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Abstract

The goal of few-shot learning (FSL) is to recognize a set
of novel classes with only few labeled samples by exploit-
ing a large set of abundant base class samples. Adopting a
meta-learning framework, most recent FSL methods meta-
learn a deep feature embedding network, and during infer-
ence classify novel class samples using nearest neighbor in
the learned high-dimensional embedding space. This means
that these methods are prone to the hubness problem, that
is, a certain class prototype becomes the nearest neighbor
of many test instances regardless which classes they belong
to. However, this problem is largely ignored in existing FSL
studies. In this work, for the first time we show that many
FSL methods indeed suffer from the hubness problem. To
mitigate its negative effects, we further propose to employ
z-score feature normalization, a simple yet effective trans-
formation, during meta-training. A theoretical analysis is
provided on why it helps. Extensive experiments are then
conducted to show that with z-score normalization, the per-
formance of many recent FSL methods can be boosted, re-
sulting in new state-of-the-art on three benchmarks.

1. Introduction
In recent years, the advances of deep convolutional neu-

ral networks (CNNs) have had profound impacts on a vari-
ety of vision areas, such as object recognition [45, 38, 13],
semantic segmentation [26, 4], and even image generation
[33, 42]. To train an effective CNN model for visual recog-
nition, a large number of manually labeled training samples
are often required. However, obtaining sufficient training
data is often expensive and sometimes even infeasible (e.g.,
for rare object categories). One solution to the data hun-
gry nature of deep recognition models is few-shot learning
(FSL) [20, 21], which aims to recognize a set of novel ob-
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ject classes with only few labeled samples by exploiting a
set of base classes each containing ample samples.

Recent FSL methods typically follow the meta-learning
framework and adopt episodic training [8, 47, 49, 2, 19, 9,
59, 7, 63]. That is, they train their models over a large num-
ber of meta-tasks/episodes sampled from the abundant base
class images. This is to imitate the few-shot classification
tasks for the novel classes. Specifically, each episode is con-
structed by sampling N base/novel classes with K labeled
samples in each class as the support set and a set of query
images to be classified. Existing meta-learning methods dif-
fer in which part of the recognition model, comprising a fea-
ture embedding network and a classifier, is meta-learned. It
is noted that most recent FSL methods [47, 2, 59, 63] focus
on meta learning the embedding network. Once the model
learned, during inference, the support set samples are used
to construct class prototypes in that embedding space, and
the classification of query samples is done by the simple
nearest neighbor (NN) search.

Using NN in a high dimensional embedding space makes
these FSL methods prone to the hubness problem [34, 43,
50]. Specifically, in a high dimensional space, nearest
neighbor suffers from the existence of hubs, i.e., the class
prototypes which are the nearest neighbors of many test
samples, regardless which classes they belong to. These
hubs thus clearly harm the recognition performance. To il-
lustrate the hubness problem, let us take a concrete example.
Denote k-occurrence N (h)

k (x) as the number of times that a
sample x occurs among the k nearest neighbors of all other
points in a dataset. We visualize the distribution of N (h)

5

on the test set of miniImageNet [52] in Figure 1(a), where
a four-block CNN Conv4-64 pre-trained on the training set
is used. We also calculate the hubness measure skewness
S
N

(h)
5

of the distribution (see the detailed definition in Sec-
tion 4.3). It can be observed that the distribution is heavily
skewed to the right, i.e., a large number of samples have low
N

(h)
5 values while a small group of samples are frequently
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(a) Before ZN (b) After ZN (c) Before ZN (d) After ZN

Figure 1. Visualizations on the test set of miniImageNet with a total of 12,000 samples using Conv4-64 pre-trained on the training set.
(a) – (b) Visualizations of the distributions of N (h)

5 using the original features and the z-score normalized (ZN) features, respectively.
S
N

(h)
5

denotes the skewness of a distribution, whose absolute value is larger when the distribution is more skewed. (c) – (d) Visualizations

of the cosine similarities among 20 class centers using the original features and the z-score normalized features, respectively. µ(cos(x, x̄))
and σ(cos(x, x̄)) are respectively the mean and standard deviation of the cosine similarity between a sample and the dataset mean.

visited. The same observation holds when the pre-trained
embedding network is meta-learned using recent FSL meth-
ods [47, 2, 63]. This provides direct evidence that the hub-
ness problem indeed exists in FSL. However, as far as we
know, this problem has been largely ignored.

In order to remedy the problem, we must first identify
the potential causes for it. It is discovered that one cause
for hubness is actually the widely used batch normaliza-
tion (BN) [15] and non-negative activation functions (e.g.,
ReLU) in the deep embedding CNNs. In particular, we find
that with BN and ReLU, the output feature vectors with
non-negative elements often have similar directions in the
feature space. To show this, in Figure 1(c), we visualize
the cosine similarities among 20 class centers (i.e., feature
mean of samples belonging to the same classes) also on the
test set of miniImageNet using the pre-trained Conv4-64.
Besides, we calculate the cosine similarities of all samples
to the dataset mean (i.e., the mean of all feature vectors)
and obtain the statistical mean and standard deviation. We
can clearly see from Figure 1(c) that these feature vectors
are very much alike in terms of the direction, meaning sam-
ples of different classes can form clusters. This problem
is supposed to be rectified by the subsequent classification
layer. However, with NN search in metric-based FSL and
no classification layer for the rescue, it must be addressed.

Our solution to the hubness problem in FSL is thus on
deploying alternative normalization strategies during pre-
training or episodic training. Particularly, we discover that
z-score normalization (ZN), a simple transforming opera-
tion at the feature level, can offer an effective solution.
More concretely, with ZN, for each feature vector extracted
by the embedding network, every component of it first sub-
tracts the mean of all components and then is divided by
the standard deviation of all components. Note that ZN is
applied to each feature vector independently during both
training and inference, and thus the inductive FSL setting

is still strictly followed in this paper. We visualize the dis-
tribution of N (h)

5 after applying ZN in Figure 1(b) and also
the heat map of cosine similarities calculated with normal-
ized features in Figure 1(d). From Figure 1(b), we can see
that the distribution of the 5-occurrence is pulled back to
the left and the value of skewness is much smaller. From
Figure 1(d), we can also observe that the samples of dif-
ferent classes in the normalized embedding space are more
separable. We show that this simple operation works during
both pre-training and episodic training (see Table 1).

Our main contributions are three-fold: (1) To the best of
our knowledge, we are the first to bring to light the hubness
problem in the context of FSL. (2) We propose to alleviate
the negative effects of the hubness problem in FSL by em-
ploying the z-score feature normalization. We also provide
theoretical analysis on why it works. (3) Comprehensive ex-
periments are carried out to demonstrate that the simple ZN
operation can boost a variety of embedding/metric-based
FSL methods which dominated the state-of-the-art lately.
The code and models will be released soon.

2. Related Work
Few-Shot Learning. Most recent few-shot learning (FSL)
approaches [52, 35, 8, 47, 49, 30, 2, 59, 7, 63] are based
on meta-learning using an episodic training strategy. They
can be categorized into four groups: metric-based, model-
based, optimization-based, and generation-based ones. (1)
Metric-based methods try to learn suitable distance metrics
for nearest neighbor search based classification. They ei-
ther learn one embedding space for their chosen/designed
metrics [52, 47, 49, 28] (e.g., Euclidean distance) or di-
rectly learn the metric [49, 56, 3, 40, 16, 58]. Instead of
embedding all samples into a shared task-agnostic metric
space, [60, 31, 59, 44] further learn task-adaptive metric
spaces for FSL. (2) Model-based methods [8, 29, 39] aim
to learn good model initialization using the base classes,
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in order to quickly fine-tune them with a limited number
of gradient update steps on novel classes using only few la-
beled samples. (3) Optimization-based methods [35, 27, 24]
meta-learn novel optimization algorithms instead of the
standard gradient descent, again for quick adaptation from
base to novel classes. (4) Generation-based methods meta-
learn generators on base classes to either generate addi-
tional novel class samples [12, 55, 41, 22] or directly gen-
erate network parameters [32, 10, 11] based on the few
shots of novel classes. In this paper, we mainly focus on
embedding/metric-based FSL methods with nearest neigh-
bor classifiers which suffer from the hubness problem. We
show that a simple z-score feature normalization can im-
prove their performance, often by considerable margins.

Feature Normalization for FSL. Normalization is univer-
sal and also essential in deep neural networks (e.g., Batch
Normalization [15] in CNNs). In this paper, we focus on
the effects of normalization at the final feature level for
FSL. For meta-learning based FSL, Nguyen et al. [28]
propose SEN which forces equal l2 norms on all samples
and modifies the Euclidean distance metric accordingly to
learn features with similar norms. However, we find that
applying z-score normalization (ZN) is simpler yet more
effective for FSL. Importantly, we are motivated to solve
the hubness problem while SEN is not. For non-meta-
learning based FSL, several methods [25, 51] also employ
l2 normalization. They carefully design training algorithms
to pre-train their models on base classes and then directly
fine-tune them with few novel class samples without meta-
learning. In contrast, we show that both pre-training and
meta-learning can benefit from our ZN and having both
steps leads to better performance. Additionally, the most
related work to ours is SimpleShot [54], and we have the
following differences: (1) We discover the existence of the
hubness problem in FSL and provide a theoretical analysis
while SimpleShot does neither. (2) We propose to address
the hubness problem by adopting ZN based on the analysis
while SimpleShot propose to adopt CL2N (i.e., centered l2
normalization) with no reason. (3) Our choice ZN is per-
formed on top of each feature vector independently, which
is flexible enough to be applied over both pre-trained mod-
els (see Table 4) and meta-learning based methods; as for
CL2N in SimpleShot, since it transforms test sample fea-
tures by subtracting the mean of whole training set fea-
tures before l2 normalization, it can only be used over pre-
trained/trained models rather than being integrated into the
meta-training process. (4) ZN is insensitive to the train-test
data distribution gap while SimpleShot is sensitive to it (see
our analysis in Section 4.3).

Hubness Problem. The hubness problem is first studied in
[34]. Following this prior work, hubness is then studied in
the context of zero-shot learning (ZSL) [43, 6, 62] and nat-
ural language processing (NLP) [50, 46, 18]. In the field of

FSL, although metric-based methods typically employ near-
est neighbor classifiers in a high dimensional embedding
space, the hubness problem has attracted little attention. In
this paper, we not only show that hubness does exist in FSL,
but also provide a z-score normalization based solution and
theoretical analysis on how it works.

3. Methodology
3.1. Preliminary

We first give a formal definition of the few-shot learning
(FSL) problem. Let Cb denote a set of base classes and Cn
denote a set of novel classes, where Cb ∩ Cn = ∅. We are
then given a large sample set Db from Cb, a few-shot sam-
ple set Dn from Cn, and a test set T also from Cn, where
Dn ∩ T = ∅. Concretely, Db = {(Ii, yi)|yi ∈ Cb; i =
1, 2, · · · , Nb}, where Ii denotes the i-th image, yi is the
class label of Ii, and Nb denotes the number of images in
Db. Similarly, the K-shot (i.e., each novel class only has
K labeled images) sample set Dn = {(Ii, yi)|yi ∈ Cn; i =
1, 2, · · · , Nn}, where Nn = K|Cn|. The goal of FSL is
thus to predict the labels of test images in T by exploit-
ing the abundant base class sample set Db and the few-shot
novel class sample set Dn.

Recent meta-learning based FSL methods mostly adopt
an episodic training strategy, which means that their mod-
els are trained over multiple base class classification meta-
tasks (or episodes) sampled from Cb (i.e., only the base class
samples in Db are used for meta-training). The learned
models are then evaluated over novel class episodes ran-
domly sampled from Cn. Specifically, to form an N -way
K-shot Q-query episode e = S ∪ Q, a subset C contain-
ing N classes is first randomly sampled from Cb during
meta-training (or from Cn during meta-test). A support set
S = {(Ii, yi)|yi ∈ C; i = 1, 2, · · · , N×K} and a query set
Q = {(Ii, yi)|yi ∈ C; i = 1, 2, · · · , N×Q} (S∩Q = ∅) are
then generated by sampling K support and Q query images
from each class in the subset C, respectively.

We employ Prototypical Network (ProtoNet) [47] to in-
troduce the hubness problem and formulate our solution.
ProtoNet is chosen because it is simple yet effective and un-
derpins many recent SOTA FSL methods [2, 59, 63]. Con-
cretely, ProtoNet first obtains a prototype for each class in
an N -way K-shot episode by computing the mean repre-
sentation of support samples from each class:

pc =
1

|Sc|
∑

(I,y)∈Sc

fϕ(I), (1)

where pc denotes the prototype of class c ∈ C, Sc =
{(I, y) ∈ S|y = c} ⊆ S denotes the set of support samples
from class c (|Sc| = K), and fϕ is a feature extractor with
learnable parameters ϕ whose output dimension is D (i.e.,
x = fϕ(I) ∈ RD). For each query image I in Q, ProtoNet
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then computes the distances to all class prototypes and ob-
tains the probabilities over N classes based on softmax:

ψc(x) =
exp(−d(x,pc))∑

c′∈C exp(−d(x,pc′))
, x = fϕ(I), (2)

where ψc(x) denotes the probability that x belongs to class
c (

∑
c∈C ψc(x) = 1), and d : RD × RD → [0,+∞) is

the squared Euclidean distance in the feature space. Specif-
ically, we use the temperature scaling technique in all of our
experiments when computing the distances in order to find
the suitable scale for the metric:

d(x,pc) = ∥x− pc∥2/T, (3)

where T is the temperature hyper-parameter.
The classification loss of ProtoNet for each meta-training

episode e is then defined as the negative log-probability of
the true class of each query sample:

Lfsl(e) =
1

|Q|
∑

(I,y)∈Q

− logψy(fϕ(I)). (4)

3.2. Z-Score Normalization for FSL

As mentioned earlier, all embedding/metric learning
based FSL methods are prone to the hubness problem and
the BN used in the embedding network is one of the rea-
sons for that. We thus propose to use z-score normalization
to alleviate the hubness problem.

Concretely, let xi (i = 1, 2, · · · , D) denote the i-th com-
ponent of each feature vector x ∈ RD. We first compute the
mean and the standard deviation of these D components:

µx =
1

D

D∑
i=1

xi, σx =

√√√√ 1

D

D∑
i=1

(xi − µx)2. (5)

Z-score normalization is then applied as

x(zn) = ZN(x) =
x− µx1

σx
∈ RD, (6)

where 1 = [1, 1, · · · , 1]T is a D-dimensional vector with
its components being all ones.

From the above definition of z-score feature normaliza-
tion, we can obtain that

∥x(zn)∥ =

√√√√ D∑
i=1

(
xi − µx

σx
)2

=

√√√√ ∑D
i=1(xi − µx)2

1
D

∑D
i=1(xi − µx)2

=
√
D, (7)

< x(zn),1 > =

D∑
i=1

xi − µx

σx
· 1

=

∑D
i=1 xi −Dµx

σx
= 0, (8)

(a) Z-score normalization (b) l2 normalization

Figure 2. Examples of z-score and l2 feature normalizations in 3D
space. Blue dots are samples around the 1 vector before normal-
ization, while red ones are those after normalization. The black
dot is the origin of coordinates.

where < ·, · > denotes the dot product of two vectors. We
can see from these calculations that z-score normalization
first projects the original feature vectors along the 1 vector
to a hyperplane which contains the origin and is perpendic-
ular to 1. These vectors are then scaled to the same length of√
D, i.e., the final normalized vectors lie on a hypersphere

with the radius
√
D (see Figure 2(a)).

Note that since we apply z-score normalization to each
feature vector independently, the non-transductive FSL set-
ting is still strictly followed. Once learned, with the optimal
feature extractor fϕ found by ProtoNet+ZN (i.e., ProtoNet
trained with ZN), we randomly sample multiple meta-test
episodes from the set of novel classes Cn and then evaluate
the learned model over these episodes also with ZN on top
of the output features obtained by fϕ.

3.3. Analysis of Hubness Problem

To show the benefit of applying z-score feature nor-
malization in addressing the hubness problem, we follow
[34, 43] and explicitly study the effect of hubness with two
data distributions: the normal distribution and the distribu-
tion on a hypersphere.
Normal Distribution. Let a ∈ RD denote a random vec-
tor in the D-dimensional space, with each of its channels ai
independently following a normal distribution with the ex-
pectation ui and the variance v, i.e., a ∼ N (u, vI), where
u = [u1, u2, · · · , uD]T and I ∈ RD×D is the identity ma-
trix. Let s =

√
Var(∥a− u∥2) be the standard deviation of

the squared norm of the difference between a and its expec-
tation u, where Var(·) denotes the variation of a distribution.
Consider two data points a1 and a2 randomly sampled from
N (u, vI), satisfying that

∥a1 − u∥2 − ∥a2 − u∥2 = γs, (9)

where γ is a constant. We use the expected difference ∆
between the squared Euclidean distances from a1 and a2 to
â to describe the effect of hubness problem, where â is also
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sampled from a:

∆ = E(∥a1 − â∥2)− E(∥a2 − â∥2). (10)

For each term E(∥ai − â∥2) (i = 1, 2) in Eq. (10), we have

E(∥ai − â∥2)
=E(∥(ai − u)− (â− u)∥2)
=∥ai − u∥2 + E(∥â− u∥2)− 2(ai − u)TE(â− u)

=∥ai − u∥2 + E(∥â− u∥2). (11)

We can then obtain that

∆ =
[
∥a1 − u∥2 + E(∥â− u∥2)

]
−
[
∥a2 − u∥2 + E(∥â− u∥2)

]
=∥a1 − u∥2 − ∥a2 − u∥2 = γs. (12)

Since a ∼ N (u, vI), we have a−u√
v
∼ N (0, I) and further

∥a−u∥2

v ∼ χ2(D), where χ2(D) is the chi-squared distribu-
tion with the degree of freedom D. We then have

∆ = γs = γ

√
v2Var(

∥a− u∥2
v

)

= γ
√
v2 · 2D =

√
2Dγv. (13)

We can infer from Eq. (13) that samples close to the
data mean tend to be hubs since a randomly sampled data
point is expected to be closer to a2 than a1 if γ > 0 (i.e.,
∥a1 − u∥2 − ∥a2 − u∥2 > 0). This analysis also suggests
that the effects of hubness problem in FSL can be alleviated
by reducing the chance of sampling support samples whose
distances to the data mean vary greatly (i.e., reducing the
chance of getting a large γ when sampling a1 and a2 in the
above example). A natural idea is thus to make the origin
of coordinates be the data mean and then make the norms
of all feature vectors identical. Next we discuss the hubness
problem with data distribution on the unit hypersphere.
Distribution on Hypersphere. Without loss of generality,
we consider the unit hypersphere since the radius does not
change the relative positions of data points. Let b ∈ RD

denote a random vector on the D-dimensional unit hyper-
sphere with the expectation E(b). Note that E(b) not nec-
essarily lies on the surface of the hypersphere, i.e., its norm
l = ∥E(b)∥ ∈ [0, 1]. Let s′ =

√
Var(cos(b,E(b))) be the

standard deviation of the cosine similarity between b and its
expectation. Consider two data points b1 and b2 randomly
sampled from b, satisfying that

cos(b1,E(b))− cos(b2,E(b)) = γ′s′, (14)

where γ′ is a constant. We still use the expected difference
between the squared Euclidean distances from b1 and b2 to

b̂ to describe the effect of hubness problem, where b̂ is also
sampled from b:

∆′ = E(∥b1 − b̂∥2)− E(∥b2 − b̂∥2). (15)

For each term E(∥bi − b̂∥2) (i = 1, 2) in Eq. (15), we have

E(∥bi − b̂∥2) = E(∥bi∥2 + ∥b̂∥2 − 2bT
i b̂)

= 2(1− bT
i E(b)). (16)

Thus we can obtain that

∆′ =2(1− bT
1 E(b))− 2(1− bT

2 E(b))
=− 2l[cos(b1,E(b))− cos(b2,E(b))]
=− 2lγ′s′. (17)

We can draw a similar conclusion from Eq. (17) that data
points having high cosine similarities with the distribution
mean tend to be hubs. Moreover, when l = 0 (i.e., E(b)
becomes the origin of coordinates), neither b1 nor b2 has a
greater chance of being a hub. This validates the aforemen-
tioned idea that making feature vectors lie on a hypersphere
with zero mean help address the hubness problem. Mean-
while, we choose z-score feature normalization instead of
direct l2 normalization because the former pulls the data
mean closer to the origin than the latter (see Figure 2).

4. Experiments
4.1. Datasets and Settings

Datasets. We choose three widely-used benchmarks: (1)
miniImageNet [52]: It consists of 100 classes (with 600
images per class) from ILSVRC-12 [38]. We take the split
setting of [35]: 64 base classes, 16 validation classes, and 20
novel classes. (2) tieredImageNet [37]: This is a larger sub-
set of ILSVRC-12, which contains 608 classes and 779,165
images in total. We split it into 351 base classes, 97 valida-
tion classes, and 160 novel classes as in [37]. (3) CUB-200-
2011 Birds (CUB) [53]: CUB is a fine-grained dataset of
birds, which has 200 bird classes and 11,788 images totally.
We follow [59] and split the dataset into 100 base classes,
50 validation classes, and 50 novel classes. All images of
the three datasets are resized to 84× 84.
Evaluation Protocols. We test the learned models under
the 5-way 5-shot/1-shot settings. Concretely, each episode
has 5 classes randomly sampled from the test split, where
each class is composed of 5 shots (or 1 shot) and 15 queries.
We thus have N = 5, K = 5 or 1, and Q = 15 for all
meta-test episodes. When applying z-score normalization,
although all feature vectors (i.e., those of both support and
query samples) are transformed during both meta-training
and meta-test, they are normalized independently. This
means that the meta-test process still strictly follows the
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non-transductive setting. We report the mean 5-way few-
shot classification accuracy (%, top-1) over 2,000 episodes
from novel classes as well as the 95% confidence interval.
Backbones. We adopt Conv4-64 [52], Conv4-512 and
ResNet-12 [14] as the feature extractors fϕ for fair compar-
ison with published results. Conv4-64 and Conv4-512 both
consist of four convolutional blocks, with each block con-
taining a convolutional layer, a batch normalization layer, a
ReLU activation layer, and a max pooling layer. The chan-
nel numbers of the four convolutional layers for Conv4-64
and Conv4-512 are 64-64-64-64 and 64-64-64-512, respec-
tively. A global pooling layer is also adopted after four
blocks, resulting in the output feature dimensions 64 and
512 for Conv4-64 and Conv4-512, respectively. ResNet-
12 is also composed of four blocks, with three convolu-
tional layers in each block and residual connections be-
tween blocks. The output dimension of ResNet-12 is 640.
Implementation Details. We pre-train all three backbones
on the training split of each dataset to accelerate the train-
ing process as per common practice [61, 59, 44]. For
Conv4-64 and Conv4-512, we employ the Adam optimizer
[17] with the initial learning rate of 1e-4. For ResNet-
12, the stochastic gradient descent (SGD) optimizer is em-
ployed with the initial learning rate of 1e-4, the weight
decay of 5e-4, and the Nesterov momentum of 0.9. The
learning rate is halved every 20 epochs in all experiments.
The scaling hyper-parameter T in Eq. (3) is selected from
{16, 32, 64, 128, 256} according to the validation perfor-
mances. We also adopt the element-wise affine transfor-
mation when applying ZN during episodic training in the
experiments, i.e., x(zn) ← x(zn)⊙ω+β, where ⊙ denotes
the element-wise multiplication, and ω ∈ RD and β ∈ RD

are the learnable weight and bias parameters, respectively.

4.2. Main Results

Note that we can employ any metric-based FSL method
as the baseline. Without loss of generality, we apply the z-
score feature normalization to three classic/state-of-the-art
FSL approaches: ProtoNet [47], IMP [2], and IEPT [63].
Particularly, for simple implementation, we only use the
main module (i.e., the concatenation of four feature vec-
tors that come from the original image and three augmented
ones, denoted with †) of IEPT instead of the whole model.
After adopting ZN, each FSL model is thus named with the
suffix ‘+ZN’. For fair comparison, we re-implement Pro-
toNet, IMP, and IEPT† by also adopting the temperature
scaling technique with different backbones.

The comparative results on the three datasets are shown
in Table 1, Table 2, and Table 3, respectively. Models using
the same backbones are placed together. We can make the
following observations: (1) The z-score feature normaliza-
tion boosts a variety of metric-based FSL methods. Specif-
ically, the improvements achieved by methods trained with

Method Backbone 5-way 1-shot 5-way 5-shot
MatchingNet [52] Conv4-64 43.56± 0.84 55.31± 0.73
MAML [8] Conv4-64 48.70± 1.84 63.10± 0.92
RelationNet [49] Conv4-64 50.40± 0.80 65.30± 0.70
Baseline++ [5] Conv4-64 48.24± 0.75 66.43± 0.63
DN4 [23] Conv4-64 51.24± 0.74 71.02± 0.64
PARN [56] Conv4-64 55.22± 0.84 71.55± 0.66
Centroid [1] Conv4-64 53.14± 1.06 71.45± 0.72
Neg-Cosine [25] Conv4-64 52.84± 0.76 70.41± 0.66
FEAT [59] Conv4-64 55.15± 0.20 71.61± 0.16
ProtoNet [47] Conv4-64 53.01± 0.45 71.10± 0.36
IMP [2] Conv4-64 51.80± 0.44 70.09± 0.36
IEPT† [63] Conv4-64 54.87± 0.44 73.76± 0.34
ProtoNet+ZN Conv4-64 55.16± 0.44 71.78± 0.36
IMP+ZN Conv4-64 54.74± 0.44 70.66± 0.36
IEPT†+ZN Conv4-64 57.83± 0.45 74.88± 0.34

MAML [8] Conv4-512 49.33± 0.60 65.17± 0.49
Relation Net [49] Conv4-512 50.86± 0.57 67.32± 0.44
PN+rot [9] Conv4-512 56.02± 0.46 74.00± 0.35
CC+rot [9] Conv4-512 56.27± 0.43 74.30± 0.33
ProtoNet [47] Conv4-512 54.73± 0.45 73.06± 0.36
IMP [2] Conv4-512 52.58± 0.45 72.29± 0.36
IEPT† [63] Conv4-512 55.40± 0.45 74.29± 0.35
ProtoNet+ZN Conv4-512 56.63± 0.45 73.90± 0.35
IMP+ZN Conv4-512 54.76± 0.45 72.47± 0.36
IEPT†+ZN Conv4-512 57.76± 0.45 75.11± 0.35

TADAM [30] ResNet-12 58.50± 0.30 76.70± 0.38
MetaOptNet [19] ResNet-12 62.64± 0.61 78.63± 0.46
MTL [48] ResNet-12 61.20± 1.80 75.50± 0.80
AM3 [57] ResNet-12 65.21± 0.49 75.20± 0.36
Shot-Free [36] ResNet-12 59.04± 0.43 77.64± 0.39
Neg-Cosine [25] ResNet-12 63.85± 0.81 81.57± 0.56
Distill [51] ResNet-12 64.82± 0.60 82.14± 0.43
DSN-MR [44] ResNet-12 64.60± 0.72 79.51± 0.50
DeepEMD [61] ResNet-12 65.91± 0.82 82.41± 0.56
FEAT [59] ResNet-12 66.78± 0.20 82.05± 0.14
ProtoNet [47] ResNet-12 63.38± 0.45 81.22± 0.30
IMP [2] ResNet-12 63.70± 0.47 80.55± 0.30
IEPT† [63] ResNet-12 64.05± 0.44 82.73± 0.29
ProtoNet+ZN ResNet-12 66.06± 0.44 81.73± 0.30
IMP+ZN ResNet-12 65.01± 0.43 81.72± 0.30
IEPT†+ZN ResNet-12 67.35± 0.43 83.04± 0.29

Table 1. Comparative results of standard FSL on miniImageNet.
The average 5-way few-shot classification accuracies (%, top-1)
along with the 95% confidence intervals are reported.

ZN over their original versions without ZN range from 0.2%
– 5.3%. This clearly validates the general applicability of
ZN for metric-based FSL. (2) The improvements obtained
by employing ZN under the 1-shot setting (1.3% – 5.3%)
are significantly larger than those under the 5-shot setting
(0.2% – 2.5%). One plausible explanation is that: classifica-
tion tasks with less support samples are more likely to suffer
from the hubness problem, and ZN is designed to alleviate
such negative effects and thus results in better performance
when the problem is more acute. (3) Methods boosted by
ZN achieve the best results on all three datasets under all
settings. Particularly, a method as simple as ProtoNet+ZN
is already comparable to the state-of-the-art, further demon-
strating the effectiveness of ZN. (4) Baseline++ [5], Neg-
Cosine [25], and Distill [51] claim that only pre-training
on the base classes (i.e., meta-training is not needed) is re-
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Method Backbone 5-way 1-shot 5-way 5-shot
MAML [8] Conv4-64 51.67± 1.81 70.30± 0.08
RelationNet [49] Conv4-64 54.48± 0.93 71.32± 0.78
ProtoNet [47] Conv4-64 53.56± 0.48 72.52± 0.41
IMP [2] Conv4-64 52.33± 0.48 72.62± 0.41
IEPT† [63] Conv4-64 54.76± 0.48 74.12± 0.40
ProtoNet+ZN Conv4-64 56.70± 0.49 73.34± 0.40
IMP+ZN Conv4-64 56.65± 0.49 73.61± 0.41
IEPT†+ZN Conv4-64 57.76± 0.49 74.90± 0.40

MAML [8] Conv4-512 52.84± 0.56 70.91± 0.46
Relation Net [49] Conv4-512 54.69± 0.59 72.71± 0.43
ProtoNet [47] Conv4-512 55.12± 0.48 75.27± 0.39
IMP [2] Conv4-512 55.62± 0.49 73.94± 0.40
IEPT† [63] Conv4-512 55.29± 0.47 75.76± 0.38
ProtoNet+ZN Conv4-512 58.93± 0.48 76.27± 0.38
IMP+ZN Conv4-512 57.30± 0.49 74.81± 0.39
IEPT†+ZN Conv4-512 59.28± 0.48 77.34± 0.38

MetaOptNet [19] ResNet-12 65.99± 0.72 81.56± 0.63
MTL [48] ResNet-12 65.62± 1.80 80.61± 0.90
AM3 [57] ResNet-12 67.23± 0.34 78.95± 0.22
Shot-Free [36] ResNet-12 66.87± 0.43 82.64± 0.43
Distill [51] ResNet-12 71.52± 0.69 86.03± 0.49
DSN-MR [44] ResNet-12 67.39± 0.82 82.85± 0.56
DeepEMD [61] ResNet-12 71.16± 0.87 86.03± 0.58
FEAT [59] ResNet-12 70.80± 0.23 84.79± 0.16
ProtoNet [47] ResNet-12 69.36± 0.52 85.80± 0.35
IMP [2] ResNet-12 65.65± 0.51 83.28± 0.35
IEPT† [63] ResNet-12 69.66± 0.52 86.41± 0.34
ProtoNet+ZN ResNet-12 71.98± 0.51 86.42± 0.34
IMP+ZN ResNet-12 67.58± 0.51 83.94± 0.35
IEPT†+ZN ResNet-12 72.28± 0.51 87.20± 0.34

Table 2. Comparative results of standard FSL on tieredImageNet.
The average 5-way few-shot classification accuracies (%, top-1)
along with the 95% confidence intervals are reported.

quired. Our results demonstrate that with ZN, even Pro-
toNet+ZN outperforms all of them (except Distill under the
5-shot on miniImageNet). This suggests that meta-training
is still of great usefulness for FSL.

4.3. Comparison to Alternative Normalizations

We compare different normalization strategies on two
datasets in Table 4 and Table 5 based on pre-trained models
and episodic training, respectively. To show the effect of
hubness, we additionally report the skewness S

N
(h)
k

of the

distribution N (h)
k (k = 1, 5) on the whole test set of each

dataset, defined as:

S
N

(h)
k

=
E(N (h)

k − µ
N

(h)
k

)3

σ3

N
(h)
k

, (18)

where N (h)
k is the distribution of k-occurrence, µ

N
(h)
k

is the

mean of N (h)
k , σ

N
(h)
k

is the standard deviation of N (h)
k , and

the skewness S
N

(h)
k

is the third moment of N (h)
k .

For experiments in Table 4, we use the same pre-trained
model for all methods on each dataset, which is trained on
the training set as a conventional classification task (e.g.,

Method Backbone 5-way 1-shot 5-way 5-shot
MatchingNet [52] Conv4-64 61.16± 0.89 72.86± 0.70
MAML [8] Conv4-64 55.92± 0.95 72.09± 0.76
Relation Net [49] Conv4-64 62.45± 0.98 76.11± 0.69
FEAT [59] Conv4-64 68.87± 0.22 82.90± 0.15
ProtoNet [47] Conv4-64 68.00± 0.51 84.41± 0.32
IMP [2] Conv4-64 67.90± 0.49 84.81± 0.31
IEPT† [63] Conv4-64 68.27± 0.51 85.30± 0.32
ProtoNet+ZN Conv4-64 71.30± 0.49 85.35± 0.32
IMP+ZN Conv4-64 71.22± 0.48 85.51± 0.31
IEPT†+ZN Conv4-64 73.54± 0.48 87.82± 0.30

Table 3. Comparative results of fine-grained FSL on CUB. The
average 5-way few-shot classification accuracies (%, top-1) along
with the 95% confidence intervals are reported.

Method 1-shot Acc. 5-shot Acc. S
N

(h)
1

S
N

(h)
5

miniImageNet:
None 49.89± 0.44 69.54± 0.37 3.219 3.259
l2 49.91± 0.44 69.73± 0.36 3.087 3.141
CS l2 52.07± 0.44 69.74± 0.36 / /
SimpleShot [54] 53.21± 0.44 69.84± 0.36 2.322 2.337
ZN 52.80± 0.44 70.19± 0.36 2.360 2.411
tieredImageNet:
None 51.12± 0.47 69.26± 0.42 2.702 2.812
l2 51.92± 0.47 70.44± 0.42 2.415 2.588
CS l2 52.21± 0.46 69.53± 0.42 / /
SimpleShot [54] 52.89± 0.47 69.61± 0.42 2.241 2.250
ZN 53.76± 0.47 70.82± 0.42 2.072 2.093

Table 4. Comparative results of alternative normalization opera-
tions over the pre-trained models on two benchmarks. The aver-
age 5-way few-shot classification accuracies (%, top-1) along with
the 95% confidence intervals are reported. To show the effect of
hubness, the skewnesses S

N
(h)
1

and S
N

(h)
5

are reported.

64-class classification on the training set of miniImageNet)
and is validated on the validation set as a multi-way few-
shot classification (e.g., 16-way few-shot classification for
miniImageNet) based on the nearest neighbor. We compare
ZN with directly using the pre-trained model (denoted as
‘None’) and three alternative ways of normalization: (1) l2:
l2 normalization. (2) CS l2 (centering with support mean
before l2): for each feature vector in an episode, it is cen-
tered by subtracting the mean of all support features before
applying l2 normalization. Since it can be only employed
within each episode, we cannot compute S

N
(h)
k

based on
the whole test set. (3) SimpleShot [54]: each test fea-
ture vector is normalized by subtracting the mean of the
whole training set before l2 normalization. We can ob-
serve from Table 4 that: (1) Compared to ‘None’, all nor-
malizations help improve the FSL results and alleviate the
effect of the hubness problem since S

N
(h)
1

and S
N

(h)
5

be-
come smaller. This indicates that mitigating the hubness
problem is helpful for FSL. (2) ZN achieves the best re-
sults on tieredImageNet in terms of all evaluation metrics
and is very close to SimpleShot on miniImageNet. Sim-
pleShot performs better on miniImageNet because it centers
the test features with training set mean and the train-test gap
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Method 1-shot Acc. 5-shot Acc. S
N

(h)
1

S
N

(h)
5

miniImageNet:
ProtoNet+Ring [28] 53.22± 0.44 71.53± 0.35 2.856 2.916
SEN [28] 53.38± 0.45 71.06± 0.35 2.698 2.809
ProtoNet [47] 53.01± 0.45 71.10± 0.36 2.914 2.884
ProtoNet+l2 53.99± 0.45 71.50± 0.35 2.743 2.877
ProtoNet+CS l2 53.93± 0.43 71.32± 0.35 / /
ProtoNet+ZN 55.16± 0.44 71.78± 0.36 2.572 2.565
tieredImageNet:
ProtoNet+Ring [28] 53.47± 0.48 72.66± 0.41 3.003 3.134
SEN [28] 53.10± 0.48 71.86± 0.41 3.035 3.220
ProtoNet [47] 53.56± 0.48 72.52± 0.41 2.937 3.045
ProtoNet+l2 55.13± 0.49 72.98± 0.40 2.787 2.931
ProtoNet+CS l2 55.39± 0.47 72.92± 0.40 / /
ProtoNet+ZN 56.70± 0.49 73.34± 0.40 2.203 2.312

Table 5. Comparative results of alternative normalization opera-
tions with episodic training on two benchmarks. The average 5-
way few-shot classification accuracies (%, top-1) along with the
95% confidence intervals are reported. To show the effect of hub-
ness, the skewnesses S

N
(h)
1

and S
N

(h)
5

are reported.

is smaller for miniImageNet than that of tieredImageNet,
while ZN is insensitive to the train-test gap. This also vali-
dates our idea in Section 3.3 that when the dataset mean can
be estimated accurately, centering before normalization can
be helpful. (3) CS l2 also performs centering but the results
are not as good as ZN. This is because the support mean is
not reliable enough especially with less shots.

For experiments in Table 5, we conduct episodic training
with different normalizations. SimpleShot is not adopted
here since it cannot be integrated into the meta-training
process. We compare two additional methods: (1) Pro-
toNet+Ring [28] adopts an extra Ring loss [64] to explicitly
constrain the norms of feature vectors besides the standard
ProtoNet FSL loss; (2) SEN [28] modifies the Euclidean
distance metric to learn features with similar norms. It
can be observed from Table 5 that ZN is also able to help
the episodic training process and ProtoNet+ZN consistently
beats all compared methods.

4.4. Visualization Results

To observe the effects of hubness on data with multiple
classes/clusters, we visualize the kNN relations with k = 5
among samples in Figure 3. Concretely, we first randomly
sample two subsets from the test split of miniImageNet (cor-
responding to two rows in Figure 3), with each subset con-
taining 5 classes and 250 samples in total. For each subset,
we then visualize two kNN matrices with ProtoNet (left)
and ProtoNet+ZN (right), respectively. In each matrix, both
two axes represent the ID of the samples. If the i-th sam-
ple is among the 5 nearest neighbors of the j-th sample, a
point is then plotted at coordinates (i, j) (i.e., there are ex-
actly 5 points in each row). The color of points indicates
the N (h)

5 value of the i-th sample, and deeper color repre-
sents higher value. Since we sort the samples by class, the
ideal case would be that the k nearest neighbors of every

Figure 3. Visualizations of kNN matrices on two subsets (corre-
sponding to two rows) of the miniImageNet test set. Each sub-
set contains 5 randomly sampled classes with 50 samples in each
class. Subfigures in the left column are results of ProtoNet, while
right ones are results of ProtoNet+ZN. Conv4-64 is adopted.

sample are only those from the same class, i.e., only the di-
agonal blocks would be colored. We can see from the left
column that there exist deep colored vertical lines, which
correspond to hubs that appear among the 5 nearest neigh-
bors of many other samples, even of those not belonging
to the same class as the hubs. The presence of such hubs
clearly harms the classification performance. On the con-
trary, kNN matrices of ProtoNet+ZN (in the right column)
are cleaner in the off-diagonal areas, and the long vertical
lines disappear. This demonstrates the ability of ZN to mit-
igate the hubness problem for FSL.

5. Conclusion

In this paper, we have discovered the existence of the
hubness problem in FSL, identified the cause and also pro-
posed a solution on how to alleviate the effect of hubness
based on a theoretical analysis. Specifically, we propose
to apply z-score feature normalization, which is simple yet
effective in mitigating the hubness problem. We validate
its effectiveness with extensive experiments and visualiza-
tions. It is also shown to be generally applicable, boosting
the performance of a variety of metric-based FSL methods.
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