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Abstract

Detection and segmentation of nuclei are fundamental
analysis operations in pathology images, the assessments
derived from which serve as the gold standard for cancer
diagnosis. Manual segmenting nuclei is expensive and time-
consuming. What’s more, accurate segmentation detection
of nuclei can be challenging due to the large appearance
variation, conjoined and overlapping nuclei, and serious
degeneration of histological structures. Supervised methods
highly rely on massive annotated samples. The existing two
unsupervised methods are prone to failure on degenerated
samples. This paper proposes a Mutual-Complementing
Framework (MCF) for nuclei detection and segmentation in
pathology images. Two branches of MCF are trained in the
mutual-complementing manner, where the detection branch
complements the pseudo mask of the segmentation branch,
while the progressive trained segmentation branch comple-
ments the missing nucleus templates through calculating
the mask residual between the predicted mask and detected
result. In the detection branch, two response map fusion
strategies and gradient direction based postprocessing are
devised to obtain the optimal detection response. Further-
more, the confidence loss combined with the synthetic sam-
ples and self-finetuning is adopted to train the segmentation
network with only high confidence areas. Extensive experi-
ments demonstrate that MCF achieves comparable perfor-
mance with only a few nucleus patches as supervision. Es-
pecially, MCF possesses good robustness (only dropping by
about 6%) on degenerated samples, which are critical and
common cases in clinical diagnosis.

1. Introduction
With the advent of whole slide imaging scanners,

the histopathological analysis performed on these digital

*Corresponding author. #Equal contribution to this work.

pathology images has been demonstrated as an effective and

reliable tool for cancer diagnosis and prognosis [9]. The as-

sessments derived from the pathology image serve as the

gold standard for cancer diagnosis in many clinical proto-

cols. The shape and distribution of cell nuclei in pathol-

ogy images are used to determine cell, tissue, and cancer

types, and are critical in cancer identification, grading, and

prognosis [9]. Accurate detection and segmentation of these

nuclei from histology images is an essential prerequisite to

obtain reliable morphological statistics for quantitative di-

agnosis, prognosis, and analysis.

However, manual searching and segmenting nuclei from

large-scale histopathology images in a conventional way

can be expensive, error-prone, and time-consuming. Fur-

thermore, it often suffers from a high inter and intra-

observer variability [4, 15], which results in limited repro-

ducibility. Therefore, automatic detection and segmenta-

tion methods are highly demanded in clinical practice to

improve the efficiency, reliability, and scalability of large-

scale histopathological image analysis.

Automated detection and segmentation of histological

nuclei from histology images can be quite challenging for

several reasons. First, there is a huge variation of object ap-

pearance depending on the histologic grade as well as the

type of the disease. Second, there exist conjoined and over-

lapping nuclei. Third, the structures of nuclei have seriously

degenerated in the malignant cases£¬ which lead to weak

boundaries. In addition, the variation of tissue preparation

procedures such as sectioning and staining can cause de-

formation, artifacts and inconsistency of tissue appearance,

which can impede the segmentation process as well.

Recently, deep learning approaches have achieved

promising results in the medical image analysis area [16].

Some CNN based method has been applied into nuclei de-

tection [3, 10, 13, 24, 31] and segmentation [1, 3, 6, 16, 20,

33, 21, 22, 25, 29, 38] . However, those supervised methods

highly rely on a large amount of annotation. Careful annota-

4036



tion of nucleus boundaries is time-consuming, error-prone,

and may also suffer from subjective interpretation errors.

As shown in [4, 15], there is a larger interoberver disparity

among pathologists identifying nuclei in pathology images.

To relieve the rely on the massive annotated samples,

some weakly supervised methods [18, 31] are proposed.

However, the satisfactory performance of those methods

still requires plenty of annotated samples. Furthermore, Le

et al. [13] proposed a crosswise sparse convolutional au-

toencoder (CAE) for unsupervised nucleus detection based

on the local sparsity assumption. What’s more, Hou et al.
[12] synthesized training samples image patches with some

predefined nuclei texture and color, refined those samples

with GAN, finally trained a segmentation CNN with those

generated sample pairs. However, the above two unsuper-

vised methods [12, 13] usually failed on complex and de-

generated cases caused by canceration, which are critical

and common cases in clinical diagnosis.

In this paper, we proposed a Mutual-Complementing

Framework (MCF) for nuclei detection and segmentation

in pathology images. MCF can achieve good detection

and segmentation results with only a few nucleus patches.

As described above, different pathology images have varia-

tional appearances. However, those nuclei can also be dis-

tributed into some similar templates according to structure

and color. So, by initially selecting some general nucleus

patches, a detection branch with the corresponding correla-

tion filters can locate most nuclei. For obtaining the optimal

response, Cropped Filter Fusion (CFF) and Multi-scale Fil-

ter Fusion (MFF) are devised to fuse top T high responses,

which can avoid disturbance of some unmatched correlation

filters. Gradient direction based postprocessing is also pro-

posed to eliminate some incorrect responses, such as con-

nected regions of nuclei. With a dynamic binarization tech-

nique, those detected areas with high confidence can serve

as the pseudo mask of the segmentation branch. For the

segmentation branch, a confidence loss is devised to train

the segmentation network with only high confidence areas

in the pseudo mask. What’s more, we synthesize some sam-

ples with high confidence areas to enhance the segmentation

performance of the nucleus boundary. Finally, the trained

segmentation network is finetuned with the high confidence

areas predicted by itself.

For the same input image, the mask residual between the

detected and segmented results is calculated for finding the

missing nuclei, which can be used to optimize the detec-

tion branch. Based on the mutual-complementing mecha-

nism, the detection and segmentation branches are trained

iteratively. Extensive experiments show that MCF achieves

promising results with only a few nuclei patch templates,

and possesses good robustness on degenerated samples.

Our main contribution can be summarized as follows: 1)

We propose a Mutual-Complementing Framework (MCF)

for nuclei detection and segmentation, where the mutual-

complementing mechanism enables MCF to achieve iter-

atively optimized segmentation and detection results with

only a few nucleus patches. 2) Two response map fu-

sion strategies and gradient direction postprocessing are de-

vised to obtain the optimal responses and eliminate some

incorrect responses. 3) The confidence loss combined with

synthetic samples and self-finetuning is designed to train

the segmentation network with only high confidence ar-

eas to improve the overall segmentation performance. 4)

Extensive experiments show that, with only a few nucleus

patches, MCF achieves comparable detection and segmen-

tation performance on par with fully supervised methods,

and possesses excellent robustness on degenerated samples.

1.1. Related Works

In the field of nuclei segmentation and detection, some

hand-crafted feature based methods can be found in [1, 30].

Recently, deep learning approaches have achieved promis-

ing results in nuclei segmentation and detection, among

many other related domains [14, 32, 34, 35, 36, 37]. Here,

we give a brief survey of recent progress in deep learning

based nuclei segmentation and detection. Another related

technique is the correlation filter, which has been widely

used in the object tracking area [5, 11, 28]. To our knowl-

edge, there is only one work [2] that applies the standard

correlation filters for nuclei detection.

For the fully supervised methods, Zhou et al. [38] pro-

posed a sparsity constrained convolutional regression net-

work that addresses the nuclei segmentation as a pixel clas-

sification problem. Naylor et al. [20] employed FCN to

discriminate the nuclei from the background and then ap-

plies the watershed method to split the nuclei. The classic

Unet is also modified for the nuclei segmentation methods

[1, 6, 21, 25, 26]. The difference is that annotated bound-

ary and inside masks are adopted to supervise the training

of the segmentation network in [1, 6, 16]. Xing et al. [29]

proposed a CNN for generating initial segmentation results,

and thereafter alternately performed bottom-up shape de-

formation and top-down shape inference to achieve correct

nucleus segmentation. Naylor et al. [19] formulated nuclei

segmentation as a regression task of the distance map with

a fully convolutional network. Sirinukunwattana et al. [24]

presented a spatially constrained CNN sensitive to the lo-

cal neighborhood for nucleus detection and classification in

routine stained histology images of colorectal adenocarci-

nomas. The performance of those fully supervised methods

highly relies on a large amount of annotated samples.

To alleviate the requirement of massive training samples

and annotations, Xu et al. [31] first pretrained a Stacked

Sparse Autoencoder (SSAE) with original image recon-

struction, then finetuned the SSAE through classifying each

nuclei patch for automated nuclei detection on breast cancer
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Figure 1. The flow diagram of the Mutual-Complementing Framework (MCF), which is composed of detection and segmentation branches.

With several correlation filters as initial parameters, the detection branch predicts the nuclei response maps (Step 1). Then, with the

detection response map as the pseudo mask, the confidence loss Lseg that only calculates the high response area is devised for supervising

the training of the segmentation network (Step 2). Next, the mask residual is calculated between the predicted segmentation mask and the

detection response map (Step 3). The missing nucleus patch templates derived from the mask residual are added to the detection branch

(Step 4). The two branches of MCF are trained in a mutual-complementing manner, where the detection branch complements the pseudo

mask of the segmentation branch, while the progressive trained segmentation network complements the missing nucleus patch templates.

histopathology. Mahmood et al. [18] adopted the Cycle-

GAN [39] to synthesize some pathology images and cor-

responding masks, then trained a condition GAN with the

synthetic samples and original annotated samples for nu-

clei segmentation. Qu et al. proposed a weakly-supervised

method for nuclei detection and segmentation with only par-

tial points annotations.

Furthermore, Le et al. [13] proposed a crosswise

sparse convolutional autoencoder (CAE) for unsupervised

nucleus detection and feature extraction simultaneously.

CAE is based on the local sparsity assumption, which

will fail on degenerated cases caused by cancerization.

Some researchers [8, 12, 17] adopted GAN to synthesize

histopathology images with some random masks for train-

ing the nuclei segmentation network in an unsupervised

manner. However, [8, 12, 17] inherited the drawbacks of

GAN [23] (unstable and time-consuming training). The

predefined nuclei texture and color usually lead to failures

in hard and degenerated samples.

2. Mutual-Complementing Framework

This paper proposes a Mutual-Complementing Frame-

work (MCF) for nuclei detection and segmentation, which

combines the advantage of correlation filter and deep learn-

ing. The proposed MCF is composed of a multiple correla-

tion filter fusion detection branch and a CNN based segmen-

tation network, which is shown in Fig. 1. Two branches of

MCF work in a mutual-complementing manner. The detec-

tion branch supplements the pseudo mask of the segmenta-

tion network, while the segmentation network supplements

the missing nuclei patch templates. The proposed MCF can

achieve promising detection and segmentation results with

only a few nuclei patch templates through iterative training.

2.1. Multiple Correlation Filter Fusion Detection

The correlation filter has been successfully applied in the

object tracking task [5], where the correlation between the

correlation filter and the corresponding input image patch

will have the highest response. Most nuclei have similar

shapes and appearance in pathology images, indicating that

an appropriate correlation filter can detect most nuclei in

the pathology image. A bank of correlation filters that cor-

respond to diverse nuclei patches can detect all the nuclei

in the pathology image. For an input nucleus patch Ip,

the optimal correlation filter wi can maximize the response

v = Ipatch�wi, where ⊗ denotes the correlation operation.

Following [11], when dealing with the image patch Ipatch,

the correlation filter w1 in the Fourier domain can be calcu-

lated efficiently with cyclic shift and convolution theorem

as follows:

ŵ1 =
x̂∗ � ŷ

x̂∗ � x̂+ λ
, (1)

where x̂ = DFT (x), DFT denotes discrete Fourier trans-

form, x denotes the cyclic shift feature vector extracted

from the image patch Ip, ˆ is a shorthand for the DFT of

a vector, λ is a regularization parameter. The extracted fea-

tures x contain two kinds of features: Color Name (CN)

features [27] and Histogram of Oriented Gradients (HOG)

[7] features, which are two main and frequently-used fea-

tures in the object tracking area.

There are various shapes, scales, and crowded nuclei in

the pathology images, which pose challenges for accurate

nuclei detection. For the various shape nuclei, we adopt a

bank of representative nucleus templates to detect as many

nuclei as possible. For the different scale and crowded nu-

clei, we devise the correlation response map fusion strategy

(Multi-scale Filter Fusion and Cropped Filter Fusion) to ob-

tain optimal responses. In Multi-scale Filter Fusion (MFF),
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each nucleus patch template is resized into different scale

then the corresponding correlation filters are calculated with

Eqn.(1), which can handle the scale variation. Next, in

Cropped Filter Fusion (CFF), multiple center patches with

different sizes are cropped from a correlation filter, which

takes advantage of the color features to detect crowded nu-

clei. After MFF and CFF, the gradient direction based post-

processing is proposed to solve the ambiguous boundary of

crowded nuclei.

2.1.1 Correlation Response Map Fusion Strategy

For an input image I , a response map Im can be calculated

by correlating with a correlation filter in a sliding manner.

For handling different sizes of nuclei, a nucleus patch

Ipatch will be resized into K scales. For the n-th nucleus

patch, K scale correlation filters {wn
1 , w

n
2 , ..., w

n
k , ..., w

n
K}

can be calculated with Eqn.(1). Then, for handling

crowd nuclei, U center patches with different sizes

are cropped from each correlation filter wn
k . For the

n-th nucleus patch, we finally get K ∗ U correlation

filters {(wn
1,1, w

n
1,2, ..., w

n
1,U ), (w

n
2,1, w

n
2,2, ..., w

n
2,U ), ...,

(wn
K,1, w

n
K,2, ..., w

n
K,U )}. The response map Sn

K,U for the

input image I can be calculated with the correlation filter

wn
t,u using Sn

K,U = wn
K,U (I), where wn

K,U (·) denotes the

correlation operation with the correlation filter wn
K,U in a

sliding manner.

The fusion of multiple response maps {Sn
K,U} is a criti-

cal step. The optimal response map S for each nucleus in I
should reflect the response of the most matched correlation

filter. In MCF, we first fuse the response maps of cropped

filters of the same scale, then fuse the multi-scale response

maps, and finally fuse those processed response maps of

different correlation filters.

CFF & MFF. With response maps {(Sn
1,1, S

n
1,2, ...,

Sn
1,U ), ..., (S

n
K,1, S

n
K,2, .., S

n
K,U )}, MFF map Sn and CFF

map Sn
k are calculated as follows:

Sn(i, j) = A
T {Gk � Sn

k [i, j], .., Gk � Sn
k [i, j]}, (2)

Sn
k (i, j) = A

T {GK,1 � Sn
K,1[i, j], .., GK,U � Sn

K,U [i, j]},

where A
T {} denotes accumulating the top T values,

Sn
K,U [i, j] and Sn

k [i, j] denote the patch area of response

map Sn
K,U and CFF map Sn

k centered at position (i, j), re-

spectively. Sn(i, j) and Sn
k (i, j) denote the response value

of MFF map Sn and CFF map Sn
k centered at position (i, j),

respectively. Gk is the discrete weight template for the k-th

scale filter. The sum value of Gk equal to zero, the shape of

the template Gk is same as the 2D Gaussian shape, and the

size of Gk is same with the k-th scale filter. GK,U denotes

the u-th cropped patch area from Gk. The size of Sn
K,U [i, j]

and Sn
k [i, j] is the same as the size of the u-th cropped filter

and the k-th scale filter, respectively.

Futhermore, the final response map S is calculated by

accumulating the top H values as follows:

S(i, j) = A
H{S1(i, j), S2(i, j), , .., SN (i, j)}. (3)

For each image I , the final response map S will be normal-

ized into [0, 1] as follows S̃ = norm(S).

2.1.2 Gradient Direction Based Postprocessing

The conjoined and overlapping nuclei in pathology images

are the common situation, which will lead to adhesive high

response values. In the response map, nuclei centers have

high responses, around areas of nuclei have median re-

sponses, and the background areas have low responses. So,

we put forward a gradient direction based postprocessing

to get the accurate nuclei position. The gradient direction

based postprocessing is based on the fact that nuclei cen-

ters have positive response gradients in all directions. For

each position (i, j), we calculate the response gradient dkij
in eight directions (left, right, up, down, left-up, left-down,

right-up and right-down), which is formulated as follows:

D(i, j) =

{ ∑8
r=1 d

r
ij , if drij > 0, r ∈ {1, ..., 8},
0, else

drij =
P∑

p=1

Q∑
q=1

{S̃(̄i, j̄)− S̃ (̄̄i, ¯̄j)}, s.t. p < q, (4)

when r = 1, ī = i, j̄ = j + p, ¯̄i = i, ¯̄j = j + q;

when r = 2, ī = i, j̄ = j − p, ¯̄i = i, ¯̄j = j − q;

when r = 3, ī = i+ p, j̄ = j, ¯̄i = i+ q, ¯̄j = j;

when r = 4, ī = i− p, j̄ = j, ¯̄i = i− p, ¯̄j = j;

when r = 5, ī = i+ p, j̄ = j + p, ¯̄i = i+ q, ¯̄j = j + q;

when r = 6, ī = i− p, j̄ = j − p, ¯̄i = i− q, ¯̄j = j − q;

when r = 7, ī = i+ p, j̄ = j − p, ¯̄i = i+ q, ¯̄j = j − q;

when r = 8, ī = i− p, j̄ = j + p, ¯̄i = i− q, ¯̄j = j + q;

where P denotes the radius of the nucleus center, Q denotes

the radius of the nucleus area, P is small than Q. The high

response of the accumulative gradient map D denotes the

position of nucleus center.

The big and small values of S indicate the high con-

fidence position for nucleus and background, respectively.

Those high confidence areas combined with the accumula-

tive gradient map D can serve as the pseudo mask for train-

ing the segmentation network.

2.2. Confidence Segmentation Network

2.2.1 Confidence Segmentation Loss

The core part of the segmentation network is how to train

the segmentation network with pseudo masks generated
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with the above detection branch. In MCF, the high confi-

dence areas of the response map are used for training the

segmentation network. For the input image I , the confi-

dence segmentation loss Lseg is defined as follows:

Lseg = Imbg ∗ log(p0) + Imnc ∗ log(p1), (5)

pc(i, j) = exp(ac(i, j))/
1∑

c=0

exp(ac(i, j)), c = 0 or 1,

Imbg = T(S̃ < t1), I
m
nc = DLT(S̃[D(i, j)] > tD(i,j)),

where Imbg and Imnc denote the confident mask of nuclei and

background, ac(i, j) denotes the activation value in chan-

nel c at the pixel position (i, j), p1 and p0 denote the

predicted probabilities of true label foreground nuclei and

background, T(S̃ < t1) denotes binarizing the final re-

sponse map S̃ with the thresholding t1. DLT(S̃[D(i, j)] >
tD(i,j)) denotes the dynamic local binarization. For each

nucleus center position (i, j) indicated by the accumula-

tive gradient map D, each local patch S̃[D(i, j)] of re-

sponse map S̃ is binarized with the dynamic thresholding

tD(i,j) = 0.8 ∗ S̃(i, j), where S̃(i, j) is the response value

at position (i, j). The size of the local patch S̃[D(i, j)] is

the same as the size of the middle-size correlation filter.

With the confidence segmentation loss Lseg , the segmen-

tation network will learn the distinguishing ability for fea-

tures of nuclei and background, which will progressively

predict the category of uncertain areas.

2.2.2 Sample Synthesis & Self-finetuning

The segmentation network trained with pseudo masks pro-

vided by the detection branch has two flaws: 1) the am-

biguous boundary areas of nuclei are not involved in the

training of segmentation network, which leads to poor per-

formance on ambiguous boundary area; 2) some high confi-

dence area predicted by trained segmentation networks not

detected by the detection branch does not involve the train-

ing stage of segmentation network. For the former flaw, we

enlarge the confident nuclei areas in Imnc and paste those ar-

eas on the pure background image synthesized with the con-

fident background area. Then, the segmentation network is

trained with the standard Cross-Entropy (CE) loss function

on those synthetic samples.

For the latter flaw, the trained segmentation network pre-

dicts the foreground probability map p1 and background

probability p0, which contain some high confidence areas

not detected by the detection branch. Then, the segmenta-

tion network is finetuned with the predicted high confidence

foreground mask Imnc = T(p1 > t2) and background mask

Imbg = T(p0 < t3) using

Lself = Imbg ∗ log(p0) + Imnc ∗ log(p1). (6)

2.2.3 Mask Residual Calculation

With the nuclei probability map p1 inferred by the self-

finetuned segmentation network, the mask residual Imrs is

calculated for finding the missing nuclei patches as follows:

Imrs = |T(p1 > t4)− Imnc|, (7)

where | · | denotes the absolute value function. Large con-

tiguous nonzero areas in Imrs indicate the missing nuclei,

which can be used as the nucleus templates for the detec-

tion branch.

2.3. Iterative Optimization

The multiple correlation filter fusion detection branch

and confidence segmentation branch are optimized itera-

tively. The detection branch complements the pseudo mask

for the segmentation network, which is trained with the con-

fidence segmentation loss Lseg in Eqn.(5), CE loss on syn-

thetic samples, and self-finetuning segmentation loss Lself

in Eqn.(6). Meanwhile, the trained segmentation network

complements the missing nuclei patches with the mask

residual Imrs in Eqn.(7). After several rounds of iterative

optimization, MCF converges to the optimal stage for de-

tection and segmentation.

3. Experiment

Dataset. The datasets we adopted contain TNBC [19],

MICCAI18 [16], and NuCLS [4]. The MICCAI18 [16] con-

tains 30 training and 14 testing tissue images extracted from

whole slide images of two cancer types. The TNBC [19]

contains 50 samples with a total of 4022 annotated nuclei.

In the experiment, 40 and 10 samples are set as training

and testing samples. For NuCLS [4], we adopt the cor-

rected single-rater dataset containing 1, 744 field-of-views

with 59, 485 nuclei. Furthermore, to verify the effective-

ness of each method on degenerated samples, we collect

a new dataset containing 50 cancerous samples extracted

from whole slide images of 10 patients. For all samples, the

color normalization tool VahadaneNormalizer1 is adopted

to normalize the color variations caused by different stain-

ing and scanning of pathology images.

Framework architecture and parameters. In the ex-

periment, we adopt the Unet [21] as the segmentation net-

work, which could also be replaced by other SOTA segmen-

tation networks. For MCF, the common parameters are set

as follows: K = 5, T = 3, H = 3, P = 3, Q = 10,

t1 = 0.4, t2 = 0.6, t3 = 0.4, t4 = 0.65. The appropriate

number of nucleus patch templates for TNBC [19], MIC-

CAI18 [16] and NuCLS [4] are 12, 10 and 16, respectively.

1https://staintools.readthedocs.io/en/latest/normalization.html
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Figure 2. The visualized segmentation results of normal testing samples and cancerous samples.

Type Unsupervised Weakly-supervised Fully Supervised Ours

Method Hou [12] Mahmood [18] MedT [26] FCN-based [20] U-Net [21] Mask R-CNN [10] MCF Detection

T
N

B
C

PA 93.33 / 61.34 90.32 / 93.53 94.14 / 83.69 92.39 / 87.50 95.56 / 85.32 93.79 / 81.90 89.95 / 81.78 62.83 / 57.95

MPA 79.87 / 71.64 67.36 / 66.72 85.46 / 78.03 84.29 / 72.71 89.55 / 81.39 82.81 / 71.03 80.51 / 77.49 72.52 / 69.61

IOU 55.43 / 36.90 33.37 / 29.44 62.89 / 47.48 56.51 / 44.70 71.20 / 52.37 59.56 / 41.60 57.94 / 45.42 24.63 / 31.74

FWIoU 87.69 / 46.82 82.20 / 88.43 89.36 / 73.62 86.82 / 77.12 91.79 / 75.96 88.62 / 68.87 81.75 / 71.34 53.03 / 44.27

DICE 71.32 / 53.91 50.04 / 45.48 77.22 / 64.39 72.21 / 61.78 83.18 / 68.74 74.66 / 58.76 73.37 / 62.46 39.53 / 48.19

M
IC

C
A

I1
8 PA 89.14 / 64.03 86.27 / 84.83 91.05 / 83.51 85.41 / 82.52 91.72 / 84.26 89.78 / 80.36 86.39 / 82.38 72.50 / 64.92

MPA 76.95 / 73.14 75.88 / 72.71 85.25 / 75.61 81.83 / 72.57 87.04 / 78.41 80.85 / 74.08 81.43 / 74.94 76.70 / 72.68

IOU 52.51 / 34.97 47.61 / 44.94 64.50 / 44.78 52.87 / 43.65 67.35 / 52.42 57.98 / 46.39 53.66 / 46.89 41.05 / 41.22

FWIoU 80.05 / 50.96 76.35 / 72.79 83.93 / 73.12 76.12 / 70.30 85.10 / 73.47 81.57 / 71.88 77.30 / 70.67 60.33 / 50.11

DICE 68.87 / 51.82 64.51 / 62.02 78.42 / 61.86 69.17 / 60.77 80.49 / 68.78 73.40 / 63.37 69.84 / 63.85 58.21 / 58.38

Table 1. The segmentation results of different methods on TNBC [19] dataset and MICCAI18 [16] dataset. ‘score 1 / score 2’ denotes the

segmentation results of original testing samples and newly collected cancerous samples.

Metric. For segmentation, the metrics we adopted in-

clude Pixel Accuracy (PA), Mean Pixel Accuracy (MPA),

Intersection over Union (IoU), Frequency Weighted Inter-

section over Union (FWIoU)£¬ and Dice. For detection,

the metrics contain Precision, Recall, F-score.

3.1. Quantitative Evaluation

The proposed mutual-complementing framework can

predict detection and segmentation results simultaneously.

So, we compare the MCF with the SOTA nuclei detection

and segmentation methods. The segmentation methods in-

clude unsupervised methods (Hou[12]), weakly-supervised
methods (Mahmood [18]), fully supervised methods (MedT

[26], FCN-based [20], U-Net [21] and Mask R-CNN [10]).

The detection methods contain unsupervised methods (CAE

[13]), fully supervised methods (SSAE [31], Mask R-

CNN [10]). For all methods, the same data augmentation

strategies, including flipping, mirroring, and cropping, are

adopted. Other experiment settings are kept as the default

in the original paper. Table 1 & 2 show the quantitative

segmentation and detection results, where all the scores are

the average of three runs. The ‘score 1 / score 2’ denotes

the results of original testing samples and newly collected

cancerous samples, respectively. It should be noted that all

the cancerous samples of the new collected dataset are only

used in the testing stage.

From Table 1, we can see that the fully supervised

method U-Net [21] achieves the best segmentation perfor-

mance on original testing samples and cancerous samples

of two datasets. All fully supervised methods drop by

about 7% on cancerous samples, which indicates that ac-

curate segmentation of cancerous samples is a major chal-

lenge. The unsupervised method Hou [12] achieves closed

PA performance on par with the fully supervised methods,

while it drops by about 20% on cancerous samples. The

weakly-supervised method Mahmood [18] combines all an-

notated samples and some synthetic samples with GAN to

train the whole framework. However, [18] achieves lower

scores than other fully supervised methods, which indicates

that when supplying sufficient synthetic samples, the syn-

thetic samples only have a slight impact even bring some

negative effects. With only 10 nucleus patch templates,

MCF achieves closed performance on par with fully super-

vised methods. Of particular note is that MCF only drops
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Figure 3. The detection visual results of different methods.

by about 6% on cancerous samples compared to results on

normal samples, which indicates that MCF has good ro-

bustness on degenerated samples. The proposed MCF has

significant potential for analyzing cancerous cases in clini-

cal diagnosis. What’s more, for showing the advantage of

mutual-complementing mechanism, we also give the seg-

mentation results of the detection branch (denoted by ‘De-

tection’ in Table 1 and Fig. 2), which are obtained by bina-

rizing the detection response map with a fixed thresholding

value. It’s obvious that ‘Detection’ drops about 25% and

12% on TNBC and MICCAI18, respectively.

For the detection results in Table 2, the fully-supervised

method Mask R-CNN [10] achieves the best performance,

and the unsupervised method CAE [13] achieves the worst

detection results. With only 10 nucleus patch templates

as supervision, MCF only drops by about 7% and 2% on

TNBC [19] dataset and MICCAI18 [16] dataset compared

with fully supervised methods. What’s more, MCF main-

tains closed detection performance on cancerous samples

compared with results on normal samples, which verifies

the excellent robustness of MCF again.

3.2. Qualitative Evaluation

The visual segmentation results of different methods are

shown in Fig. 2, where the first two rows are the normal

samples from TNBC [19] and MICCAI18 [16], respec-

tively. The last two rows are cancerous samples from the

newly collected cancerous samples. We can see that most

of the fully supervised methods achieve similar and promis-

ing results. Deep learning-based methods indeed have the

potential to be applied to pathological nuclei segmentation.

The unsupervised method Hou [12] also achieves promising

segmentation results on the normal samples but poor seg-

mentation results on cancerous samples. The root reason is

that Hou [12] is based on the predefined nuclei texture and

color. The degenerated sample usually has different and in-

frequent color and texture features. What’s more, the style

transfer is adopted by Hou [12], which leads to the over-

fitting on target domain and failure on new cancerous sam-

ples. On the contrary, MCF still achieves promising results

on cancerous samples, which verifies the excellent robust-

ness of MCF on degenerated samples.

Meanwhile, the visual detection results are given in

Type Unsupervised fully-supervised Ours

Method CAE [13] SSAE [31] Mask R-CNN [10] MCF

T
N

B
C Precision 50.68 / 44.26 63.43 / 59.88 83.84 / 62.59 64.02 / 60.77

Recall 69.37 / 61.98 59.96 / 53.59 81.74 / 73.78 71.43 / 65.32

F-score 60.22 / 51.64 61.65 / 56.56 82.77 / 67.73 67.52 / 62.96

M
IC

C
A

I1
8 Precision 43.71 / 40.02 62.54 / 58.74 82.73 / 66.83 65.40 / 61.89

Recall 64.14 / 58.15 57.80 / 51.56 79.31 / 70.98 78.99 / 70.28

F-score 51.99 / 47.41 60.08 / 54.92 80.98 / 68.84 71.56 / 65.82

Table 2. The detection results of different methods on TNBC [19]

dataset and MICCAI18 [16] dataset.

Fig. 3. where the True Positives (TP), False Positives

(FP), and False Negatives (FN) are marked with green, yel-

low, and red color points. Mask R-CNN [10] achieves the

most accurate detection results than other methods. Com-

pared with the unsupervised method CAE [13], MCF has

higher TP and lower FP and FN. What’s more, MCF still

achieves not bad detection results on cancerous samples,

which demonstrates the significant potential for nuclei de-

tection in degenerated samples.

3.3. Ablation Study

3.3.1 The Effective of Each Component

In this section, we conduct an ablation study on the de-

tection branch including Cropped Filter Fusion (-CFF),

Multi-scale Filter Fusion (-MFF), Top-H accumulation,

and Gradient Direction Based Postprocessing (-GDBP),

and segmentation branch including removing segmentation

network (-seg.), synthetic samples (-syn.), self-finetuning

(-self.), training with standard Cross-Entropy (CE) and

weighted CE (+weig.). ‘+weig.’ denotes training the

segmentation network with weighted loss Lweight =
weightnc ∗ log(p1)+weightbg ∗ log(p0), where weightnc
and weightbg denote the confidence values for foreground

nuclei and background. Table 3 gives the ablation study on

the above components. For the detection branch, we can see

that precision scores of ‘-CFF’, ‘-MFF’ and ‘−GDBP’ drop

by about 5%, 15% and 3% compared with MCF, which indi-

cates that CFF, MFF, and GDBP have significant influence

on the final detection performance. What’s more, ‘-MFF’

achieves the highest Recall score. The reason is that de-

tected results of the method without MFF contain massive

positive and negative results. For the segmentation branch,

the precision score of ‘-seg.’ drop 14%, which indicates

that the segmentation branch indeed detects some missing

nuclei and refines the nuclei boundaries. ‘-self.’, ‘−syn.’,
‘CE’, and ‘+weig.’ drop by about 2%, 3%, 15% and 10%
compared with MCF, which verifies the necessity of self-

finetuning, synthetic samples, and confidence loss. Fig. 4

visualize the response map with and w/o above components,

which directly demonstrates the effectiveness of each com-

ponent. More visual results of different cropped filters and

different scale filters are given in supplementary materials.
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Figure 4. The response maps with and w/o some components.

D
et

ec
ti

o
n

Index -CFF -MFF H=1 mean -GDBP MCF

Precision 59.92 50.27 55.12 53.84 64.36 65.40

Recall 79.57 89.68 77.16 76.33 71.82 78.99

F-score 68.36 64.43 64.30 63.14 67.89 71.56

S
eg

m
en

ta
ti

o
n

Index -seg. -self. -syn. CE +weig. MCF

PA 72.50 85.56 84.38 86.32 73.69 86.39

MPA 76.70 78.71 79.62 69.47 77.52 81.43

IOU 41.05 50.01 49.71 38.63 40.99 53.66

FWIoU 60.33 75.95 74.63 61.39 61.98 77.30

DICE 58.21 66.68 66.41 55.73 58.14 69.84

Table 3. The ablation study results on MICCAI18 [16] dataset.

3.3.2 The Number of Nucleus Patch Templates

The number of nucleus patch templates has a significant im-

pact on the detection branch and the whole framework. So,

we study the detection and segmentation performance vari-

ation with different numbers of nucleus patch templates on

the MICCAI18 [16] dataset, which is shown in Fig. 5. For

the segmentation results with n nucleus patch templates, the

segmentation network is trained on the pseudo masks gen-

erated by the detection branch with n nucleus patch tem-

plates. From Fig. 5, we can see that the detection and seg-

mentation performance both increase with the increase of

the template number. For MICCAI18 [16] dataset, 10 nu-

cleus templates are the critical point, after which the detec-

tion and segmentation performance have a slight increase.

More nucleus patch templates can increase the overall per-

formance but also increase the computation overhead of the

detection branch. So, limited nucleus patch templates that

cover most types of nuclei are sufficient for MCF.

3.3.3 Iteration Times

The detection and segmentation branches of MCF are

trained iteratively. The two branches’ iteration times are

closely related to the initial template number and the incre-

mental template number at each iteration step. Taking ex-

periments in Fig. 5 as an example, the initial template num-

ber and the incremental template number are both 1. The

whole framework needs 10 iterations. If the initial template

bank contains 10 nucleus templates, the whole framework

will only needs 1 ∼ 3 iterations.

(b) segmentation(a) detection

Precision
Recall
F-score

PA
mPA

FWIoU
DICE IoU

Figure 5. The ablation study on the (a) detection and (b) segmen-

tation performance with different number of nucleus templates.

4. Conclusion

In this paper, we propose a Mutual-Complementing

Framework (MCF) for nuclei detection and segmentation

in pathology images, which are fundamental analysis op-

erations in pathological diagnosis. In MCF, the detec-

tion and segmentation branch are trained in a mutual-

complementing manner where the detection branch comple-

ments the pseudo mask of the segmentation branch, while

the progressive trained segmentation branch complements

the missing nucleus templates for the detection branch. In

the detection branch, the cropped filter fusion and multi-

scale filter fusion are devised for obtaining the optimal re-

sponses of crowded nuclei and different scale nuclei, re-

spectively. Meanwhile, we put forward the gradient direc-

tion based postprocessing for locating the nuclei centers,

which can handle the location problem of conjoined and

overlapping nuclei. In the segmentation branch, the con-

fidence loss is proposed to train the segmentation network

only with high confidence areas. What’s more, some syn-

thetic nucleus samples and self-finetuning are used to en-

hance the segmentation performance on the boundary of nu-

clei and missing nuclei, respectively. Experiments on three

datasets demonstrate that, with only a few nucleus patch

templates, the proposed MCF achieves closed performance

on par with fully supervised methods. In particular, MCF

has excellent robustness (only dropping by about 6%) on

degenerated samples, which are common and crucial cases

in clinical diagnosis. In the future, we will focus on reduc-

ing the performance drop on degenerated samples.
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