
Temporal Knowledge Consistency for Unsupervised Visual Representation
Learning

Weixin Feng1* Yuanjiang Wang2* † Lihua Ma2 Ye Yuan2 Chi Zhang2

Beijing University of Posts and Telecommunications 1 Megvii Technology2

fengweixin@bupt.edu.cn, wangyuanjiang@megvii.com

{malihua, yuanye, zhangchi}@megvii.com

Abstract

The instance discrimination paradigm has become dom-
inant in unsupervised learning. It always adopts a teacher-
student framework, in which the teacher provides embed-
ded knowledge as a supervision signal for the student. The
student learns meaningful representations by enforcing in-
stance spatial consistency with the views from the teacher.
However, the outputs of the teacher can vary dramatically
on the same instance during different training stages, in-
troducing unexpected noise and leading to catastrophic for-
getting caused by inconsistent objectives. In this paper, we
first integrate instance temporal consistency into current
instance discrimination paradigms, and propose a novel
and strong algorithm named Temporal Knowledge Consis-
tency (TKC). Specifically, our TKC dynamically ensembles
the knowledge of temporal teachers and adaptively selects
useful information according to its importance to learning
instance temporal consistency. Experimental result shows
that TKC can learn better visual representations on both
ResNet and AlexNet on linear evaluation protocol while
transfer well to downstream tasks. All experiments suggest
the good effectiveness and generalization of our method.
Code will be made available.

1. Introduction
The rise of Deep Convolutional Neural Networks

(DCNN) [23, 28, 46] has led to significant success in com-
puter vision benchmarks [8, 13, 33]. The excellent perfor-
mance of supervised DCNN always relies on a large quan-
tity of manually labeled data, which is costly to collect
[18, 51]. Unsupervised representation learning has been
attracted more and more interest, for it can learn a good
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Figure 1. Mainstream unsupervised methods adopt the teacher-
student framework, where the teacher is an EMA ensemble of pre-
vious student encoders. This figure illustrates the proportion of
previous students in the teacher with respect to training steps. The
red curve shows that the EMA teacher ensembles the previous en-
coders by a predesigned factor α, where only alomst encoders in
the very close steps are ensembled. Our TKC (the green curve)
reuses the early models and adaptively learns the importance ω for
each of them, thus leads to temporal consistent representations.

representation without human annotations. These methods
are generally to manually design a pretext task to learn rep-
resentations, such as image in-painting [42], colorization
[9, 60, 30, 31], rotate predicting [18, 6, 14] and cluster-
ing [2, 62, 4]. All these pretext tasks are based on spe-
cific domain knowledge, which has poor generation on var-
ious downstream tasks. Recently, instance discrimination
[51, 21, 5, 19, 36] paradigm has led to remarkable progress
in unsupervised representation learning and even surpasses
the supervised pre-training on extensive downstream tasks
[36, 21].

The instance discrimination paradigm treats each sam-
ple itself as its own category and trains the CNN to sep-
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arate all the different samples from each other. The cur-
rent paradigm can be formulated as a teacher-student frame-
work enforcing the instance spatial consistency of two net-
works, which are the student network and the EMA teacher
network [7, 19, 5]. The instance spatial consistency con-
strains the similarity of different spatial views from the
same instance, and its ultimate goal is to learn instance-
discriminative and spatial-invariant representations. One
of the key points in these instance discrimination works is
the EMA teacher. For instance, MoCo [21] uses the EMA
teacher to output consistent negative samples for the stu-
dent; BYOL [19] trains a student to mimic the representa-
tions from the EMA teacher; SimCLR [5] maintains a real-
time EMA teacher of the student.

However, we argue that the current EMA teacher is sub-
optimal as illustrated in Fig. 1: (1) the EMA teacher
only ensembles the rare knowledge of recent encoders by a
handcraft proportion, which means that it only concentrates
on instance spatial consistency while the instance tempo-
ral consistency is ignored. As a consequence, the outputs
of the same sample can vary dramatically among different
training stages, which can introduce unexpected noise and
finally lead to catastrophic forgetting [34, 61]. (2) The EMA
manner can’t leverage the importance of different encoders.
It assumes that the outputs of later models are largely more
important than the earlier ones, despite that the benefits
of previous epochs have been observed in previous works
[29, 61].

In this paper, we integrate instance temporal consistency
into the instance discrimination paradigm and propose a
novel and strong algorithm, namely Temporal Knowledge
Consistency(TKC), which contains the temporal teacher
and the knowledge transformer. Specifically, temporal
teacher supplies instance temporal consistency via intro-
ducing the temporal knowledge from previous models. And
the knowledge transformer dynamically learns the impor-
tance of different temporal teachers, then adaptively ensem-
bles the useful information according to their importance,
to generate instance temporal consistency objective. In ad-
dition, we provide a computation-economical implementa-
tion, which can provide temporal knowledge without pre-
serving multiple previous models.

Our experimental results on different tasks and bench-
marks have demonstrated that TKC can learn a better vi-
sual representation with excellent transferability and scala-
bility. Concretely, we achieve state-of-the-art performance
on ResNet and AlexNet backbones on linear evaluation pro-
tocol. Moreover, we evaluate representations learned by
TKC on many downstream tasks and architectures. All re-
sults suggest the effectiveness of TKC. Overall, the main
contributions in this work include:

• We are the first to integrate instance temporal consis-
tency into the current EMA teacher in the instance dis-

crimination paradigm.

• We propose a novel and strong algorithm, named Tem-
poral Knowledge Consistency (TKC), which can dy-
namically ensemble the knowledge from different tem-
poral teachers.

• Extensive experiments are conducted on several
benchmarks and architectures, which shows the supe-
rior performance on mainstream benchmarks and the
scalability of TKC.

2. Related Works
Unsupervised Pretext Tasks. Unsupervised representa-
tion learning aims to learn meaningful representations from
large amounts of data samples via constructing a wide range
of pretext tasks without human labels. These pretext tasks
usually vary in different forms. Among them, one family of
these typical pretext works are generative-based which rely
on auto-encoder [44] or GAN [35, 12], such as colorization
[9, 60, 30, 31] and image in-painting [42]. And the oth-
ers are discriminative-based, like predicting rotation or aug-
mentation [18, 6, 14] of the image, solving jigsaw puzzles
[38], locating relative patch [10, 11], ordering video frames
[15, 54, 50], matching corresponding audio [41, 17, 40, 27],
and clustering [2, 3, 62, 58, 1, 52, 56, 55, 16]. All the pretext
methods are based on specific domain knowledge, fail to
generalize to different downstream tasks. Recent progress
in unsupervised representation learning mainly benefits
from instance discrimination and attracts widespread atten-
tion from researchers.
Instance Discrimination. Instance discrimination methods
[51, 21, 7, 5, 19, 39, 14, 36] have dominated the unsuper-
vised learning field in the few years, which treat each sam-
ple itself as its own category and train the CNN to separate
all the different samples from each other. This paradigm
commonly includes a teacher model to provide a supervised
signal, and a student model to learn the embedded knowl-
edge from the former. Wu et al. [51] is the first to propose
instance discrimination in unsupervised learning, which re-
gards the student model in the last epoch as the teacher
model. It learns meaningful representations by means of
the classic InfoNCE loss [20, 39] and the target generated
by the teacher. MoCo [21, 7] takes the EMA ensemble of
the student as the teacher model to provide consistent and
robust objectives, and brings a breakthrough by solving the
knowledge out-of-date problem with the help of the EMA
teacher. It also maintains a queue of negative samples and
keeps them fresh. SimCLR [5] builds symmetrical architec-
ture between the student and the teacher, while uses stronger
data augmentation to enforce network to learn instance spa-
tial consistency. BYOL [19] also implements the teacher
with the EMA ensemble of the student, and makes use of L2
loss to pull the embedding features of positives pairs while
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removing explicitly negative samples. Our TKC explicitly
integrates instance temporal consistency into the instance
discrimination paradigm, making the targets generated by
the teacher more accurate and stable.
Temporal Knowledge. Temporal knowledge is widely
used in both semi-supervised learning and optimization. In
the field of semi-supervised learning, plenty of the pro-
posed works adopt the EMA ensemble to take advantage
of the knowledge of the previous training stage, to learn the
time-consistent representations. Temporal Ensemble [29]
ensembles the output of different epochs to yield better pre-
dictions. Mean teacher [47] instead ensembles the previ-
ous student as a teacher to prevent incorrect target and out-
weighs the cost of misclassification. Tian et al. [61] points
out the catastrophic forgetting problems in semi-supervised,
and solves it by measuring the time consistency of sam-
ples and filtering the inconsistent ones. In the field of
optimization, temporal knowledge is integrated by differ-
ent advanced optimization strategies during training. SGD
only uses the gradient computed by a mini-batch to back-
propagate, which is noisy and inaccurate. Momentum [43]
and NAG [37] instead use the gradient in a mini-batch by
the momentum of the gradient to accelerate the conver-
gence of model training and suppress shocks. Adam [26] is
another momentum updating strategy which further intro-
duces the second momentum to leverage different channels.
All these works use temporal knowledge to reduce noise
and accelerate convergence.

3. Method
In this section, we first point out the limitation of the cur-

rent EMA teacher in Sec 3.1. Secondly, we propose tempo-
ral teacher to improve it in Sec 3.2. Thirdly, we introduce
the knowledge transformer to dynamically leverage the im-
portance of different models in Sec 3.3. Then we propose
a temporal loss to learn instance temporal consistency in
Sec 3.4. At last, we describe our overall framework and the
algorithm in Sec 3.5.

3.1. Limitation of EMA teacher

Instance discrimination paradigm always involves two
encoders, the teacher encoder T and the student encoder S.
For a training sample x, the augmentation from augmenta-
tion distribution T is applied twice to obtain two augmented
sample x0, xn. The teacher output rTn = T (xn) as the target
to provide instance spatial knowledge. The student network
takes the other sample x0 then outputs rS0 = T (x0), and
learn knowledge by constrainting its similarity with rTn . In
this teacher-student framework, the teacher encoder has the
same architecture with the student, and its parameters are
updated by an exponential moving average (EMA) of the
models:

Tn+1 = αTn + (1− α)Sn (1)

where n is the training step, α is to control the updating
speed of the teacher. We name the teacher as EMA teacher.
In current training step n + 1, the teacher is ensembled by
the last teacher Tn with ratio α, and the last student Sn with
ratio 1− α. The last teacher Tn is also an ensemble of pre-
vious students. In order to explore the temporal knowledge
in EMA teacher, we expand Tn in Eq 1 as following:

Tn+1 = (1− α) ·
n−1∑
m=0

(αmSn−m) + αn · T1

≈ (1− α) · [Sn + αSn−1 + ...+ αnS0]

(2)

where Sm means the student model at step m, α is the up-
dating factor. In Eq 2, we can find out that current teacher
Tn+1 is an ensemble of a sequence of student S from step
0 to step n.

However, we note that the EMA teacher can only pre-
serve the knowledge from the latest encoders. On the one
hand, as m goes to infinity m → ∞, the weight of student
Sn−m approaches 0, for α is lower than 1. When train-
ing MoCo [21] on ImageNet, only student models within an
epoch can provide the knowledge, as illustrated in Fig. 1.
This knowledge from only near steps is insufficient, which
can cause the dramatically changes among different train-
ing stages and prevent the student to learn instance temporal
consistency.

On the other hand, the strategy of EMA is also too sim-
ple. It assumes that the importance of earlier models is
decreased exponentially with time, even though the earlier
models can provide useful information to mitigate the catas-
trophic forgetting. In a summary, these two flaws prevent
the instance discrimination paradigm from making full use
of temporal knowledge and learning instance temporal con-
sistency.

3.2. Temporal Teachers

EMA teacher in Eq.2 only attaches importance to recent
models. However, the output of these models is smooth
and similar due to the low learning rate and momentum
optimizer. As a consequence, they fail to supply instance
temporal consistency to lighten the dramatic changes of the
models, which can easily lead to training failure and catas-
trophic forgetting. We claim that jointly utilizing the knowl-
edge from previous models can provide a more consistent
and robust target. To achieve that, we propose to take out the
previous models, which have few proportions in the EMA
teacher, to build our temporal teacher. Then we make full
use of them to alleviate catastrophic forgetting and learn in-
stance temporal consistency in the instance discrimination
paradigm.

We explicitly preserve a group of previous teachers as
temporal teacher to reuse the knowledge from previous en-
coders. To formulate our proposal, we use Tn to denote
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Figure 2. The overall framework of our TKC. For each training image x, TKC generate a target from the EMA teacher, and h targets
from the temporal teachers. Temporal teachers is a set of encoders from previous training stages. The knowledge transformer is appended
behind the temporal teacher to dynamically leverage their importance. Every teacher in TKC frameworks can provide a supervised signal,
which then feeds into the temporal loss and backward to update the student and the knowledge transformer. The green dotted line means
backpropagate.

current EMA teacher, and {Tn−1, Tn−2, ...} to represent the
temporal teachers. The lower subscript means earlier. Each
of these teachers is saved for each s training step, includ-
ing the knowledge mainly from this training step. Note that
the subscript n means different with the superscript in Eq.1.
The distance between Tj−1 and Tj−2 is s training steps.

The teacher far away from now is too out-of-date, whose
knowledge can be inconsistent and noisy for the current
teacher. Hence we only preserve adjacent teachers as tem-
poral teacher, while throwing away the previous one. We
use h to represent the number of temporal teachers, and de-
note the temporal teachers by {Tn−1, Tn−2, ..., Tn−h}.

We illustrate the temporal teacher in the brown dotted
box in Fig.2. For a sample x in the training set, we apply
h times data augmentations from the augmentation distri-
bution T , to obtain xj , j ∈ [n − h, n − 1]. The tempo-
ral teachers are set stop-gradient, and take the augmented
views as input to yield representations zTj = Tj(xj), j ∈
[n − h, n − 1] as the temporal predicting target. The sub-
script j of zTj indicate that the target is corresponding to the
teacher Tj .

In the implementation, we propose a more efficient way
to achieve temporal teacher. Instead of getting the target
from previous teachers, we preserve the representations of
all the training data in the previous h stages in a memory
named history bank. For each training sample x, we can
get zTj from the history bank instead of from the teacher

Tj . History bank is an approximate implementation of the
temporal teachers, for both of them can provide temporal
knowledge. In this way, the computational cost is largely
reduced and the additional GPU memory allocation is neg-
ligible. The detail can be seen in the supplementary mate-
rial.

3.3. Knowledge Transformer

In EMA teacher, the weights of different ensemble mod-
els are decreased over time exponentially. However, the im-
portance of different models may not be in line with the
EMA rule. In this section, we propose to dynamically pre-
dict the importance of the temporal teachers’s knowledge
by knowledge transformer.

The knowledge transformer is illustrated in the blue box
in Fig.2. It takes the rough target zTj , j ∈ [n−1, n−h] from
the teacher Tj as input, and then transfer the knowledge of
them to leverage their importance. The formulation is as
follows:

rTj = Kj(z
T
j ) (3)

where rTj denotes the target after leveraging the importance,
which has thrown the harmful information from it and only
preserves temporal consistent knowledge. This strategy can
adaptively learn and adjust the importance of the temporal
teachers in the early or later encoders, which is better than
coupled it to the handcraft proportion in the EMA teacher.

410173



In the implementation, we use an MLP with one hidden
layer to transfer the knowledge for each temporal teacher.
During training, the knowledge transformer is training si-
multaneously with the student.

3.4. Temporal Loss

Algorithm 1 Temporal knowledge consistency
input: S(·), Tn(·), K(·)
hyperparameters: α, h, s

1: for each sample x do
2: draw h+2 augmentations
3: # the original models
4: rS0 = S(x0)
5: rTn = Tn(xn)
6: for all j ∈ {n− 1, n− h} do
7: # temporal teacher
8: zTj = Tj(xj)
9: # knowledge transformer

10: rTj = Kj(z
T
j )

11: end for
12: # temporal loss
13: compute the loss in Eq. 4
14: backward to update S and K
15: update the Tn by Eq. 1
16: end for
17: return S(·)

Different from previous works that only maximize the
mutual information (MI) of the student output rS0 and the
target rTn from the EMA teacher, we propose to combine
maximal the MI between rS0 and each rTj , j ∈ [n−h, n−1].
This is in the intuitive that we hope the student can syn-
chronously learn instance temporal consistency from tem-
poral knowledge. Our objective is as follows:

Ltem= max
rS0

(I(rS0 ; r
T
n )+

∑n−1
j=n−h I(r

S
0 ; r

T
j )) (4)

The first term maximizes the MI in the current phase, like
previous works do [39, 24, 21, 19], which can only learn
spatial consistent representations between different views.
The second term maximizes the MI with previous knowl-
edge to encourage the temporal consistency representations
between different training stages, to mitigate the oscillation
and catastrophic forgetting. Because the mutual informa-
tion is notoriously hard to estimate, we instead maximizing
the lower bound of it by the InfoNCE [39, 21, 5]:

L(1)
tem=

∑n
j=n−h −log

sim(rS0 ·rTj )

sim(rS0 ·rTj )+
∑

r
−
j

sim(rS0 ·r−j )
(5)

where r−j presents the representation of other samples from
the same teacher Tj , and sim(rS0 · rTj ) means their cosine

similarity as following:

sim(rS0 · rTj ) = exp(rS0 · rTj /τ) (6)

where τ is temperature coefficient. In Eq. 5, the term j = n
estimates the MI with the current target, the other terms esti-
mate the MI with temporal targets. InfoNCE is relied on the
negative samples to estimate the probability distributions.
Furthermore, our methods can also work on the methods
without negative samples like BYOL [19]. We minimize
the L2 distance to maximize the MI for these works:

L(2)
tem =

n∑
j=n−h

||rS0 − rTj ||2 (7)

3.5. Overall Framework

As previous works do, TKC also introduce a student S(·)
amd an EMA teacher Tn(·). For a training sample x from
the data distribute, we obtain rS0 from S and rTn from Tn.
To learn consistent knowledge, we also get targets from the
temporal teachers as zTj , j ∈ [n − h, n − 1]. These tar-
gets should transport to the knowledge transformer to filter
important knowledge as rTj , j ∈ [n − h, n − 1]. Then all
the representations are fed into the temporal loss in Eq. 4.
During training, all the teachers are set stop-gradient. The
loss will be back-propagated to update the student S and the
knowledge transformer Kj , j ∈ [n − h, n − 1]. Algorithm
1 summarizes the algorithmic flow of the TKC procedure.

4. Experiments
In this section, we evaluate the quality of feature repre-

sentation learned by our proposed TKC on several unsuper-
vised benchmarks. We first follow standard linear evalua-
tion protocol to assess the learned representations on Im-
ageNet [8]. Then we transfer the pre-trained features to
different downstream tasks, including object detection, in-
stance segmentation, and semi-supervised classification. Fi-
nally, we perform a set of analysis studies to give an intu-
ition of its performance. For brief-expression, all the exper-
iments are based on MoCo v2 [7] framework and ResNet-50
[23] backbone unless otherwise stated.

4.1. Evaluation on Linear Classification

We implement our TKC based on MoCo v2, which is
composed of a standard ResNet-50 [23] backbone and an
MLP layer in the teacher-student framework. And the num-
ber of temporal teachers h is set to 2. We train TKC model
on 8 NVidia-1080ti GPUs with a mini-batch size of 256 and
set α as 0.999, τ as 0.2. Moreover, we set the base learn-
ing rate lr as 0.3, weight decay as 0.0001, and introduce
a warm-up stage in the first 10 epochs, where linearly in-
crease the learning rate from 0.01 to 0.03. All other hyper-
parameters, training settings on pretext task and linear eval-
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Method architecture epochs Top-1 Top-5
Random - 200 5.6 -
Supervised - 200 75.5 -
200 epoch training
LA [62] R50 200 60.2 -
CMC [48] R50(2x) 200 64.4 88.2
CPC v2 [24] R50 200 63.8 85.3
MoCo [21] R50 200 60.6 -
MoCHi [25] R50 200 68.0
CO2 [49] R50 200 68.0
MoCo v2 [7] R50 200 67.5 -
TKC R50 200 69.0(+1.0) 88.7
400 epoch training
SwAV [4] R50 400 70.1 -
TKC R50 400 70.8(+0.7) 89.9
800 & 1000 epoch training
PIRL [36] R50 800 63.6 -
MoCo v2 [7] R50 800 71.1 -
SimCLR [5] R50 1000 69.3 89.0
TKC R50 1000 72.1(+1.0) 90.6

Table 1. Top-1 and top-5 accuracy under the linear classification
protocol on ImageNet with the MoCo framework and ResNet-50
backbone. We report our results of different epochs.

uation are strictly kept aligned with the implementations in
[7].

Table 1 summaries the top-1 and top-5 accuracy of our
method. We report our results for different epochs pre-
trained and also list top-performing methods. TKC im-
proves MoCo v2 by 1.5 % on 200 epochs results, which
indicates that temporal teachers can provide more accurate
targets to learn consistent representations. Our results are
also superiors to previous works on different pretext tasks,
including all other instance discrimination paradigms. This
demonstrates that temporal knowledge can benefit from sta-
ble training while mitigates the effect of catastrophic forget-
ting.

In order to verify the scalability of TKC, we respectively
conduct our TKC on BYOL [19] baseline, and AlexNet [28]
backbone. The number of teachers h is changed to 3 for
AlexNet. Specifically, We use a PyTorch implementation
of BYOL in Momentum2 Teacher [32] as BYOL baseline
and train the model for 100 epochs with 128 batch size on 8
Nvidia-1080ti GPUs. As for AlexNet, we adopt the imple-
mentation in Deep Clustering [2], where we train the net-
work with a mini-batch of 1024 on 4 NVidia-1080ti GPUs,
and the learning rate is initialized by 0.24 with a cosine de-
cay schedule for 200 epochs. More detail can be seen in the
supplementary material.

Method architecture epochs Top-1 Top-5
BYOL† [19] R50 100 70.1 90.6
BYOL† + TKC R50 100 72.4(+2.3) 91.7(+1.1)

Table 2. Top-1 and top-5 accuracy under the linear classification
protocol on ImageNet with BYOL framework. † denotes the re-
sults from unofficial re-implementations.

Table 2 shows our results on BYOL [19] baseline. We
find that TKC can bootstrap BYOL for 2.3%, which shows

that temporal knowledge can also benefit different instance
discrimination methods via maximizing the mutual infor-
mation for temporal targets. The results of BYOL are in-
compatible with the official ones because we use an unof-
ficial reproduction of BYOL. We conduct this experiment
only to prove that TKC can improve different instance dis-
crimination methods. For more details about this reproduc-
tion, please refer to the supplementary material.

Method conv1 conv2 conv3 conv4 conv5
Random 11.6 17.1 16.9 16.3 14.1
Supervised 19.3 36.3 44.2 48.3 50.5
Jigsaw [38] 19.2 30.1 34.7 33.9 28.3
Rotation [18] 18.8 31.7 38.7 38.2 36.5
DeepCluster [2] 12.9 29.2 38.2 39.8 36.1
NPID [51] 16.8 26.5 31.8 34.1 35.6
AET [59] 19.2 32.8 40.6 39.7 37.7
LA [62] 14.9 30.1 35.7 39.4 40.2
ODC [58] 19.6 32.8 40.4 41.4 37.3
Rot-Decouple [14] 19.3 33.3 40.8 41.8 44.3
TKC 20.3(+1.1) 34.2(+0.9) 42.6(+1.8) 46.2(+4.4) 44.0

Table 3. Top-1 accuracy under the linear classification protocol on
ImageNet with the AlexNet backbone. We fine-tune a fc layer
from the top of different layers.

For AlexNet, as shown in Table 3, TKC achieves state-
of-the-art top-1 accuracy on conv1 to conv4, which out-
performs all self-supervised methods on this track. De-
spite that TKC from conv5 underperforms Rot-decouple
[14] by 0.3%, our best result is from conv4, which surpasses
the best of Rot-decouple by 1.9%. The results show that
TKC is also a leading method on AlexNet linear classifica-
tion benchmark. We notice that TKC has more improve-
ment on AlexNet than ResNet-50. This might be because
the dropout layer in AlexNet can provide various temporal
knowledge, which could be more effective in learning in-
stance temporal consistency.

4.2. Transfer to Downstream Tasks

The primary goal of self-supervised learning is to learn
good representations that transfer well on downstream
tasks. In this subsection, we transfer the representations
of 200 epoch TKC to three benchmarks: object detection,
instance segmentation, and semi-supervised learning. We
show that TKC learns better transferable representations on
all three downstream tasks.
Object Detection. We both transfer to VOC [13] and
COCO [33] dataset to evaluate our representations. As for
Pascal VOC, We use Faster R-CNN [45] with ResNet50
backbone as the detector. We fine-tune the candidate pre-
trained model for 48k iterations with a min-batch size of 8
on Pascal VOC [13] training set. The learning rate is ini-
tialized from 0.001 and then decayed at 36k and 44k itera-
tions. The weight decay is set to 0.0001, and training image
scales range between 480 to 800. We use AP50, AP , AP75

as evaluation metric on VOC test2007 set.
For COCO [33] dataset, we train a Mask R-CNN [22] to

learn the object detection and instance segmentation tasks
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pre-train AP50 AP AP75

random-init 60.2 33.8 33.1
supervised 81.3 53.5 58.8
NPID++ [51] 79.1 52.3 56.9
PIRL [36] 80.7 54.0 59.7
MoCo v2 [21] 81.5 55.9 62.6
TKC 81.8(+0.3) 56.5(+0.6) 62.8(+0.2)

Table 4. Object detection fine-tuned on PASCAL VOC with
Faster-RCNN.

pre-train AP50 AP AP75

supervised 59.8 40.2 43.8
fine-tune MoCo v2 60.0 40.1 43.4

TKC 60.1(+0.1) 40.4(+0.3) 43.9(+0.5)
supervised 54.3 34.3 36.5

freeze MoCo v2 48.1 29.2 30.8
TKC 54.2(+6.1) 34.7(+5.5) 37.1(+6.3)

Table 5. Object detection on COCO. The detection framework is
Mask R-CNN. We report the results for both fine-tune and freezing
the backbone.

synchronously. We train it for 180k iterations and decay the
learning rate by 0.1 at 120k and 160k iterations. The input
image size is between 640 and 800 on the training stage
and 800 on the test stage. All hyper-parameters of this fine-
tuning protocol are consistent with the MoCo v2 baseline.

As shown in Table 4, our TKC achieves 81.8 AP on the
PASCAL VOC dataset, which outperforms all pre-trained
models from competitors include the supervised ones. Our
TKC shows consistent improvement for both AP50, AP ,
AP75, which shows that TKC indeed learns more consis-
tent and transferable representations than MoCo v2. The
upper part of the table 5 shows the results on COCO, TKC
as well surpass the MoCo v2 AP75 by 0.5% . The results
on these two datasets indicated that comprehensive tempo-
ral knowledge can lead to transferable representations and
learn better representations on different scenes and tasks.

pre-train AP50 AP AP75

random-init 24.6 11.6 9.7
supervised 80.2 51.4 55.5
MoCo v2 [21] 79.0 51.7 56.2
TKC 80.9(+1.9) 52.7(+1.0) 57.6(+1.4)

Table 6. Object detection on PASCAL VOC by freezing the back-
bone and only training the detection head of Faster-RCNN.

We also evaluate TKC on detection in another way. We
freeze the Faster R-CNN backbone and only train from the
detection head to challenge it. This is somewhat like linear
classification. Table 6 shows the results on VOC dataset.
For both AP , AP50 and AP75, TKC surpass MoCo v2 base-
line by more than 1.0%, and also surpass the supervised
counterpart. Table 5 shows that on COCO dataset, the im-
provement is even more than 5.5 %. Train on the frozen
backbone can better reflect the pre-trained model’s repre-
sentation because that the trained head is more dependent

on what the pretext task learns. The results on frozen back-
bone show that TKC does learn better semantics representa-
tions. The training detail can be seen in the supplementary
material.
Instance Segmentation. We evaluate the instance segmen-
tation on the COCO dataset, following the same setting as
COCO detection. Table 7 shows both the results by fine-
tune and freezing. The finetune results gains 0.5% AP75

on MoCo v2 baseline, indicates the temporal consistency
can better locate the target to improve the IOU of instances.
Moreover, the gain is further expanded to 1.9 % when only
train the segmentation head. We note in this way AP50 is
improved by 3.0%, show that TKC can also learn better rep-
resentations on a simple task.

dataset pre-train AP50 AP AP75

supervised 56.7 34.9 37.1
fine-tune MoCo v2 56.8 35.0 37.2

TKC 56.8 35.2(+0.2) 37.7(+0.5)
supervised 51.1 30.6 31.7

freeze MoCo v2 48.1 29.2 30.8
TKC 51.1(+3.0) 30.9(+1.7) 32.7(+1.9)

Table 7. Instance segmentation on COCO. The detection frame-
work is Mask R-CNN. We report the results for both fine-tune and
freezing the backbone.

Method Model Epochs Label fraction
1% 10%

Supervised R50v2 48.4 80.4
NPID [51] R50 200 39.2 77.4
PIRL [36] R50 800 57.2 83.8
MoCo v1[21]† R50 200 61.3 84.0
SimCLR [5]† R50 200 64.5 82.6
MoCo v2 [7]‡ R50 200 61.7 84.6
TKC R50 200 72.1(+10.4) 86.2(+1.6)

Table 8. Semi-supervised Learning on ImageNet. We finetune
the model with 1% and 10% labels. Center-crop top-5 accuracy
is reported to compare with previous methods. † indicates that the
score is from this work [53]. ‡ means that we implement under the
same strategy using the officially released pre-trained model.

Semi-supervised Learning. We then evaluate the util-
ity of TKC in a data-efficient setting by performing semi-
supervised learning on ImageNet. In this benchmark, We
follow the experimental setup of [5, 36]. The dataset is sam-
pled of 1% and 10% from the labeled ImageNet-1k train-
ing data in a class-balanced way. We finetune the TKC
pre-trained model on these two labeled subsets and vali-
date it on the whole ImageNet validation data. In order
to compare with previous works, we report the top-5 ac-
curacy. The supervised baseline from [57] is trained only
using 1% and 10% labels, with a stronger architecture of
ResNet50-v2, trained for 1000 epochs. Table 8 shows that
our TKC surpasses all the previous methods trained for 200
epochs. When only 1% of data is labeled, TKC surpasses
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our MoCo v2 baseline by a large margin of 9.6%, indicat-
ing that the temporal knowledge is more beneficial when
lacking labeled data.

In addition, the mainstream semi-supervised learning
methods adopt a consistent regularization to learn smooth
manifold. The intuition in this field is similar to us, where
they consider that consistent representation between sim-
ilar samples can bring up accuracy classification bound-
ary. Similarly, TKC also encourages consistent represen-
tations between different training stages to get a smoother
manifold. The significant improvement on semi-supervised
benchmarks shows we indeed learn temporal consistent rep-
resentations.

4.3. Analysis

Ablation study. Our method introduces two new hyper-
parameters, the step interval of each teacher s, and amount
of teachers h. We use s as the steps among an epoch and
do not tune it. For h, we take an ablation on the AlexNet
backbone. In Table 9, the first column h = 1 means only
the EMA teacher is used, which is an implementation of
MoCo v2. We see that the temporal teacher can boost accu-
racy from 39.9 to 42.2 when introduced only one temporal
teacher. TKC achieves the best performance when main-
taining three teachers, for this setting can acquire the most
temporal knowledge to stable the target. When increasing h
even more, the result is declined unexpectedly. This might
be because when involving the too old teachers, their repre-
sentations are changed too much. It is hard to learn consis-
tently with these teachers. Nonetheless, this confirms our
motivation again that the inconsistency between different
training stages has alleviated convergence.

h 1 2 3 4 6
Top-1 39.9 42.2 43.5 41.9 41.8

Table 9. Ablation study on the effect of teacher numbers.

Convergence comparison. In Section 3.4, We consider
that TKC can combine maximize the mutual information
with the target from the different stages, and therefore will
enforce the network to learn temporal consistent represen-
tations and mitigate the catastrophic forgetting. To confirm
our proposal, we use a kNN classifier to validate the model
performance during training. As shown in Fig. 3, TKC has
a lower accuracy in the earlier training, which is because
that the model is more inconsistent and noisy in the earlier
stage, resulting in a big difference between the temporal
teacher and the current teacher. This difference prevents
TKC from providing consistent signals. However, the TKC
catches up MoCo v2 from the middle stage and finally sur-
passes it for 4.6% at the end of the training, which indicates
that TKC can stably provide a consistent signal from the
middle training. This consistent signal can guide a more

accurate training direct and accelerate convergence. Fig. 3
shows that the TKC at 160 epochs meets the accuracy of
fully trained MoCo, reducing 80% training time by mitigat-
ing catastrophic forgetting.

To
p1
A
cc
ur
ac
y

Epoch

TKC
MoCo v2

42

49

Figure 3. Comparison of validation accuracy between MoCo v2
and TKC. The top-1 accuracy is from a kNN classifier.

5. Conclusion
We summarize the existing instance discrimination

methods into a teacher-student framework and note that
the teacher can only provide instance spatial consistency.
However, the output of the same instance can vary dramat-
ically between different epochs when only spatial consis-
tency is involved. We instead present a novel and strong
method named Temporal Knowledge Consistency (TKC),
which integrates the knowledge from previous teachers to
improve the model’s robustness and prevent possible catas-
trophic forgetting. TKC contains three modules. The tem-
poral teacher introduces the instance temporal consistency
from previous models, the knowledge transformer leverages
the knowledge of these teachers, and the temporal loss re-
duces the MI between the student and the temporal teacher.
Temporal teacher is an orthogonal improvement for dif-
ferent instance discrimination methods. Our experimental
results show that TKC can improve different frameworks
MoCo, BYOL, and architectures ResNet-50, AlexNet. It
also provides transferable representations on downstream
tasks such as object detection, instance segmentation, and
semi-supervised learning. Moreover, we hope our study
can draw much attention to solve the unstable in unsuper-
vised learning and search for effective ways to generate sta-
ble output with no labels.
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