in handy. The Möbius
addition for zi, zj ∈ Dnc is defined as:

zi⊕czj =
(1 + 2c〈zi, zj〉+ c‖zj‖2)zi + (1− c‖zi‖2)zj

1 + 2c〈zi, zj〉+ c2‖zi‖2‖zj‖2
.

(1)
The geodesic distance on Dnc is:

dc(zi, zj) =
2√
c
tanh−1(

√
c‖ − zi ⊕c zj‖). (2)

For a point z ∈ Dnc , the tangent space at z, denoted by
TzDnc , is an inner product space, which contains the tangent
vector with all possible directions at z. The Riemannian
metric gDc at point z is a positive definite symmetric bilinear
function on TzDnc as gDc (z) : (TzDnc×TzDnc )→ R. The ex-
ponential map provides a way to project a point p ∈ TzDnc
to the Poincaré ball Dnc , as follows:

Γz(p) = z ⊕c
(

tanh(
√
c
λc(z) · ‖p‖

2
)

p√
c‖p‖

)
. (3)

The inverse process is termed logarithm map, which
projects a point q ∈ Dnc , to the tangent plane of z, given
as:

Υz(q) =
2√

cλc(z)
tanh−1(

√
c‖ − z ⊕c q‖)

−z ⊕c q
‖ − z ⊕c q‖

.

(4)

Note that Υz

(
Γz(p)

)
= p ∈ TzDnc . Both the exponential

and the logarithm maps are injective functions. In this pa-
per, we leverage the Euclidean space in the identity tangent
plane to define the kernels for hyperbolic spaces.

4. Kernel Methods in Hyperbolic Spaces
In this section, we propose positive definite (pd) kernels

in hyperbolic spaces. Essentially, we are interested in iden-
tifying a bivariate function k(·, ·) : (Dnc ×Dnc )→ R, which
represents an inner product in a Reproducing Kernel Hilbert
Space (RKHS). Obviously, not all bivariate functions con-
stitute valid kernels, meaning that they do not necessarily
realize an RKHS. Also, popular kernels in Euclidean spaces
cannot lead to meaningful solutions as they are not faithful
to the geometry of the hyperbolic spaces. Embedding hy-
perbolic points into an RKHS is not only theoretically ap-
pealing but can also result in practical benefits due to the
intriguing properties of RKHSs. This includes representa-
tional power of RKHS [26], kernel two-sample test [19],
neural tangent kernels [28] to name a few.

In this paper, we make use of the tangent space of the
hyperbolic geometry to define a set of valid pd kernels. We
start by formally defining a pd kernel.

Definition 1. (Positive Definite Kernels [3]) Let Z be
a non-empty set. A symmetric function k(·, ·) : (Z ×
Z) → R is a positive definite kernel on Z if and only if∑m
i,j=1 cicjk(zi, zj) ≥ 0 for any m ∈ N, zi ∈ Z and

ci ∈ R.

Essential to our work is the following lemma;

Lemma 1. Let Z be a non-empty set. Consider a function
f(·) : Z → Rn, that maps each element of Z uniquely to
Rn. Then,

k(zi, zj) =
〈
f(zi), f(zj)

〉
is a pd kernel on Z .

Proof. The proof of this lemma follows immediately from
Definition 1. To see this, define

F n×m :=
[
f(z1), f(z2), · · · , f(zm)

]
.

Now, notice that

m∑
i,j=1

cicjk(zi, zj) = c>Kc = c>F>Fc = ‖Fc‖2 ≥ 0 .

The
[
Km×m

]
i,j

= k(zi, zj) is called the gram matrix.

Based on Lemma 1, we propose to make use of fD(·) :
Dnc → Rn defined as,

fD(z) := tanh−1(
√
c‖z‖) z√

c‖z‖
, (5)
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to develop valid pd kernels on Dnc . The function fD(·) en-
joys various unique properties. First note that the function is
bijective and fD(z) = Υ0(z). The next theorem establishes
an important property and justifies our choice here better.

Theorem 1 (Curve Length Equivalence). A curve in Dnc is
a continuous function γ(·) : [0, 1] → Dnc ; joining the start-
ing point γ(0) to the end point γ(1). Define the distance
induced by fD as

de
(
zi, zj

)
:=
∥∥fD(zi)− fD(zj)

∥∥. (6)

The length of any given curve γ is the same under de and the
geodesic distance dc up to a scale of 1/λ̃c, where λ̃c = 2 is
the conformal factor at the origin.

Proof. The proof is relegated to the supplementary material
of our paper due to space limitations.

Having fD at our disposal, we are now ready to define
the kernels in hyperbolic spaces.

4.1. Hyperbolic Tangent Kernel

The simplest pd kernel resembles the linear kernel
in Euclidean spaces and is defined as ktan(zi, zj) =
〈fD(zi), fD(zj)〉. We call this kernel hyperbolic tangent
kernel as it can be understood as the linear kernel in the
identity tangent space of the Poincaré ball. This kernel is at-
tractive as it is parameter-less, making it ideal for fast proto-
typing. The proof of positive-definiteness of the hyperbolic
tangent kernel follows directly from Lemma 1.

4.2. Hyperbolic RBF Kernel

The Gaussian RBF kernel is a popular universal kernel
in Euclidean spaces. In Rn, the RBF kernel can be writ-
ten as k(xi,xj) = exp(−ξ‖xi − xj‖2), ξ > 0, where the
metric is the squared Euclidean distance in Rn. Taking into
account the properties of the RBF kernel [9], it is very desir-
able to extend this kernel to hyperbolic spaces. One may as-
sume that replacing the Euclidean distance by the geodesic
distance (i.e., Eq. (2)) can lead to a valid pd kernel. This,
unfortunately, is not the case as shown by the toy example
below.

Example 1. Consider D3
0.1 and the following points:

z1=

0.18850.2330
0.9526

,z2=

0.65860.2053
0.0894

,z3=

0.30170.4155
0.5357

,z4=

0.23880.8290
0.3790

.
The gram matrix (i.e., exp(−ξd2c(zi, zj)) for ξ = 0.01) for
these points has a negative eigenvalue of −3.0605× 10−5.

Further to the counterexample above, the RBF kernel de-
rived from the geodesic distance is shown to be pd iff the
space is isometric to the Euclidean space per the following
theorem.

Theorem 2 (Theorem 6.2 in [30]). Let M be a complete
Riemannian manifold and dM be the induced geodesic dis-
tance on the manifold. The Gaussian RBF kernel k(·, ·) :
(M×M)→ R : k(mi,mj) := exp(−ξd2M(mi,mj)) is
positive definite for all ξ > 0 if and only if the Riemannian
manifoldM is isometric to some Euclidean space Rn.

According to Theorem 2, it is theoretically impossible to
obtain a valid RBF kernel using geodesic distance on hyper-
bolic spaces 1. Given the above, we propose to make use of
de(·, ·) and define the hyperbolic RBF kernel as

krbf(zi, zj) = exp
(
− ξ‖fD(zi)− fD(zj)‖2

)
. (7)

To show that the form in Eq. (7) is a valid pd kernel, we first
define negative definite (nd) kernels.

Definition 2 (Negative Definite Kernels [3]). Let Z be
a non-empty set. A symmetric function k(·, ·) : (Z ×
Z) → R is a negative definite kernel on Z if and only if∑m
i,j=1 cicjk(zi, zj) ≤ 0 for any m ∈ N, zi ∈ Z and

ci ∈ R with
∑m
i=0 ci = 0.

Note the difference between pd and nd kernels. For
nd kernels, an additional condition (i.e.,

∑m
i=0 ci = 0)

is required. The following lemma shows that d2e(·, ·) =
‖fD(zi)− fD(zj)‖2 is indeed nd.

Lemma 2. Let Z be a non-empty set. An injective func-
tion f(·) : Z → Rn, maps each vector in Z onto an inner
product space Rn. Then k(zi, zj) := ‖f(zi) − f(zj)‖2 is
negative definite.

Proof. The proof is relegated to the supplementary material
of our paper due to space limitations.

The following important theorem establishes the connec-
tion between positive definite kernels and negative definite
kernels.

Theorem 3. ([3]) Let Z be a non-empty set and k :
(Z × Z) → R be a kernel. The kernel k(zi, zj) =
exp(−ξΦ(zi, zj)) is positive definite for all ξ > 0 if and
only if Φ(·, ·) is negative definite.

Stating the fact that d2e(·, ·) is nd along with Theorem 3
concludes our claim that the hyperbolic RBF kernel defined
in Eq. (7) is pd.

4.3. Hyperbolic Laplace Kernel

The Laplace kernel is another widely used universal
kernel in Euclidean spaces, formulated as k(xi,xj) =
exp(−ξ‖xi − xj‖), ξ > 0. When extending the Laplace
kernel to hyperbolic spaces, we use the following theorem
to build a nd kernel for hyperbolic spaces.

1If a manifold M is isometric to some Euclidean spaces Rn, then the
geodesic distance on M is the Euclidean distance in Rn. However, it is
impossible to find an isometry between Dn

c and Rn because of the differ-
ence in the curvature of two geometries.
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Theorem 4. ([3]) If k : (Z × Z) → R is negative definite
and satisfies k(zi, zj) ≥ 0, then kα is also negative definite
for 0 < α < 1.

Combining Theorem 3 and Theorem 4, and choosing
α = 1

2 , we could obtain the hyperbolic Laplace kernel as
klap(zi, zj) = exp

(
− ξde(fD(zi), fD(zj))

)
= exp

(
−

ξ‖fD(zi)− fD(zj)‖
)
. A more general form of the Laplace

kernel (i.e., generalized hyperbolic Laplace kernel) can be
further derived as: kglap(zi, zj) = exp

(
− ξ‖fD(zi) −

fD(zj)‖2α
)
, where 0 < α < 1.

4.4. Hyperbolic Binomial Kernel

In addition to the exponential type kernels, we further
construct a hyperbolic binomial kernel. To obtain the hyper-
bolic binomial kernel, we make use of the following lemma.

Lemma 3. Let Z be a non-empty set. An injective function
f : Z → Rn, maps each vector in Z onto an inner product
space Rn. Then k(zi, zj) :=

(
1 − 〈f(zi), f(zj)〉

)−α
de-

fines a binomial kernel on Z when α > 0 and ‖f(z)‖ < 1.

Proof. According to Lemma 4.8 of [9], if the function
k(·, ·) can be decomposed by a full Taylor series with each
term being non-negative, then we can claim k(·, ·) is a
valid pd kernel. Let t = 〈f(zi), f(zj)〉, the binomial se-
ries k(zi, zj) = (1 − t)−α =

∑∞
n=0

(−α
n

)
(−1)ntn holds

for all |t| < 1, where the binomial coefficient
(
β
n

)
:=∏n

i=1(β − i + 1)/i. It can be seen
(−α
n

)
(−1)n > 0 when

α > 0, which indicates the binomial kernel has a non-
negative and full Taylor series.

According to the Lemma 3, we could obtain the hyper-
bolic binomial kernel as

kbin(zi, zj) =
(
1− 〈fD(zi), fD(zj)〉

)−α
, α > 0. (8)

Also, given the non-negativeness and full Taylor series
in the above proof, we can further claim that the hyperbolic
binomial kernel satisfies the necessary and sufficient condi-
tion of being universal, shown in Corollary 4.57 of [9].

Remark 1. As alluded to earlier, we have made use of the
identity tangent space of the Poincaré ball (i.e., Dnc ) to de-
fine pd kernels for the hyperbolic spaces. This implies that
the kernels are defined using the Lie algebra of Dnc . Such a
construction has been used with success in other manifolds
(e.g., SPD as in [30]).

In this paper, we employ the kernels along with convo-
lutional neural networks (CNNs) to attain rich models for
computer vision tasks. The CNNs encode the input data to
vectors, distributed in hyperbolic spaces. Then the proposed
kernels are further used to train the network.

5. Experiments

We first explain the inference with cross entropy-like loss
function using kernels. Specifically, for a training sample
f i with label l, the cross entropy loss is given by:

L = − log(
exp(s(f i,wi))∑N
j=1 exp(s(f i,wj))

), (9)

where wi indicates the weights or prototype for f i and N
is the number of classes in the dataset. Then we apply our
kernels in Eq. (9) as:

LK = − log(
g(k(f i,wi))∑N
j=1 g(k(f i,wj))

). (10)

Here, g(·) is exp mapping if k(·, ·) is non-exponential type
kernels. Otherwise, g(·) is the identity mapping.

In the remainder of this section, we comprehensively
evaluate the effectiveness of the proposed algorithms for a
variety of challenging tasks, i.e., few-shot learning, zero-
shot learning, person re-identification and knowledge dis-
tillation. Full details of all experiments done in this paper
are provided in the supplementary material.

5.1. Few-shot Learning

Few-shot learning (FSL) is required to learn an embed-
ding space, which should be adapted to recognize unseen
classes at test time, given only a few samples of each new
class [49, 27]. In our experiments, we follow the general
practice (i.e., 5-way 1-shot and 5-way 5-shot and 15 query
images) to evaluate the model. We employ the pipeline in
the prototypical network (ProtoNet) [49] along with the
proposed kernels to train the feature extractor.

In terms of the feature extractor, we use both Conv-
4 [49] and ResNet-18 [24] CNN backbones in our ex-
periments. Moreover, four popular benchmarks, i.e.,
miniImageNet [11], CUB [53], tiered-ImageNet [45] and
Few-shot-CIFAR100 (FC100) [43] are adopted to assess
our algorithms. We use the Conv-4 and ResNet-18 back-
bones to evaluate the miniImageNet and CUB datasets and
the Conv-4 backbone to evaluate the tiered-ImageNet and
FC100 datasets. Please refer to the supplementary material
for more details about the statistics of each dataset and the
implementation details.

Tables 2, 3, 4 illustrate the results on four datasets. We
observe that our algorithms improve the few-shot recogni-
tion performance as compared to their hyperbolic counter-
part and other advanced methods. In addition, the results
from the hyperbolic RBF kernel in general exceed the re-
sults from other kernels. For example, in 5-way 5-shot
setting, the hyperbolic RBF kernel outperforms the Hy-
perbolic ProtoNet [32] by 3.42, 2.68, 4.52 and 2.64 for
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miniImageNet, CUB, tiered-ImageNet and FC100, respec-
tively, clearly showing the potential and superiority of uni-
versal kernels.

Table 2. Few-shot classification results on the miniImageNet
dataset with 95% confidence interval.

Model Backbone 1-shot 5-shot
MatchingNet [52] Conv-4 43.56± 0.84 55.31± 0.73

ProtoNet [49] Conv-4 44.53± 0.76 65.77± 0.66
MAML [16] Conv-4 48.70± 1.84 63.11± 0.92

RelationNet [51] Conv-4 50.44± 0.82 65.32± 0.70
DN4 [37] Conv-4 51.24± 0.74 71.02± 0.64
DSN [47] Conv-4 51.78± 0.96 68.99± 0.69

Hyper ProtoNet [32] Conv-4 54.43± 0.20 72.67± 0.15
Hyperbolic tangent kernel Conv-4 55.61± 0.21 74.81± 0.16

Hyperbolic RBF kernel Conv-4 56.48± 0.20 76.09± 0.16
Hyperbolic Laplace kernel Conv-4 56.26± 0.20 75.35± 0.15
Hyperbolic binomial kernel Conv-4 56.82± 0.20 75.27± 0.15

Baseline [6] ResNet-18 51.75± 0.80 74.27± 0.63
Baseline++ [6] ResNet-18 51.87± 0.77 75.68± 0.63

MatchingNet [52] ResNet-18 52.91± 0.88 68.88± 0.69
ProtoNet [49] ResNet-18 54.16± 0.82 73.68± 0.65
SNCA [54] ResNet-18 57.80± 0.80 72.80± 0.70

Hyper ProtoNet [32] ResNet-18 59.47± 0.20 76.84± 0.14
Hyperbolic tangent kernel ResNet-18 59.91± 0.21 76.65± 0.16

Hyperbolic RBF kernel ResNet-18 60.91± 0.21 77.12± 0.15
Hyperbolic Laplace kernel ResNet-18 60.52± 0.21 77.33± 0.15
Hyperbolic binomial kernel ResNet-18 61.04± 0.21 77.01± 0.15

Table 3. Few-shot classification results on the CUB dataset with
95% confidence interval. † indicates the network was self-
implemented.

Model Backbone 1-shot 5-shot
MatchingNet [52] Conv-4 61.16± 0.89 72.86± 0.70

ProtoNet [49] Conv-4 51.31± 0.91 70.77± 0.69
MAML [16] Conv-4 55.92± 0.95 72.09± 0.76

RelationNet [51] Conv-4 62.45± 0.98 76.11± 0.69
DN4 [37] Conv-4 53.15± 0.84 81.90± 0.60

Hyper ProtoNet [32] Conv-4 64.02± 0.20 82.53± 0.14
Hyperbolic tangent kernel Conv-4 66.14± 0.23 82.11± 0.15

Hyperbolic RBF kernel Conv-4 70.98± 0.22 85.21± 0.13
Hyperbolic Laplace kernel Conv-4 68.27± 0.23 84.64± 0.13
Hyperbolic binomial kernel Conv-4 69.05± 0.23 83.00± 0.14

Baseline [6] ResNet-18 65.51± 0.87 82.85± 0.55
Baseline++ [6] ResNet-18 67.02± 0.77 83.58± 0.54

RelationNet [51] ResNet-18 67.59± 0.58 82.75± 0.58
MAML [16] ResNet-18 69.96± 1.01 82.70± 0.65
ProtoNet [49] ResNet-18 71.88± 0.91 86.64± 0.51

MatchingNet [52] ResNet-18 72.36± 0.90 83.64± 0.60
Hyper ProtoNet† [32] ResNet-18 72.86± 0.22 85.69± 0.13

Hyperbolic tangent kernel ResNet-18 73.52± 0.22 88.75± 0.11
Hyperbolic RBF kernel ResNet-18 75.79± 0.21 89.98± 0.11

Hyperbolic Laplace kernel ResNet-18 74.37± 0.21 89.08± 0.12
Hyperbolic binomial kernel ResNet-18 74.46± 0.22 89.28± 0.11

Table 4. Few-shot classification results on tiered-ImageNet and
FC100 datasets with 95% confidence interval. † indicates the net-
work was self-implemented.

Model
tiered-ImageNet FC100

1-shot 5-shot 1-shot 5-shot
Hyper ProtoNet† [32] 54.44± 0.23 71.96± 0.20 37.59± 0.19 51.76± 0.19

Hyperbolic tangent kernel 54.73± 0.22 74.37± 0.18 37.66± 0.17 52.29± 0.18
Hyperbolic RBF kernel 57.78± 0.23 76.11± 0.18 38.93± 0.18 54.40± 0.18

Hyperbolic Laplace kernel 57.33± 0.22 76.48± 0.18 37.99± 0.17 53.54± 0.18
Hyperbolic binomial kernel 56.72± 0.22 75.87± 0.18 38.32± 0.18 53.50± 0.18

5.2. Zero-shot Learning

Zero-shot learning (ZSL) aims to identify objects that
are unseen during the training phase [2, 55]. We first build
a baseline network for the scenario of zero-shot recogni-
tion. In the training phase, we randomly sample Nb seen
visual features as V = {v1, . . . ,vNb

}. All the seman-
tic features are projected to the visual space, denoted by
E = {e(a1), . . . , e(a|Ls|)}, where |Ls| denotes the num-
ber of seen classes in the training set. In our implemen-
tation, the embedding function (i.e., e(·)) is a simple two
layer MLP, with each layer stacking the linear transforma-
tion, ReLU activation and batch normalization. Then the
network is trained by the following cross-entropy type loss:

Lzsl = − 1

Nb

Nb∑
i=1

log
( exp

(
− ‖(e(a∗)− vi‖

)∑|Ls|
j=1 exp

(
− ‖e(aj)− vi‖

)),
where a∗ shares the same label with vi. The baseline net-
work is conducted on Euclidean spaces. The usage of the
kernels for ZSL is detailed in the supplementary material.

Four datasets, i.e., SUN [44], CUB [53], AWA1 [34] and
AWA2 [2] are adopted to evaluate our algorithms in the gen-
eralized ZSL (GZSL) setting. We report the top-1 mean
class accuracy (MCA) for both the unseen classes (U) and
the seen classes (S) and also calculate the harmonic mean
(HM) score, i.e. HM = 2 × U × S/(U + S). Please re-
fer to the supplementary material for more details about the
statistics of each dataset and implementation details.

We first evaluate the effectiveness of our methods by
comparing them against the baseline. As shown in Table 5,
each hyperbolic kernel brings a significant improvement to
the baseline network. For example, the simplest hyperbolic
tangent kernel improves the HM value over the baseline by
6.1, 21.6, 21.9 and 14.1 for SUN, CUB, AWA1 and AWA2,
respectively. In addition, the powerful hyperbolic RBF ker-
nel or hyperbolic Laplace kernel continues to improve the
representation capacity, again showing the superiority of the
kernel design for embedding learning.

To further verify the effectiveness of our approach, we
continue to compare our methods to a couple of pop-
ular ZSL algorithms, including the state-of-the-art non-
generative methods [56, 36]. We observe that our hyper-
bolic RBF kernel and hyperbolic Laplace kernel achieve
competitive results to the state-of-the-art methods across
four datasets. ZSL is a very challenging task, and while
none of the methods in Table 5 achieved the best perfor-
mance across all four datasets, it is very competitive. Thus,
to establish this objectively, we employ the Friedman test2

[10] to compare the algorithms. As shown in the last col-
umn of Table 5, the ranking list clearly shows that our meth-

2The Friedman test is a non-parametric measure for multiple datasets.
It ranks the algorithms for each dataset separately and calculates the aver-
age ranks for each dataset as a ranking score.
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Table 5. Zero-shot recognition results on SUN, CUB, AWA1 and AWA2 datasets. U and S indicate the accuracy for unseen and seen
classes, respectively. HM is the harmonic mean of U and S.

Model
SUN CUB AWA1 AWA2 Friedman

U S HM U S HM U S HM U S HM test (rank)
LATEM [55] 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 12.0 (12)
DEVISE [17] 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 10.0 (11)

DEM [57] 20.5 34.3 25.6 19.6 57.9 29.2 32.8 84.7 47.3 30.5 86.4 45.1 9.33 (9)
ALE [2] 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 9.33 (9)

SP-AEN [5] 24.9 38.6 30.3 34.7 70.6 46.6 - - - 23.3 90.9 37.1 7.67 (7)
CRnet [56] 34.1 36.5 35.3 45.5 56.8 50.5 58.1 74.7 65.4 52.6 78.8 63.1 3.00 (4)

Kai et al. [36] 36.3 42.8 39.3 47.4 47.6 47.5 62.7 77.0 69.1 56.4 81.4 66.7 2.83 (3)
Baseline 22.8 38.0 28.5 18.6 44.6 26.3 29.8 76.4 42.9 25.5 76.4 38.2 8.67 (8)

Hyperbolic tangent kernel 29.4 42.0 34.6 40.8 58.1 47.9 52.3 85.2 64.8 37.1 88.5 52.3 5.00 (5)
Hyperbolic RBF kernel 37.0 43.3 39.9 44.6 57.8 50.3 59.0 84.6 69.5 42.9 89.5 57.9 2.67 (2)

Hyperbolic Laplace kernel 35.1 44.2 39.1 46.2 56.1 50.7 60.7 83.5 70.3 54.1 87.1 66.7 1.83 (1)
Hyperbolic binomial kernel 26.9 43.8 33.3 39.8 56.9 46.8 43.7 88.9 58.6 39.8 90.5 55.4 5.67 (6)

ods with the hyperbolic Laplace kernel and the hyperbolic
RBF kernel are the best two options in general for the ZSL
task.

5.3. Person Re-identification

Person re-identification (re-ID) is an important applica-
tion in the video/multi-camera surveillance task [13, 12].
Following the work [32], ResNet-50, pre-trained on Ima-
geNet, is employed as a backbone network and we also
perform experiments across three dimensions, i.e., 32, 64,
128, for the feature representation. Both Market-1501 [58]
and DukeMTMC-reID [46] pedestrian datasets are used to
evaluate our approaches. We use both mean average preci-
sion (mAP) and rank-1 accuracy of cumulative matching
characteristic (CMC) to evaluate our algorithms. Differ-
ent from FSL and ZSL, we use the generalized hyperbolic
Laplace kernel in the re-ID experiment, as we observe that
the generalized hyperbolic Laplace kernel achieves fairly
good performance compared to the hyperbolic Laplace one.
Please refer to the supplementary material for more details.

We compare the proposed algorithms to the methods
in [32]. As shown in Table 6, we observe that our algorithms
bring positive effects to the retrieval performance on both
datasets, especially for the mAP value. In the market-1501
dataset, most of our methods achieve competitive perfor-
mance compared to [32]. However, we also observe that the
binomial kernel cannot perform well in different embedding
sizes. In the DukeMTMC-reID dataset, our method could
outperform its hyperbolic counterpart on both R-1 and mAP
values and the RBF kernel is the most powerful one, which
is superior to the other kernels in every dimension. For ex-
ample, the hyperbolic RBF kernel improves the R-1 / mAP
values over the work [32] by 5.1 / 6.6, 3.0 / 7.2 and 1.9 / 6.8
for the dimension of 32, 64 and 128, respectively.

5.4. Knowledge Distillation

Knowledge distillation (KD) is an efficient method to
train a small student network, under the supervision of a

Table 6. Person re-ID results on Market-1501 and DukeMTMC-
reID datasets. The value in · denotes the result below the perfor-
mance in [32]. g-Hyperbolic Laplace kernel indicates the general-
ized hyperbolic Laplace kernel.

Model Dim
Market-1501 DukeMTMC-reID
R-1 mAP R-1 mAP

Euclidean [32] #32 68.0 43.4 57.2 35.7
Hyperbolic [32] #32 75.9 51.9 62.2 39.1

Hyperbolic tangent kernel #32 75.4 53.3 63.9 42.5
Hyperbolic RBF kernel #32 76.0 54.3 67.3 46.3

g-Hyperbolic Laplace kernel #32 78.7 56.3 64.1 40.7
Hyperbolic binomial kernel #32 75.2 55.0 63.7 44.7

Euclidean [32] #64 80.5 57.8 68.3 45.5
Hyperbolic [32] #64 84.4 62.7 70.8 48.6

Hyperbolic tangent kernel #64 85.8 68.0 73.9 54.2
Hyperbolic RBF kernel #64 85.2 65.7 73.8 55.8

g-Hyperbolic Laplace kernel #64 85.4 68.4 73.3 50.6
Hyperbolic binomial kernel #64 83.0 64.6 71.5 54.0

Euclidean [32] #128 86.0 67.3 74.1 53.3
Hyperbolic [32] #128 87.8 68.4 76.5 55.4

Hyperbolic tangent kernel #128 89.4 74.1 78.6 60.9
Hyperbolic RBF kernel #128 88.9 73.5 78.4 62.2

g-Hyperbolic Laplace kernel #128 87.6 72.4 77.3 59.6
Hyperbolic binomial kernel #128 87.6 72.0 75.4 59.2

pre-trained larger teacher network [25, 7]. In the teacher-
student network, the output of the teacher network acts as
ground truth to train a student network. For a training im-
age (e.g., X), the teacher network and student network
generate the prediction scores g = [g1, g2, . . . , gN ] and
p = [p1, p2, . . . , pN ], respectively. Noted that g and p are
normalized by the softmax function. Then the KD loss is
given by: Lkd = −

∑N
i=1 gilog(pi).

We use the ResNet-20 as a teacher network and a simple
4-layer CNN as a student network. We report the results on
CIFAR-10 and CIFAR-100 benchmarks [33]. The details
of the usage of kernels, network architecture and datasets
are summarized in the supplementary material. We use the
top-1 mean accuracy to evaluate the networks. Please re-
fer to the supplementary material for more details about the
network training and corresponding hyper-parameters. As
shown in Table 7, we can again find that our hyperbolic ker-
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nels improve the accuracy over the baseline, and the hyper-
bolic RBF kernel brings the maximum performance gain,
3.1 / 4.5 for CIFAR-10 / CIFAR-100, respectively.

Table 7. Knowledge distillation results on CIFAR-10 / 100
datasets. g-Hyperbolic Laplace kernel indicates the generalized
hyperbolic Laplace kernel.

Model CIFAR-10 CIFAR-100
Baseline 80.5 49.9

Hyperbolic tangent kernel 82.1 50.5
Hyperbolic RBF kernel 83.6 54.4

g-Hyperbolic Laplace kernel 83.2 53.9
Hyperbolic binomial kernel 81.6 51.8

5.5. Further Studies

To the best of our knowledge, our work is the first to de-
velop pd kernels in hyperbolic spaces. That said, indefinite
hyperbolic kernels are developed in [8]. We compare and
contrast the two school of thoughts. In doing so, we con-
sider the problem of few-shot learning and follow the setup
of [32]. As for the indefinite kernel, we use the Minkowski
inner product kernel, presented in [8] (see supplementary
material for details). We have evaluated the performance of
our pd kernels and the indefinite kernel for the task of 5-
way 5-shot learning across the miniImageNet, CUB, tired-
ImageNet and FC100 datasets. Fig. 1 shows that the perfor-
mance attained by the indefinite kernel does not match that
of pd kernels, clearly showing the potential of pd kernels
for hyperbolic representations.

miniImageNet CUB tiered-ImageNet FC100
Datasets
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80

90
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cu

rac
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%)

Indefinite kernel
Hyperbolic tangent kernel
Hyperbolic RBF kernel
Hyperbolic Laplace kernel
Hyperbolic binomial kernel

Figure 1. The performance comparison between the indefinite ker-
nel and pd kernels for hyperbolic representations.

One may wonder how useful the hyperbolic spaces are
and their kernels in comparison to simple Euclidean kernels.
In the end, the Poincaré ball is embedded in n-dimensional
Euclidean spaces and hence conventional kernels can be
applied seamlessly. In Fig. 2, we compare the proposed
kernels against their Euclidean counterparts again on the
task of few-shot learning using the miniImageNet dataset.
We observe: (1) the kernel machines in both Euclidean
spaces and hyperbolic spaces bring performance gain to the
deep neural network. (2) The proposed hyperbolic kernels

can outperform the vanilla Euclidean kernels significantly,
again showing the reasonable design of the proposed ker-
nels.

No kernel Tangent RBF Laplace Binomial
Kernels
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Figure 2. The performance comparison for kernels on Euclidean
spaces and Hyperbolic spaces.

Remark 2 (Good Practice of Employing Hyperbolic Ge-
ometry). Few works have studied the problem of learning
an embedding in hyperbolic spaces [4, 32]. However, the
existing works generate the vectors in the tangent space at
the origin and project to the hyperbolic spaces using Γ0(·)
mapping. A drawback of this framework is that the hyper-
bolic geometry is not fully utilized as every representation
is flattened at the identity. In other words, only the vec-
tors very close to the origin represent hyperbolic distances.
In contrast, and in our experiments, we generate hyper-
bolic representations directly in the Poincaré ball. Em-
pirically, we observe that various applications can benefit
from a high curvature (i.e., c). For example, in the person
re-identification task, the curvature of the Poincaré ball is
10−2 in our algorithms, while the work in [32] sets it to
10−5, which makes the Poincaré ball very flat.

6. Conclusion
This paper proposes a family of positive definite kernels

to embed hyperbolic representations in Hilbert spaces. In
such kernels, we leverage the identity tangent space of the
Poincaré ball and further define valid positive definite ker-
nels in identity tangent spaces. The proposed kernels in-
clude powerful universal kernels (i.e., the hyperbolic RBF
kernel, the hyperbolic Laplace kernel and the hyperbolic bi-
nomial kernel). We evaluate the effectiveness of the ker-
nels in a variety of challenging applications, such as few-
shot learning, zero-shot learning, person re-identification
and knowledge distillation, and the empirical results have
shown positive results for embedding learning via the ker-
nels in hyperbolic spaces. Future works include exploiting
the proposed kernels to other applications (i.e., natural lan-
guage processing and graph neural networks). In addition,
we have found that the effectiveness of the kernel is data-
dependent and we want to develop a rule for choosing the
right kernel for a given data.
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Bernhard Scholköpf, and Alexander Smola. A kernel two-
sample test. JMLR, 2012. 3

[20] Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré.
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