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Abstract
3D object grounding aims to locate the most relevant

target object in a raw point cloud scene based on a free-
form language description. Understanding complex and di-
verse descriptions, and lifting them directly to a point cloud
is a new and challenging topic due to the irregular and
sparse nature of point clouds. There are three main chal-
lenges in 3D object grounding: to find the main focus in the
complex and diverse description; to understand the point
cloud scene; and to locate the target object. In this pa-
per, we address all three challenges. Firstly, we propose
a language scene graph module to capture the rich struc-
ture and long-distance phrase correlations. Secondly, we
introduce a multi-level 3D proposal relation graph module
to extract the object-object and object-scene co-occurrence
relationships, and strengthen the visual features of the ini-
tial proposals. Lastly, we develop a description guided 3D
visual graph module to encode global contexts of phrases
and proposals by a nodes matching strategy. Extensive
experiments on challenging benchmark datasets (ScanRe-
fer [3] and Nr3D [42]) show that our algorithm outper-
forms existing state-of-the-art. Our code is available at
https://github.com/PNXD/FFL-3DOG.

1. Introduction
Imagine a scenario where an old person with limited mo-

bility wakes up in the morning, feeling unwell, and instructs
a robot to fetch medicine from a brown table. He/she could
say “A brown table is located in the corner of the room,
it is to the right of a white cabinet and to the left of black
shoes. The front of it is a light blue curtain.” For a human,
finding the table based on the free-form language is an easy
task. However, for assistive robots, parsing the large 3D vi-
sual scene, finding the target object and understanding the
global context based on natural language descriptions is a
challenging task. These sentences describe the appearance
of the target object (table), its spatial location relative to
other objects (cabinet, curtain and shoes) and the global
∗Equal contribution
†Corresponding author

Figure 1. Proposed model for object grounding in 3D scenes. A
multi-level proposal relation graph Go is formed to strengthen the
visual features of the initial proposals, then the 3D visual graph
Gu is constructed under the guidance of the language scene graph
Gl which refines the initial coarse proposals. The language scene
graph Gl predicts the nodes matching with the 3D visual graph
Gu and the matching scores φ1 and φ2 are fused to make the final
grounding predictions.

scene (room), which offer a rich source of information to
localize the target object and guide the robot.

With the widespread availability of LiDARs, depth cam-
eras and light field cameras [13, 12], 3D scene represen-
tation in the from of point clouds is becoming increas-
ingly available and affordable in many application domains
such as robotics, autonomous driving etc. Understanding
the free-form descriptions and lifting them to the 3D point
cloud scene is a new topic and challenging in the field of
vision-and-language.

Research on the use of complex descriptions for 3D ob-
ject grounding in point clouds is still in its infancy and only
a few methods exist in the literature. To advance this line
of research, ScanRefer [3] introduced the first large-scale
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dataset that couples free-form descriptions to objects in 3D
scenes. The ScanRefer [3] method consists of two stages:
the first stage aims to use a 3D object detector VoteNet [24]
to generate a set of 3D object proposals based on the input
point cloud, the second stage correlates a global language
expression with 3D visual features of each proposal, com-
putes a confidence score for each fused feature, and then
takes the proposal with the highest score as the target object.
Similar to ScanRefer [3], Yuan et al. [42] replaced the 3D
object detector with 3D panoptic segmentation backbone to
obtain instance-level candidates, and captured the context
of each candidate for visual and language feature matching,
where the instance with the highest score is regarded as the
target object.

The above methods suffer from several issues due to the
inherent difficulties of both complex language processing
and irregular 3D point cloud recognition. Firstly, free-form
descriptions are complex and diverse in nature, and contain
several sentences where strong context and long-term rela-
tion dependencies exist among them. Both ScanRefer [3]
and InstanceRefer [42] do not consider that and only learn
holistic representations of the description. Secondly, these
two-stage solutions heavily rely on 3D object detectors or
3D panoptic segmentation backbones, and the quality of the
object proposals obtained in the first stage are coarse which
severely affect the overall performance. Conventional two-
stage methods use the coarse object proposals directly in
the following steps and fail to consider the relationships be-
tween the surrounding object proposals and global informa-
tion in cluttered 3D scenes to refine the visual features of
coarse proposals. Thirdly, the relationships between object
proposals and phrases have not been fully explored. All
existing methods [3, 42] neglect linguistic and visual struc-
tures, and only fuse the global input description embedding
with 3D visual features for grounding.

To address the aforementioned limitations, we propose
a free-form description guided 3D visual graph network
for 3D object grounding in point clouds, as shown in Fig-
ure 1. Especially, to incorporate the rich structure and lan-
guage context, we parse the complex free-form description
into three components (noun phrases, pronouns and relation
phrases) and construct a language scene graph to compute
context-aware phrase presentation through message propa-
gation, in which the nodes and edges correspond to noun
phrase plus pronouns and relation phrases respectively.
Moreover, through the 3D object detector of VoteNet [24],
a set of initial 3D object proposals are extracted from the in-
put raw point cloud. We introduce a multi-level 3D relation
graph to leverage two co-occurrence relationships (object-
object and object-scene), which strengthen the visual fea-
tures of the initial proposals to boost the performance of the
subsequent operations. Furthermore, we use the language
scene graph to guide the pruning of redundant proposals

and then refine the selected ones. Built on top of the refined
proposal set, we introduce a 3D visual graph to generate a
context-aware object representation via message propaga-
tion. Concretely, nodes are the selected proposals relevant
to the noun phrase, and the edges encode the relationships
between object proposals. Finally, the nodes of 3D visual
graph are adaptively matched with the nodes of language
scene graph, then fused with the matching score in propos-
als pruning for the final 3D object grounding.

To sum up, our key contributions include: (1) We
propose a free-form description guided 3D visual graph
for object grounding that directly exploits the raw point
cloud and is end-to-end trainable. (2) We propose a lan-
guage scene graph module that captures the rich structure
and long-distance phrase correlations; (3) We propose a
multi-level 3D proposal relation graph module that extracts
the object-object and object-scene co-occurrence relation-
ships to strengthen the visual features of the initial propos-
als; (4) We propose a description 3D visual graph mod-
ule that encodes global contexts of phrases and proposals
through nodes matching. Experiments were performed on
the benchmark ScanRefer [3] and Nr3D [3] datasets and
state-of-the-art results [3, 2, 42] were achieved.

2. Related work
2D object grounding in images: 2D visual grounding
aims to localize objects in an image corresponding to
noun phrases from a given language description [26, 8].
A significant number of 2D visual grounding works can
be found in the literature that focus on bounding-box-
level [35, 31, 7, 41, 11, 17] and pixel-level [40, 18, 39] com-
prehensions from the input language description. Most 2D
object grounding approaches follow a two stage approach
where an pre-trained object detector like Faster RCNN [28]
is first used to generate a set of 2D bounding box candidates
based on the input image, and then the referred object is pre-
dicted in the second stage depending on the ranked match-
ing score between each 2D bounding box candidate and the
query sentence. However, most 2D object grounding meth-
ods mainly focus language description comprising a single
sentence [14, 23, 19]. Although impressive progress has
been made in the field of 2D object grounding, there is lit-
tle work on lifting natural language processing tasks to 3D
point clouds. Effective modeling of 3D vision-language
tasks require establishing carefully designed connections
between language and the 3D point cloud data. Whereas
2D visual grounding methods can provide some guidance
for 3D relationships learning, they can not be directly used
for 3D object grounding in point clouds.

3D Object Detection in Point Clouds: Point clouds
are usually converted to canonical forms such as 2D im-
ages [6, 34, 27] or regular grids [43, 33, 16] for 3D object
detection with Convolutional Neural Networks. Recently,
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Qi et al. [24] proposed a framework to process raw point
clouds directly and then predict 3D bounding boxes in clut-
tered scenes via a combination of PointNet++ [25] back-
bone and Hough voting. However, VoteNet [24] focuses
on regressing each 3D object independently and the local
geometric information is not well accounted for. Chen et
al. [4] proposed a hierarchical graph network to aggregate
features and capture shape information of objects in point
clouds. Point-GNN [29] differs from previous works by in-
troducing a graph neural network to detect the category and
shape of 3D objects that each nodes in the graph belongs
to. Since the 3D real world scene contains partially scanned
objects with physical connections, dense placement, chang-
ing sizes, and a wide variety of challenging relationships,
there is still much room for improvement in the accuracy of
current 3D object detection methods.
3D Vision and Language: Compared to the significant
progress made in joint inference of language and images,
connecting 3D vision to natural language is a relatively new
research topic. A recent dataset [20] combines RGB-D im-
ages with language expression to explore the potential gains
from adding depth channel beyond a single RGB image.
Kong et al. [15] exploit language description of single-view
RGB-D images of scenes to align the nouns/pronouns with
the referred visual objects. Chen et al. [5] presented con-
ditional generation of 3D models from text, which could
be useful in augmented reality applications. Achlioptas et
al. [2] introduced a new large-scale dataset and task that
identifies the specific object instances from the same cate-
gory with known 3D bounding boxes. Unlike these meth-
ods, we focus on 3D object grounding task extended from
ScanRefer [3] by capturing the rich structure in the free-
form description, extracting the object-object and object-
scene co-occurrence relationships in the 3D scene and en-
coding global contexts of phrases and object proposals by a
nodes matching strategy.

3. Proposed Approach
Figure 2 shows an overview of our free-form description

guided 3D object grounding method. It includes a language
scene graph module, a multi-context proposal relation graph
module and a description guided 3D visual graph module.

3.1. Language Scene Graph Module
Unlike single sentences used in most image-language

tasks [36, 44, 32, 37], we adopt free-form language descrip-
tions composed of several sentences in our work, where
additional challenges such as long-distance phrase correla-
tions emerge. Specifically, we first build a language scene
graph Gl from the free-form 3D scene description L to cap-
ture the rich structure and relationships between the phrases.
(1) Parsing free-form descriptions: As the language de-
scriptions tend to describe not only the properties of the re-
ferred 3D object, but also its relationships with nearby 3D

objects or the 3D scene, we parse the complex free-form
language description into three sub-components by adopt-
ing an off-the-shelf Language Scene Graph Parser [1]. We
refine the Language Scene Graph Parser [1] for our free-
form language description guided 3D visual grounding task
by the rule-based post-processing.
Noun phrases: We first build a noun library using ground
truth 3D object classes of interest in the training dataset, and
then add synonyms and plural to the noun library. We ex-
tract nouns from the free-form description, and match them
to the 3D object classes. We connect nouns not only to the
3D object class, but also to its synonyms and plural forms.
To get 3D object attributes for a noun, such as color, shape
and size, we search all attribute words that modify a noun
of interest in the Scene Graph Parser [1] dependency infor-
mation [15]. We generate noun phrases

{
vli
}

by combing
the attribute words and the noun, e.g. for “The table is light
brown” we have a noun phrase “light brown table”.
Pronouns: We consider free-form descriptions composed
of several sentences which are not independent but typically
refer to the same 3D object multiple times. Therefore, we
are faced with the long-distance coreference problem. For
example, in “A light brown table is located in the corner of
the room, it is to the right of a white cabinet”, both “table”
and “it” refer to the same 3D object and thus form a corefer-
ence. According to the statistical analysis of the free-form
descriptions in dataset, we found that the pronouns refer to
the referred 3D object in most cases. To address this, we
extract part of speech of all words in a description L using
the Language Scene Graph Parser [1], and replace pronouns
with noun phrases of the referred 3D object in the descrip-
tions, so that free-form descriptions which contain multiple
sentences can deal with the long-distance correlations.
Relation phrases: To accurately parse the relation phrases
{rlij} connecting noun phrases vli and vlj in a free-form de-
scription, we build a relation phrase library from the train-
ing dataset. When a relation word can not be directly
parsed, we look up all related words in the library and match
it with the most similar word, and then expand it according
to the standard form.

(2) Language Scene Graph Construction: Given a free-
form description L, we first use the parsed sub-components
to construct an initial language scene graph, where each
node and edge of the graph correspond to an object and a re-
lationship between this object and another object mentioned
in L respectively. We define the language scene graph as a
directed graph Gl = {V l,Rl}, where V l =

{
vli
}I
i=1

and
Rl =

{
rlij
}

are nodes and edges set. As each object is
represented as an noun phrase with a set of attributes, we
first encode each word in description L into a sequence of
word embedding {ht}Tt=1 using GLoVe [22], where T is the
number of words in descriptionL. We then encode the com-
plete noun phrase by taking average pooling using the last
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Figure 2. An overview of our proposed network. There are three modules in our method, the language scene graph Gl incorporates the
rich structure and language context; the multi-context proposal relation graph leverages two occurrence relationships (object-object and
object-scene) to strength the visual features of the initial proposals set; the description guided 3D visual graph Gu is defined on the pruned
and refined proposals which is under the guidance of Gl, then the nodes of Gu are adaptively matched with the nodes of Gl, and then we
fuse this with the matching score in proposals pruning for the final 3D object grounding.

hidden state of a Bi-directional GRU [9]. Finally, we obtain
noun phrase embedding xvl

i
for the corresponding node vli

in graph Gl. Similar to the noun phrase, we also compute a
vector representation xrlij for edge rlij in graph Gl.

Furthermore, we use another Bi-directional GRU [9]
to encode the complete description L and obtain the de-
scription presentation xl, which provides the global con-
text information missing in the encoding of individual noun
phrases. In addition, fused with 3D point cloud features,
this description presentation xl is then used to construct the
3D visual graph.
(3) Phrase feature refinement Inspired by the message
propagation operators proposed in [17], we first learn
the context-aware features for all edges with its connected
nodes in graph Gl, where all nodes are associated with em-
bedded features of noun phrases. We aggregate messages
from nodes to update the relation features of their corre-
sponding edge:

xcrlij
= xrlij + F l

r([xvl
i
;xvl

j
;xrlij ], (1)

where xc
rlij
∈ RD1 is the refined relation feature, and F l

r is
a multilayer network with fully connected layers.

Then, we update each node vli in graph Gl by aggregating
messages from connected all nodesN (i) and edges to it via
self-attention mechanism [30]:

xcvl
i

= xvl
i

+
∑

j∈N (i)

wvijF
l
v([xvl

j
;xcrlij

]), (2)

where xc
vl
i

is the refined noun phrase feature, F l
v is a mul-

tilayer network with fully connected layers, and wvl
ij

is an

attention weight between node vli and vlj , which is defined
as follows:

wvl
ij

= softmax
j∈N (i)

(F l
v([xvj

;xcrij ])TF l
v([xvj ;xcrij ])), (3)

where softmax computes the normalized attention values.

3.2. Multi-level 3D proposal relation graph module
As the first visual processing step of our model, we need

to use a 3D object detection framework to predict an initial
set of 3D object proposals. The quality of the 3D object
proposals obtained in this step can severely affect the sub-
sequent 3D object grounding performance. In fact, since
the state-of-the-art 3D object detection methods still yield
limited performance in real world 3D scenes, generally
large misalignment exists between the generated 3D bound-
ing box candidates and the ground-truth 3D objects. This
could impede the learning procedure of the following stage.
Leveraging two co-occurrence relationships (object-object
and object-scene), we introduce the multi-level 3D proposal
relation graph to encode the context dependency among the
global information, which strengthens the visual features of
the initial proposals by incorporating co-occurrence relation
cues in the 3D scene.

We adapt the VoteNet [24] backbone to process the in-
put point cloud and output a set of point clusters with en-
riched appearance features xoa ∈ RKo×D2 , where Ko is the
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number of proposals. Next, the 3D object detection mod-
ule takes in the point clusters and processes them to predict
3D bounding boxes candidates B = {bi}Ko

i=1 and its object
class for all Ko proposals, where each bi ∈ RD3 denotes
3D object location. Additionally, we use average pooling
to compute a global scene feature xs ∈ RD2 depending on
the set of point clusters. To encode the spatial features for
each proposal, we combine two types of features, geometric
structure feature Sb represented by the relative parameters
of each bounding box and relative spatial location feature
Lb represented by the relative center coordinates of each
bounding box. To obtain strong representational power that
captures co-occurrence relationships between different pro-
posals, both appearance and spatial features are considered:

xopv = F o
vf ([xoa;F o

p ([Sb;Lb])]), (4)

where xopv ∈ RD4 is the 3D proposal visual feature, F o
vf

and F o
p denote MLP layers.

We define the multi-level 3D proposal relation graph as
Go = {Vo,Ro}, where Vo = {voi }

Ko+1
i=1 is the set of nodes

including the initial 3D object proposals and the global
scene; Ro = {roij}

Kr
i,j=1 is the set of edges, and roij is the

edge from voi to voj . Considering that an object typically
only interacts with the global scene and objects nearby, the
graph Go aggregates features from all its neighbour nodes
N (i) and global scene via self-attention mechanism [30] to
augments the input visual features,

xcvo
i

= xopv +
∑

j∈N (i)

roijFf (xopv), (5)

where xo
vl
i

is the augmented context-aware 3D object visual
feature, Ff denote MLP layers, and roij denotes the self-
attention weight [30] between nodes voi and voj .

3.3. Description guided 3D visual graph module
Although the visual features of the initial candidates in

the previous step have been further refined, there are still
hundreds of proposals and a lot of noise, which makes it in-
feasible to identify the target object by exploring the knowl-
edge of language scene graph Gl. We demonstrate this by
introducing a description guided 3D visual graph to capture
the global scene context via message propagation for few
selected proposals, and to reduce the gap between 3D vi-
sual information to language structure.
(1) Nodes pruning and refinement: Most 3D object pro-
posals are unlikely to have relationships with the language
scene graph Gl because the object proposals in large 3D
scenes are usually redundant. To model these regularities,
we introduce a description guided nodes pruning module
which exploit the knowledge of our language scene graph
Gl to efficiently estimate the relatedness of the noun phrase
nodes and the 3D object proposal nodes, and refine the pa-
rameters of the selected 3D bounding boxes. To achieve

this, we compute a matching score Φ1
ij for each noun phrase

and 3D object proposal pair, and a noun phrase guided
bounding box offset ψi,j ∈ RD3 depending on each noun
phrase feature xc

vl
i

and 3D object visual feature xcvo
i
,

Φ1
i,j = Hn

p (xcvl
i
, xcvo

i
), (6)

ψi,j = Hb
reg(xcvl

i
, xcvo

i
), (7)

where Hn
p and Hb

reg are learning steps which transform the
input features as in [21].

After obtaining the matching scores Φ1
ij for all noun

phrase and 3D object proposal pairs, we sort the scores to
choose the topK proposals for each noun phrase and obtain
their new 3D bounding boxesB′ = {bi}Ki=1 according to the
regression offset ψi,j . We represent the refined proposal set
of each noun phrase vli as Vu

i = {vui,k}Kk=1. We then apply
3D Non-Maximal Suppression (NMS) to filter out propos-
als that have significant overlap with others. We obtain the
selected 3D object proposal nodes which are much sparser
and more accurate than the initial set of proposals.
(2) 3D visual graph: Instead of using noisy dense 3D ob-
ject proposals of ScanRefer [3], we introduce a 3D visual
graph Gu = {Vu,Ru} on top of the refined set of 3D ob-
ject proposals. Similar to Eq. (4), we extract an new visual
feature xvu

i,k
for each proposal by fusing its appearance fea-

ture and spatial feature. We then concatenate the new visual
feature xvu

i,k
with the holistic feature xl of the description as

the final node feature xcvu
i,k

of 3D visual graph. Moreover,
we compute the edge feature xvu

ij,kl
of two proposal vui,k

and vuj,l using the minimum box region that covers them.
We adopt a set of message propagation operators to gener-
ate context aware representations for all the nodes and edges
in the graph Gu. Similar to Eq. (1), Eq. (2), and Eq. (3), we
obtain the updated relation features xcvu

ij,kl
, context-aware

object feature xcvu
i,k

using the respective types of message
propagation operators.

4. Prediction model
Given the language scene graph and 3D visual graph, we

formulate the 3D grounding as a node matching problem
between the 3D visual graph Gu and the language scene
graph Gl. We introduce a matching score Φ2

i,j for each noun
phrase vli and proposal vuj pair,

Φ2
i,j = Hu

p (xcvl
i
, voi

c), (8)

where Hu
p is a two layer MLP network. We then fuse this

with the score Φ1
i,j used in object pruning to generate the

node matching score Φi,j = Φ1
i,j × Φ2

i,j . Finally, the box
with the highest score is selected from theK proposal boxes
as the target 3D bounding box of the noun phrase. Here,
only the target 3D bounding box corresponding to the sub-
ject is selected.
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Unique Multiple Overall
Methods Acc@0.5 Acc@0.5 Acc@0.5

One-stage [38] 22.82 6.49 9.04
VoteNet [24] + rand. 19.35 2.81 5.28
Ours (GT boxes) 75.40 30.20 43.16

Ours (xyz) 64.04 24.13 32.47
Ours (xyz+rgb) 66.87 25.00 33.55
Ours (xyz+rgb+nor.) 67.94 25.70 34.01

Ours (w/o LSG) 66.92 23.15 32.87
Ours (w/o MLPG) 67.10 24.98 33.14
Ours (w/o LGVG) 65.34 23.75 31.90

Table 1. Ablation studies on ScanRefer [3] validation set. We
measure the percentage of predictions whose IoU with the ground
truth boxes is greater than 0.5. We also report scores on “unique”
(single object of class in scene) and “multiple” subsets.

Loss function. The final loss is a linear combination of
the vote lossLvt, abjectness of lossLobj , bounding box loss
Lb, semantic classification loss Lsm, description classifica-
tion loss Lcls and reference loss Lrf :

L = λ1Lvt + λ2Lobj + λ3Lb + λ4Lsm + λ5Lcls + λ6Lrf ,
(9)

where λ1, λ2, λ3, λ4, λ5 and λ6 are the weights for the
individual loss terms. Specially, Lvt supervises the vote re-
gression step defined in [24], Lobj represents whether the
point clusters obtained by voting and aggregation belong to
a certain instance object, Lb supervises the box center re-
gression, classifying the box size classification and the box
size regression processes respectively, Lsm supervises the
semantic classification process for the N ScanNet dataset
classes, Lcls is applied for an object classification based on
the input description, Lrf supervises the similarity scores
and offset respectively (details in supplementary material).

5. Experiments
We introduce two experimental 3D object grounding

datasets and the implementation details of our method. We
perform detailed analysis of our method to demonstrate the
efficacy of the proposed modules and compare the perfor-
mance with state-of-the-art.

5.1. Datasets
Experiments were performed on ScanRefer [3] and

Nr3D [2] datasets, which are built on top of ScanNet [10].
ScanRefer contains 51, 583 descriptions of 11, 046 3D ob-
jects for 800 ScanNet [10] real world scenes. It is the first
large-scale dataset to induct 3D object grounding in point
clouds via complex and diverse natural language descrip-
tions. There are an average of 13.81 objects, 64.48 descrip-
tions per scene, and 4.67 descriptions per object. Follow-
ing the official ScanRefer [3] splits, we use the training set
of 36, 665 descriptions and validation set of 9, 508 descrip-
tions. Each description is annotated by a ground truth 3D

bounding box presented by center coordinates, orientations
and dimensions in an indoor scene.
Nr3D is a real-world 3D scene dataset with extensive free-
form natural language descriptions. It contains 41, 503 hu-
man utterances collected by deploying an online reference
game in AMT. Following the official Nr3D [2] split, we use
the training set of 29, 500 descriptions and validation set
of 7, 650 descriptions. Each description is annotated by a
ground truth 3D bounding box presented by center coordi-
nates, orientations and dimensions in an indoor scene.

To augment the training data, we follow the operations
in [24], randomly flip each scene in both horizontal direc-
tion, randomly rotate the scene points around the Z-axis by
an angle selected uniformly between [−30◦; 30◦] and glob-
ally scale the scene points between [0.9; 1.1]. Results and
analysis are reported for the validation split.

5.2. Implementation details
We generate an initial set of Ko = 256 3D object pro-

posals using VoteNet [24]. In graph Gl module, the refined
relation feature dimension D1 is set to 128. In graph Go
module, the dimensions of the appearance feature D2 is set
to 256; since each 3D bounding box is parameterized by the
box center, the box size and semantic classes, the parameter
dimension D3 is set to 24; the 3D proposal visual feature
dimension is set to 128. In graph Gu module, the selected
proposals number K is set to 20. For model training, we
use ADAM optimizer with initial learning rate 1e − 3. We
train 30 epoches with batch size 32 and decay the learning
rate 10 times after 5, 15 and 25 epoches. The loss weights
of regression terms λ1 and λ3 are set to 1 while λ2 is set to
0.5 and λ4 = λ5 = λ6 are set to 0.1.

5.3. Ablation studies
We select the ScanRefer [3] dataset, as it contains com-

plex and multi-sentences descriptions making it more chal-
lenging, to conduct three groups of ablation studies
Task complexity: The top part of Table 1 shows the ef-
fect of using a 2D object grounding method [38] where the
2D proposal with the highest confidence score is projected
to 3D using the recorded camera parameters for that view.
Grounding in 2D images results in inaccurate 3D bound-
ing boxes as it suffers from the limited view of the 3D
scene. Hence, it is necessary to design a method for di-
rect object grounding in a 3D scene. Next, we randomly
selected one of the proposals from the VoteNet [24] back-
bone that matches the ground truth semantic class label and
found that it is insufficient to identify the referred 3D object
from only the semantic label. Furthermore, we investigate
the case where our model uses ground truth 3D bounding
boxes and observe a huge improvement of 24.97% on over-
all Acc@0.5. This confirms that current 3D object detection
backbones have a large room for improvement and that our
description guided 3D visual graph module is necessary to
refine the initial 3D bounding box candidates.
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Unique Multiple Overall
Methods Input Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

One-stage [38] 2D image 29.32 22.82 18.72 6.49 20.38 9.04
IntanceRefer [42] xyz+rgb+normals 77.13 66.40 28.83 22.92 38.20 31.35
ScanRefer [3] xyz+rgb+normals 67.64 46.19 32.06 21.26 38.97 26.10
Ours xyz+rgb+normals 78.80 67.94 35.19 25.70 41.33 34.01

Table 2. Comparison with state-of-the-art on ScanRefer [3] dataset. Best performance is marked in bold and the second best is underlined.

Method Overall Easy Hard VD VI

ScanRefer [3] 34.2 41.0 23.5 29.9 35.4
IntanceRefer [42] 38.8 46.0 31.8 34.5 41.9
ReferIt3D [42] 35.6 43.6 27.9 32.5 37.1
Ours 41.7 48.2 35.0 37.1 44.7

Table 3. Comparison with state-of-the-art on Nr3D [2] dataset.
Here “easy” and “hard” are determined by whether there are more
than two instances of the same object class in the scene. VD/VI
mean view-dependent/view-independent i.e. whether the language
description depends on the camera view or not.

Different inputs: We conduct an ablation study on our
model to examine what components and point cloud fea-
tures contribute to the performance. Results are reported in
the middle part of Table 1. The performance of our model
improves when rgb information is added to the location xyz
features as input. The performance further improves when
normals (nor.) are also included from the ScanNet [10]
meshes. Color information and additional geometric infor-
mation can enhance the performance of our network, be-
cause they are usually included in noun phrases as attributes
in the language description and as part of the features of the
language scene graph nodes. If the input point cloud con-
tains both color information and additional geometric infor-
mation, the expressive power of the 3D visual scene graph
becomes stronger, and higher similarity matching scores
will be obtained during the two matching processes, thereby
improving the final prediction accuracy.
Units effectiveness: We conducted an ablation study on
the effect of the proposed modules in our model. Results
are reported in the bottom part of Table 1. We set the base-
line when our complete framework uses spatial coordinates,
color and normal information as input (i.e. xyz + rgb +
nor.). When the language scene graph module (LGS) or
the multi-level proposal graph module (MLPG) is not used,
there is a drop in performance over the baseline. This is
mainly because the context-aware phrases presentation in
language description and the mutual occurrence relation-
ships has the ability to better handle complex scenes. There
is a higher drop in performance over the baseline when the
description guided 3D visual graph module (LGVG) is not
used. The reason is that, with complex and diverse descrip-
tions, the relationships between 3D object proposals and the
phrase can be ambiguous without LGVG.

5.4. Quantitative comparisons
We first compare our method with the state-of-the-art ap-

proaches including One-stage [38], IntanceRefer [42] and

ScanRefer [3] on ScanRefer [3] dataset in Table 2. Partic-
ularly, One-stage [38] is a 2D image based method, which
predicts the referred 2D object in each frame of the scan
video. Then they select the 2D bounding box with the
highest probability value and project it to 3D space using
the camera parameters of that frame. Note that IntanceRe-
fer [42], ScanRefer [3] and our method all use coordinates,
RGB information and normals of point clouds as input.
We report the precision using the percentage of predictions
whose IoU with the ground truth boxes is greater than 0.25
and 0.5 as the evaluation metric. As summarized in Ta-
ble 2, our approach outperforms the prior methods by large
margins. 2D based method One-stage [38] cannot achieve
satisfactory results since it is limited by the view of a single
frame. It is worth noting that our method achieves a∼ 1.5%
improvement of Acc@0.5 for scenes with a single object of
its class, and achieves a remarkable ∼ 2.8% improvement
of Acc@0.5 for more complex scenes containing multiple
classes of objects. Furthermore, we observe that our pro-
posed method performs better by a larger margin in “Mul-
tiple” than “Unique” cases. This supports our claim that
our proposed pipeline comprising three novel modules can
better handle complex interactions between 3D objects and
the cross-modal communications from free-form descrip-
tions to point clouds.

Table 3 compares our method with state-of-the-art meth-
ods ScanRefer [3], IntanceRefer [42] and ReferIt3D [2] on
the Nr3D [2] dataset. ReferIt3D [2] assumes that ground
truth 3D bounding boxes for each 3D scene are already
given in the input, and the task is just to select which 3D
bounding box is the referred 3D object. As shown in Ta-
ble 3, our method achieves the best performance, which
are 2.9% higher than IntanceRefer [42], 6.1% higher than
ReferIt3D [2], and 7.5% higher than ScanRefer [3]. Also
note that our method has the highest gain in accuracy for
‘Hard’ cases which again supports our claim that our pro-
posed framework comprising the three novel modules can
effectively handle complex scenes and free-form descrip-
tions. Furthermore, our graph formulation of 3D visual in-
formation is more effective than ReferIt3D [2] in modeling
the free-form description and geometric context.
5.5. Visualization
Qualitative Visualization results: Figure 3 shows 5 qual-
itative visual grounding results produced by the ScanRe-
fer [3] method and our method on the ScanRefer dataset
(first four columns) and the Nr3D dataset (last column).
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Figure 3. Results of ScanRefer [3] method and our method on ScanRefer [3] dataset (columns 1-4) and Nr3D [2] dataset (last column).

Figure 4. Results of the most relative 3D bounding boxes for each
noun phrase in description guided 3D visual graph module.

The successful detection of objects in the first two columns
show that our multi-level 3D proposal graph module and
description guided 3D visual module can handle the spatial
relations to regress more accurate 3D bounding boxes than
ScanRefer. The failure cases in the last three columns show
that ScanRefer is unable to distinguish ambiguous objects
in 3D scenes with complex and diverse descriptions. The
performance of ScanRefer is limited since it fuses holistic
language representations with visual features and ignores
the relationships between proposals and phrase.
Model visualization: We visualize the results of the top
K = 20 3D proposals selected by the relevant noun phrase

in our description guided 3D visual graph module, as shown
in Figure. 4 second row. It is evident that each noun phrase
node in language scene graph matches all instances of the
same category and all objects that have a strong relation-
ship with it in the scene, which prunes and refines the ini-
tial redundant proposals set to boost the performance of the
subsequent steps.

6. Conclusion
We proposed a free-form description guided 3D visual

graph network for 3D object grounding in point clouds.
Our method achieves accurate detection via capturing the
intra-modal and cross modal relationships between the nat-
ural language descriptions and the 3D scenes. The com-
plex free-form description is first parsed and then a lan-
guage scene graph is constructed to compute a context-
aware phrases presentation through message propagation.
A multi-level 3D relation graph was introduced to leverage
two co-occurrence relationships (object-object and object-
scene) and strengthen the visual features of the initial pro-
posals. A 3D visual graph was constructed over the refined
proposals to encode global contexts of phrases and propos-
als under the guidance of language scene graph. Experi-
ments on two challenging benchmark datasets show that our
method quantitatively and qualitatively outperforms exist-
ing state-of-the-art in 3D object grounding.
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