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Abstract

We present a novel neural representation for light field
content that enables compact storage and easy local recon-
struction with high fidelity. We use a fully-connected neural
network to learn the mapping function between each light
field pixel’s coordinates and its corresponding color val-
ues. Since neural networks that simply take in raw coor-
dinates are unable to accurately learn data containing fine
details, we present an input transformation strategy based
on the Gegenbauer polynomials, which previously showed
theoretical advantages over the Fourier basis. We conduct
experiments that show our Gegenbauer-based design com-
bined with sinusoidal activation functions leads to a bet-
ter light field reconstruction quality than a variety of net-
work designs, including those with Fourier-inspired tech-
niques introduced by prior works. Moreover, our SInusoidal
Gegenbauer NETwork, or SIGNET, can represent light field
scenes more compactly than the state-of-the-art compres-
sion methods while maintaining a comparable reconstruc-
tion quality. SIGNET also innately allows random access
to encoded light field pixels due to its functional design. We
further demonstrate that SIGNET’s super-resolution capa-
bility without any additional training.

1. Introduction

Light fields offer an information-rich medium for static
and dynamic scenes. However, a significant barrier to their
widespread adoptions is a lack of sufficiently compact rep-
resentations of such high-dimensional data, making it im-
practical for efficient storage, editing, and streaming. For
example, a 1080p 60-fps light field video captured on a
10 x 10 camera grid easily requires several gigabytes of
storage space for every second of content.

A straightforward solution to compressing light fields is
to apply existing, widely used compression methods such
as JPEG and MPEG. However, due to the sheer amount
of images captured in a light field, the compression rate
of these single-view-based methods are far from satisfac-
tory [48, 49]. Therefore, it is imperative to have a compact
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Figure 1: Overview of SIGNET. We train a MLP to approx-
imate the mapping function from each pixel’s coordinates
to its color values. Our input transformation strategy based
on the Gegenbauer polynomials enables the MLP to more
accurately learn the high-dimensional mapping function.

way to represent light fields by taking advantage of the over-
lapping and repetitive visual patterns in light fields.

Extensive research has been devoted to designing com-
pact light field representations based on the patch-based
compression strategy manifest in the JPEG standard. These
methods represent each image patch as a weighted sum of
a small dictionary of basis functions, and the goal is find-
ing new ways to construct dictionaries of basis functions
that achieve better compression results. Yet, previous ef-
forts have limited success in enabling easy transmission and
manipulation of light field content.

Recent advances in deep learning have led to impressive
results in representing data like images and volumes [3 1, 43,
47] with neural networks. A common thread among these
methods is incorporating Fourier-inspired modifications to
the classical neural network design called multilayer per-
ceptron (MLP). Specifically, the SIREN network [43] uses
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a sinusoidal activation function between the MLP layers,
while neural radiance field (NeRF) networks [31] designed
for volumetric radiance data show the effectiveness of ap-
plying cosine and sine transformations on input coordi-
nates. The improvement brought by the Fourier basis used
in NeRF is further analyzed and formalized by Tancik et
al. [47], who also successfully extend the neural represen-
tation to data like 2D images and 3D shapes.

The proven capability of MLPs to express visual content
with high fidelity implies that we could potentially com-
press a gigapixel light field within a few megabytes. How-
ever, as shown in Section 4, the previous techniques fall
short of representing light fields without visible artifacts.

In this work, we present a new framework that efficiently
and accurately represents light field content using neural
networks. Crucially, we introduce a novel input transfor-
mation strategy of the multi-dimensional light field coor-
dinate based on the orthogonal Gegenbauer polynomials,
which in our experiments work very well with the sinu-
soidal activation functions between the MLP layers. We call
this network SIGNET (SInusoidal Gegenbauer NETwork),
and we show its superiority for light field neural represen-
tation over a variety of Fourier-inspired input transforma-
tion strategies. SIGNET also achieves outstanding recon-
struction quality with a higher compression rate than state-
of-the-art dictionary-based light field compression methods.
We further demonstrate how our MLP-based approach eas-
ily allows for view synthesis and super-resolution on the
encoded light field scenes.

In summary, our contributions are as follows:

* We present a neural representation of light fields which
achieves high reconstruction quality and compression
rate and offers pixel-level random access to the en-
coded light field.

* We introduce an input transformation strategy for
coordinate-input MLPs using Gegenbauer polynomi-
als, which outperforms other recently proposed tech-
niques on light field data.

* We show such a neural representation enables high-
quality decoding at novel coordinates without addi-
tional training, achieving super-resolution along spa-
tial, angular, and temporal dimensions on light fields.

2. Related work

Light Field Compression. Traditional compression re-
lies on classical coding strategies that typically involve
analytical basis functions such as the Fourier basis and
wavelets. Prior research has augmented this analytical ap-
proach with disparity [9, 21, 26, 38] and geometry in-
formation [52]. Some sophisticated applications of light
field video [7, 22, 33] also integrate motion prediction and

build on existing video codec algorithms such as HEVC
(H.265) [45] and VP9 [32]. More recently, Le Pendu et
al. [35] present a Fourier Disparity Layer representation for
light fields, which allows upsampling [37] and compres-
sion [12, 36] in the Fourier domain.

A different approach towards light field compression
involves learning a dictionary of basis functions, which
is inspired by progress in sparse coding from machine
learning, where dictionaries learned with data-driven algo-
rithms have been shown to outperform analytical basis func-
tions [1, 27, 30, 44]. However, the dictionaries learned with
conventional algorithms such as K-SVD [4] still contain too
much redundancy and have a high storage cost. The current
state-of-the-art methods [20, 29] for light field compression
improve this approach by learning an ensemble of orthogo-
nal dictionaries with a novel pre-clustering strategy.

We present a novel approach to this task by learning a
neural representation of light fields. While our approach
is rooted in the idea of basis functions, we fundamentally
differ from the previous methods as we use the expressive
power of neural networks with non-linear activation func-
tions to combine the basis functions into the desired output.

Light Field Interpolation. Most approaches rely on
proxy information such as depth or optical flow [8, 10, 13,
, 28, 41]. Recently, deep learning methods have been
used to infer depth and optical flow from light fields, and
render novel viewpoints [0, 16, 24, 50, 51]. These methods
warp the original frames to a novel viewpoint. While the
results are impressive, they require access to the original
light field data at run-time, incurring additional, sometimes
prohibitive, costs to the light field processing pipeline.

In this paper, we show how our neural light field rep-
resentation naturally enables interpolation from the com-
pressed data without explicit learning or proxy information.
Although our presented network is not specifically designed
for light field super-resolution or view synthesis, our results
show its promising potential to be adapted for such tasks.

Coordinate-input MLP Recent research [31, 43, 47] has
shown the potential of using coordinate-input MLP net-
works to represent various data. The Fourier-inspired trans-
formation achieves state-of-the-art free viewpoint synthe-
sis on static scenes [31]. The sine activation, introduced in
SIREN [43], allows a simple MLP with raw coordinate in-
puts to accurately model the coordinate-to-color mapping
of data including images and videos. However, our experi-
mental results show that these Fourier-inspired methods are
unable to accurately model the coordinate-to-color mapping
in light fields. We present a new transformation that allows
the MLPs to successfully represent dense light fields, and
we show its applicability for compactly representing high-
resolution light fields.
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Figure 2: Illustration of Gegenbauer (Ultraspherical)
Polynomials. We evaluate the 2D Gegenbauer basis func-
tions on a 2D Cartesian grid (left) and a 3D polar grid
(right). Only the first six orders of the basis are selected
for illustration purposes.

Gegenbauer Polynomials. Previous research in applied
mathematics has shown the effectiveness of Gegenbauer
polynomials, also known as ultraspherical polynomials,
in addressing the Gibbs phenomenon [I8], which is a
commonly observed artifact in MRI reconstruction using
Fourier-based approximations [5, 19]. It has been shown by
Gottlieb et al. [18] that the finite Gegenbauer expansion of
such functions provides a better convergence and usually re-
solves the Gibbs artifact using fewer basis functions than the
Fourier approach. Specifically, they show that given the first
N Gegenbauer expansion coefficients, we can construct an
exponentially convergent approximation to the point values
of f(x) in any sub-interval where f is analytic [17].

Moreover, recent studies on machine learning also show
the usefulness of Gegenbauer kernels [3, 34] or hyperspher-
ical loss functions [15, 25]. Our experiments show applying
Gegenbauer transformation on light field coordinates not
only improves reconstruction quality but also results in a
faster neural network convergence.

3. Overview
3.1. Light Fields as Functions

Our goal is to find an accurate approximation to the map-
ping function F for a given light field, from which we could
retrieve the color value of any pixel. Moreover, such a func-
tional approximation could be parameterized using fewer
bits than the original light field content, providing us with a
compressed representation of the light field.

A noteworthy feature of this functional approach towards
light field representation is that we could arbitrarily decode
any pixel within the given light field, providing random ac-
cess to the compressed data which ensures efficiency in con-
tent retrieval and streaming. Most previous compression
methods discussed in Section 2 involve encoding and de-
coding blocks of pixels, and many video compression meth-
ods even require information from the previous frame to de-

code the current frame.
3.2. Function Approximations

A single-channel image represented as a 2D function
F(z,y), could be approximated by the weighted sum of N
orthogonal basis functions O(x, y):

N
= a:0i(x,y) (1
i=1

Assuming the set of orthogonal functions is known, an
image could be recovered by just using the coefficients
{a;}_,. Thus, image compression is reduced to compress-
ing this set of coefficients. In the case of JPEG compression,
cosine functions are used as the ©;’s, and the coefficients
{a;}}, are quantized and entropy-encoded.

If we use a similar, analytical formulation for 4D light
fields, we would obtain the following approximation:

-y w0

However, instead of analytically calculating the coefficients
a;, we propose using an L-layer MLP to compute:

=¢ropr_10...0 ¢1([@

F(u,v,z,7) (u,v,2,y) )

f(u,u,x,y) i(u7vvw7y)]zN:1)
3)
Here, ¢; stands for the [-th layer of the neural network with
a weight matrix W, bias vector b;, and an activation func-
tion o . The output from each layer is ¢;(x) = o(Wiz+b;).
We next discuss why this approach is preferred over com-

puting analytic coefficients.
3.3. MLP for Approximation

This MLP-based formulation shares several similarities
to the classic Fourier expansion method. In fact, for the 1D
function case, a MLP could be constructed that has the same
representation capacity as a Fourier expansion:

N
= Z an'exp(
n=—N

This Fourier expansion is equivalent to a special two-
layer MLP with activation function o(x) = exp(iz). The
first layer of this MLP would be a 1 x 2N matrix with val-
ues {27n}N__ ., while the second layer would contain the
2N x 1 Fourier coefficients {a, })__ .

The same analogy generalizes to multi-dimensional in-
puts. For example, the Fourier expansion of a 2D function
is of the following form:

N

fN,M(xay): Z Z Am,n * eXp

n=—Nm=—M

i-2mnx),xz € [0,1],N € Z (4)

27 (nx + my)]

®)
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Figure 3: Examples of reconstructed images (left) and absolute errors (right). SIGNET achieves good accuracy while
other methods find encoding this scene challenging. Here we only present the Bracelet scene; more qualitative results for
other light field scenes may be found in the Supplementary Material.

with z,y € [0,1] and N, M € Z. Notably, the Fourier coef-
ficients {a., ,, } are grouped together as a 2D matrix. While
this seems incompatible with the MLP described earlier, we
could flatten this 2D matrix into 1D and fit this expansion
into the form of a two-layer MLP. For example, the input to
the MLP would be [z, y]7, the first layer could be a 2 x ANM
matrix with the columns populated by every combination of
(n,m), and the second layer could be a 4NM x 1 matrix that
contains the Fourier coefficients {a, ,, }.

Given the examples in 1D and 2D, we can see how
the same derivation naturally extends to higher dimensions.
However, increasing the dimensions would lead to a com-
binatorial growth of number of coefficients to consider.
More importantly, it would be hardly meaningful to have
a MLP with even more parameters than the Fourier coef-
ficients. Therefore, we need a MLP with far fewer pa-
rameters while ensuring that it can approximate the multi-
dimensional function for light fields.

3.4. Towards Multi-dimensional Input

Recent works [39, 43, 47] have shown that typical MLPs
with coordinate inputs suffer from a spectral bias when try-
ing to approximate multi-dimensional functions like im-
ages. Two recent techniques modify coordinate-input MLPs
to enable them to successfully learn on data with high-
frequency details such as natural images and volumes.
SIREN [43] uses sine function as the activation function be-
tween network layers, while FourierMLP [47] shows the ef-
fectiveness of transforming the input ([z, y] in the 2D image
case) using the cosine and sine functions as a basis.

Recalling Euler’s formula, €® = cos(x) + i - sin(z),
we observe that these two techniques have similar elements
to Equation 5, where we show the equivalence between

2D discrete Fourier transform and a particular MLP. It is
therefore not surprising that the coordiate-input MLP finally
achieves accurate representation when it is empowered by
the periodicity behind Fourier expansions, either from the
sine activation used in SIREN or from the sine and cosine
input transformations in FourierMLP.

Moreover, in NeRF and FourierMLP, the coordinate
along each dimension is independently transformed, and the
respective high-dimensional embeddings are concatenated
together as input to the MLP. This concatenation is cru-
cial since it elegantly avoids the combinatorial explosion of
multi-dimensional basis.

For instance, for a 2D image with cosine bases of orders
N and M along each dimension, it is sufficient to simply cal-
culate {cos(nz)}N__ and {cos(my)}M__, in 1D and
then concatenate them into a 1 x 2(N + M) input, instead of
the 1 x 4NM input from {cos(nz + my) }.m.

This modification enables MLPs to make use of
multi-dimensional orthogonal basis functions without the
quadratic increase in the input size. Therefore, we adopt
this concatenation strategy for learning light fields without
training an exceptionally wide MLP.

3.5. Gegenbauer Basis

While these Fourier-inspired transformation techniques
are shown to work really well for images and volumes, we
are unable to get satisfactory results when using them with
MLPs to represent light fields as discussed in Section 4. In-
stead, inspired by the benefits of Gegenbauer reconstruc-
tion over Fourier-based reconstruction discussed in Sec-
tion 2, we develop an input transformation strategy using
Gegenbauer polynomials as basis functions. The n-th order
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Compared to other variants of coordinate-input MLP, SIGNET

clearly has a faster convergence and a higher quality in representing the 4D light fields.

Table 1: Different MLP used in experiments. Definitions
of input transformation methods are in Section 4.2

Network Transformation  Activation
CoordinateReLU None ReLU
FourierReLU Gaussian Fourier ReLU
DiscreteFourierReLU  Discrete Fourier ReLU
SIREN None Sine
DiscreteFourierSine Discrete Fourier Sine
GegenbauerReLU Gegenbauer ReLU
SIGNET Gegenbauer Sine

Gegenbauer polynomials could be computed recursively as:

01 (2) = - Relnta-1)GE) (@)~ (n+2a-2)GL, (),
(6)

where —1 < z < 1, G(()a) (r) =1, and Gga)(m) = 2aur.

G ()

4. Methods
4.1. Proposed Framework

To reconstruct pixels of a 4D light field from SIGNET, a
coordinate-input vector p = [u, v, z, y] is transformed with
a set of functions S; as

[Sl(u),...
81(93),...

,Sc, (u),S1(v), ..., Sc, (v), ...,
78075 (93), ""Sl(y)v "'7SCy (y)}

Cy, Cy, Cy, Cy are the maximum orders of basis functions
used to map the coordinates along each dimension. In our
case, we use the Gegenbauer basis functions to transform
the input by setting S,,(2) = G%(z) as defined in Sec-
tion 3.5. We adopt the sine activation presented by Sitz-
mann et al. [43] as it enhances the ability of a MLP to ap-
proximate functions even without an input transformation.

4.2. Comparative Evaluation

Having discussed the motivations for using MLP for rep-
resenting light fields and introducing the Gegenbauer input
transform, we need to validate this approach through qual-
itative results for MLP light field reconstruction. To ob-
jectively evaluate our network, we compare it with several
other networks with different transformation strategies and
activation functions (see Table 1).

The specific input transformation strategies in the second
column in Table 1. None transformation means S,,(z) = z
and that C, = C, = C, = Cy = 1. With Dis-
crete Fourier, the transformation function returns a tuple as
Sp(x) = [cos(2mnz), sin(2mnz)]. With Gaussian Fourier,
we adopt the Fourier-based transformation presented in
FourierMLP [47], with the scale set at 5. This is equivalent
to having £(p) = [cos(Bp"), sin(Bp')] with B being a
5 X4 matrix with entries randomly initialized from a Gaus-
sian distribution (0, 5), and C' = C\,+C,+Cy+Cy+C.

4.3. Data and Training Setup

For static light fields, we use the Stanford Light Field
Archive [2]. For light field videos, we choose the Tech-
nicolor Natural Light Field Video dataset [40]. We select
these specific scenes used by Miandji et al. [29] for a fair
comparison of performance. The details of these datasets
may be found in the Supplementary Material.

We implemented the networks in PyTorch and follow
the same training scheme and random seed to ensure repro-
ducibility. More details may be found in the Supplementary
Material. We train all networks for 30 epochs, each taking
around 12 minutes on an NVIDIA GeForce RTX 2080 Ti.
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Table 2: Compression Performance Compared to Other Methods.

Values in the column Size denote the storage in

megabytes(MB) for each method without further quantization. Details of the other listed methods may be found in Miandji et
al. [29]. The storage cost of SIGNET is calculated based on the number of MLP parameters required (see Table 4 in Supp.

Material) to reconstruct all pixels in each scene.

Static Light Fields Light Field Videos
Lego Bracelet Tarot Painter Trains

Method Size | PSNR | SSIM | Size | PSNR | SSIM | Size | PSNR | SSIM | Size | PSNR | SSIM | Size | PSNR | SSIM
SIGNET 9.0 41.26 | 0976 | 12.0 | 38.70 | 0.973 9.0 3747 | 0975 | 144 | 39.56 | 0.934 144 39.73 | 0.968
AMDE [29] 293 | 40.90 | 0973 | 18.1 | 39.90 | 0980 | 442 | 38.54 | 0.973 | 941 38.25 | 0.929 | 809 37.00 | 0.946
KSVD [4] 293 | 3839 | 0.959 | 18.1 | 36.73 | 0973 | 443 | 38.81 | 0.980 | 942 | 38.12 | 0.928 807 35.06 | 0.928
HOSVD [29] | 29.3 | 37.24 | 0958 | 18.0 | 33.98 | 0.962 | 443 | 3453 | 0966 | 942 | 3691 | 0919 | 807 35.29 | 0.937
SDDCT [29] | 294 | 3729 | 0955 | 18.1 | 32.31 | 0952 | 442 | 33.03 | 0.960 | 941 36.79 | 0915 807 3520 | 0.934
CDFY9/7[11] | 29.0 | 3371 | 0914 | 182 | 31.98 | 0.939 | 443 | 29.17 | 0.865 | 941 31.69 | 0.822 | 1116 | 29.80 | 0.746

Ground Truth SIGNET Reconstruction Absolute Error

Figure 5: We show examples of reconstruction on light field
video scenes Painter and Trains.

5. Results
5.1. Static Light Field Reconstruction

We test the effectiveness of SIGNET and compare it
against the other configurations listed in Table 1 with the
same model size. For a fair comparison, we use the same
number of basis functions (Cy, Cy, Cy, C,) for the three
input transform strategies: GaussianFourier, Discrete-
Fourier and Gegenbauer. We train each type of MLP on
the three static light field scenes and present example results
in Figure 3. More results are in the Supp. Material.

We observe that SIGNET leads to higher quality recon-
structions. The network with Gegenbauer transformed in-
put not only produces more accurate reconstruction than
with other transform strategies, its results are also more
visually stable. Even without the sine activation (Gegen-
bauerReLU), the Gegenbauer transformation improves the
performance of the basic ReLU MLP (CoordinateReL.U),
and it even achieves better performance averaged over the
three scenes than Fourier-based MLPs (FourierReLLU, Dis-
creteFourierReLLU, and DiscreteFourierSine). We also show
the PSNR values during the training progression for each

JEYE

Cropped - Original Frame Cropped - 2x Upsampled

Original Frame

Figure 6: Spatial Upsampling. We evaluate the trained
SIGNET on dense sampling grid points in the spatial di-
mensions. We show zoomed-in details in the cropped region
bounded by the yellow rectangle.

type of MLP in Figure 4. The PSNR curves further cor-
roborate the superiority of SIGNET, which clearly shows
faster convergence and higher accuracy. Another takeaway
from these results is that the success of our method is not
entirely due to the sinusoidal activation (see SIREN versus
SIGNET), and that the Gegenbauer transformation is indeed
necessary and effective for more accurate light field repre-
sentations. Therefore, for the rest of the paper, we adopt
SIGNET as our default MLP setup.

Furthermore, SIGNET not only accurately reproduces
the RGB values at each pixel location, but it is also parsimo-
nious in storage cost. In Table 2 we compare the compres-
sion and reconstruction result of SIGNET against previous
methods. On all three static light field scenes, we achieve
reconstruction quality on par with the state-of-the-art meth-
ods while requiring much less storage. For reproduction,
the Supplementary Material provides the specific network
setup for the results shown in Table 2.
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SIGNET Reconstructed View

LFASR Results

SIGNET Results

Figure 7: Angular Upsampling. At the bottom left corner of the reconstructed view, we show the relative positions of the
reconstructed view (red square) and its four nearest views (blue squares) in the original light field. We present reconstructions
at novel viewpoints from the three static scenes, and we also show results from the deep-learning-based method, LFASR [23],
which is trained specifically for light field angular upsampling. Notice the LFASR results show visible artifacts pointed to by

the yellow arrows, such as distorted geometry and ghosting.

2 i

Figure 8: Temporal Upsampling. ¢y and o + 1 are consec-
utive frames in the original video. The blue boxes contain
output from frames evaluated at ¢o + %, which is not present
in the original video. The vertical lines are drawn for easier
observation of the motion trajectory.

5.2. Extension to Light Field Videos

After observing the good performance of SIGNET on
static 4D light fields, we extended the same framework to
light field videos, where effective compression is even more
important. Since a light field video contains many more im-
ages than a static light field, it is challenging to only train
one network to approximate the 5D function that covers
the entire video. Therefore, we divide a light field video
into smaller blocks such that each block is independently
learned by a small SIGNET. Details of our temporal divi-
sion may be found in the Supplementary Material.

We show example results in Figure 5 and compare the
compression results with previous methods in Table 2.
SIGNET has a clear-cut advantage both in terms of recon-
struction quality and compression size.

5.3. Light Field Super-Resolution

SIGNET’s unique advantage of is it can evaluate arbi-
trary coordinates, thus allowing interpolation of viewpoint,
as well as spatial and temporal coordinates.

In Figure 6, we show the results of spatial upsampling
with the trained SIGNET. We observe that the results do
not have any perceptible artifacts. Furthermore, these re-
sults suggest that SIGNET does not merely memorize the
training samples, but it also gracefully interpolates among
the unsampled coordinates.

In Figure 7, we further show the upsampling results
for the angular dimensions. We compare our results with
LFASR [23], a state-of-the-art method that is representa-
tive of most learning-based methods that rely on depth es-
timation. Note that our novel views are generated with-
out any depth information, and we do not explicitly use
any information from adjacent images. SIGNET achieves a
similar level of visual quality to the learning-based method
equipped with deep CNNs, while avoiding the mismatch-
ing artifacts that stem from inaccurate depth or optical flow
estimation. The fact that SIGNETs can generate views at
unseen viewpoints implies that they actually store far more
images than just the original data, which could significantly
increase the effective compression rate.

Finally, we show in Figure 8 the result of upsampling
along the temporal dimension on light field videos. Such re-
sults again demonstrate the trained network not only mem-
orizes the training samples, but also implicitly derives the
motion pattern between two frames.

5.4. Ablation Studies

For simplicity, in this section we use the static light field
scene, Lego, to train our networks. We first examine the ef-
fect on network performance when we modify C, the total
number of Gegenbauer basis orders. We set hidden layer
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Figure 9: Ablation Studies. We change different aspects of
SIGNET as discussed in Section 5.4.

length L = 10 and test network performance with dif-
ferent input sizes C' = BC, + BC, + BC, + pC, with
£ = 0.25,0.5,2,4 and the C's same as in Table 4 in Supp.
Material. In Figure 9a we show the training curves, and
the performance gain from increase in the input basis size
apparently diminishes after C' > 1024.

We then investigate how the network performance
changes as we modify the number of network layers, L. We
set the dimension of all intermediate layers to be 512 x 512.
In Figure 9b, we show how the reconstruction quality
changes for different configurations. The network accuracy
saturates as the network expands to 10 layers.

In Figure 9c we show the effect of changing the matrix
dimension size M for all hidden layers. We set the hid-
den layer length as L = 4 and the number of input basis
functions as C' = 512. As expected, we do see higher qual-
ity with more bases, although the quality also saturates to a
certain ceiling. Increasing L seems to be a more effective
way to increase SIGNET capacity and approximation ac-
curacy, since it only moderately increases the storage cost;
incresing M barely improves performance but significantly
increases the storage cost.

We also examine the impact of varying «, a hyperparam-
eter of Gegenbauer polynomials. In addition to our default
choice of o = 0.5, we test several other values and we show
the results in Figure 9d. The results suggest that our default
choice is reasonable, since the network performance seems
to decline as o becomes larger than 0.5.

6. Discussion and Limitations

Compared to prior work on light field compression,
SIGNET distinguishes itself with the ability to decode at
coordinates not captured in the original data, thanks to its
functional design.

Our results could be further enhanced by traditional im-
age coding schemes which quantize and further encode
spectral coefficients and residuals. As a quick check, we im-
plemented quantization and weight pruning on our network
weights. Our preliminary results show a further 15-fold bi-
trate reduction while PSNR decreased by less than 0.1. Ad-
ditional weight compression techniques such as knowledge
distillation could further enhance our compression rates. In
contrast to prior work, SIGNET would not require sending
the original light field images to the users; only the MLP
weights are sufficient for decoding a high-resolution and
densely sampled light field at arbitrary viewpoints.

While SIGNET achieves high reconstruction quality, a
limitation is we need to retrain the network for every new
scene. Latest advances [42, 40] have presented promis-
ing results in using meta-learning to speed up the training
of coordinate-input MLPs. We believe that meta-learning
strategies are likely to drastically reduce the training cost,
and we leave explorations on this idea for future work.

Although we briefly showcase the ability of the trained
networks to perform upsampling, we do not focus on fur-
ther exploiting its potential in this direction. Our method
is not guaranteed to achieve satisfactory view synthesis re-
sults on sparsely sampled light fields (e.g. light field with
3 x 3 viewpoints with a large disparity), since there is insuf-
ficient data along the angular dimensions for the network to
approximate smooth interpolations. In the future, it would
be desirable to design neural networks that can generalize
across different scenes utilizing learned prior knowledge.

7. Conclusion

We present SIGNET, a novel framework to represent
light fields with neural networks, which achieves high-
fidelity reconstruction and state-of-the-art compression per-
formance. We hope SIGNET could motivate more research
into utilizing neural networks for processing light fields and
other high-dimensional visual data.
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