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Abstract

Deep Learning architectures, albeit successful in most
computer vision tasks, were designed for data with an un-
derlying Euclidean structure, which is not usually fulfilled
since pre-processed data may lie on a non-linear space.
In this paper, we propose a geometry aware deep learn-
ing approach using rigid and non rigid transformation opti-
mization for skeleton-based action recognition. Skeleton se-
quences are first modeled as trajectories on Kendall’s shape
space and then mapped to the linear tangent space. The re-
sulting structured data are then fed to a deep learning archi-
tecture, which includes a layer that optimizes over rigid and
non rigid transformations of the 3D skeletons, followed by
a CNN-LSTM network. The assessment on two large scale
skeleton datasets, namely NTU-RGB+D and NTU-RGB+D
120, has proven that the proposed approach outperforms
existing geometric deep learning methods and exceeds re-
cently published approaches with respect to the majority of
configurations.

1. Introduction

Human behavior analysis via diverse data types has
emerged as an active research issue in computer vision due
to 1) the wide spectrum of not yet fully explored applica-
tion domains, e.g., human-computer interaction, intelligent
surveillance security, virtual reality, etc., and 2) the devel-
opment of advanced sensors such as Intel RealSense, Asus
Xtion and the Microsoft Kinect [49], which yield various
data modalities, e.g., RGB and depth image sequences, and
videos. Conventionally, these modalities have been utilized,
solely [23, 37], or merged (e.g., RGB + optical flow), for

action recognition tasks [35, 9] using multiple classifica-
tion techniques, and resulted in excellent results. With the
development of human pose estimation algorithms [8, 6],
the problem of human joint (i.e., key-points) localization
was solved and reliable acquisition of accurate 3D skeleton
data became possible. In comparison with former modal-
ities, skeleton data, a topological representation of the hu-
man body using joints and bones, appears to be less com-
putationally expensive, and more robust in front of intricate
backgrounds and with respect to variable conditions includ-
ing viewpoints, scales and motion speeds. An efficient way
to analyze 3D skeleton motions is to consider their shapes
independently of undesirable transformations; the resulting
representation space of skeleton data is then non linear.

Accordingly, we represent 3D skeleton landmarks in the
Kendall shape space [16] that defines shape as the geomet-
ric information that remains when location, scaling and ro-
tational effects are filtered out. A sequence of skeletons is
then modeled as a trajectory on this space. Thus, to an-
alyze and classify such data, it is more suitable to con-
sider the geometry of the underlying space. This remains
a challenging problem since most commonly used tech-
niques were designed for linear data. Deep learning archi-
tectures, despite their efficiency in many computer vision
applications, usually ignore the geometry of the underlying
data space. Therefore, geometric deep learning architec-
tures have been introduced to remedy this issue. To the best
of our knowledge, the main previous geometric deep learn-
ing approaches were designed on feature spaces (e.g., SPD
matrices, Grassmann manifold, Lie groups [14, 13]) or on
the 3D human body manifold [2, 28]. The literature that
considers this problem on shape spaces is scarce. Actually,
an extension of a conventional deep architecture on a pre-
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shape space has been recently proposed in [10], and an auto
encoder-decoder has been extended to a shape space for gait
analysis in [11].

In this work, we propose a novel geometric deep learning
approach on Kendall’s shape space, denoted KShapeNet,
for skeleton-based action recognition. Skeleton sequences
are first modeled as trajectories on Kendall’s shape space by
filtering out scale and rigid transformations. Then, the se-
quences are mapped to a linear tangent space and the result-
ing structured data are fed into a deep learning architecture.
The latter includes a novel layer that learns the best rigid or
non rigid transformation to be applied to the 3D skeletons
to accurately recognize the actions.
Contributions: The main contributions of this paper are:

1. We introduce a novel deep architecture on Kendall’s
shape space that deeply learns transformations of the
skeletons for action recognition tasks.

2. The proposed deep network includes a novel transfor-
mation layer that optimizes over rigid and non rigid
transformations of skeletons to increase action recog-
nition accuracy.

Organization of the paper The rest of the paper is orga-
nized as follows. In Section 2, we briefly review existing so-
lutions for action recognition and geometric deep learning.
Section 3 describes geometric modeling of skeleton trajec-
tories on Kendall’s shape space. In Section 4, we introduce
the proposed geometric deep architecture, KShapeNet. Ex-
perimental settings, results and discussions are reported in
Section 5. Section 6 concludes the paper and summarizes a
few directions for future work.

2. Related work
Geometric deep learning for action recognition has re-

cently attracted a lot of attention from the research commu-
nity. This has resulted in a variety of related approaches.
Accordingly, we focus on highlighting the main categories
in the areas of 3D action recognition and geometric deep
learning. Interested readers can find exhaustive details in
the associated recent surveys [29, 5].

2.1. Action recognition

Presently, deep learning methods for human action
recognition are preferred over traditional skeleton-based
ones, which tend to focus on extracting hand crafted fea-
tures [15, 39]. The former methods can be categorized into
three major sets: methods based on Recurrent Neural Net-
work (RNN) [19], methods based on Convolutional Neural
Network (CNN) [7], and methods based on Graph Convo-
lutional Network (GCN) [17].

Since RNNs are convenient for time series data process-
ing, RNN-based methods consider skeleton sequences as

time series of coordinates of the joints. For the purpose of
improving the capability of learning the temporal context of
skeleton sequences, Long Short Term Memory (LSTM) and
Gated Recurrent Unit (GRU) have been introduced as effi-
cient alternatives for skeleton-based action recognition. Zhu
et al. [51] used an LSTM network and characterized joints
through the co-occurrence between actions. In [48], geo-
metric joint features are applied to a multi layered LSTM
network instead of directly passing in the joint positions.
The pitfall of some of these methods [22, 50] is their weak
ability of spatial modeling, resulting in non competitive re-
sults. A novel two-stream RNN architecture was recently
proposed by Hong and Liang [41]. This architecture mod-
els both the temporal dynamics and spatial configurations
of skeleton data by applying an exchange of the skeleton
axes at data level pre-processing. Relatedly, Jun and Amir
[25] focused on extracting the hidden relationship between
the two domains (spatial and temporal) using a traversal ap-
proach on a given skeleton sequence. Unlike the general
method where joints are arranged in a simple chain ignor-
ing kinectic dependency relations between adjacent joints,
this tree-structure based traversal does not add false connec-
tions between body joints when their relation is not strong
enough. Another pitfall of RNN based methods are the gra-
dient exploding and vanishing problems over layers. Some
new RNN architectures [21, 46] were proposed to address
this particular limitation.

CNN models have excellent capability to extract high
level information and semantic cues. Multiple works [43,
42, 47] have exploited CNN models for action recognition
by encoding the skeleton joints as images or pseudo-images
prior to feeding them to the network. In [47], Zhang et
al. map a skeleton sequence to an image, referred to as the
skeleton map, to facilitate spatio temporal dynamics model-
ing via the ConvNet. The challenge with CNN based meth-
ods is the extraction and utilization of spatial as well as
temporal information from 3D skeleton sequences. Several
other problems hinder these techniques including model
size and speed [45], occlusions, CNN architecture defini-
tion [30], and viewpoint variations [47]. Skeleton based ac-
tion recognition using CNNs thus remains a not completely
solved research question.

Recently, the GCN has been adapted to action recogni-
tion. This network represents human 3D skeleton data as
a graph. There are two main types of graph related neural
networks: the graph recurrent neural network, and the graph
convolutional neural network [44, 20].

2.2. Geometric deep learning

Compared to previous techniques, geometric deep learn-
ing is a nascent research area. As mentioned earlier, it stud-
ies the extension of existing deep learning frameworks and
algorithms to effectively process graph and manifold data.
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Some manifold based techniques have proven their success
in 3D human action recognition due to view invariance of
the manifold based representation of skeletal data. As ex-
amples, we cite the projection on Riemanian manifold [10],
shape silhouettes in Kendall’s shape space [1], and linear
dynamical systems on the Grassmann manifold [38]. Ge-
ometric deep learning approaches can be categorized into
two main classes: approaches on manifolds and approaches
on graphs. This paper is related to deep approaches on man-
ifolds, and thus, we give a quick review of the state-of-the-
art in this category.

Manifold-based geometric deep learning approaches ex-
tend deep architectures to Riemannian manifolds, inter-
preted either as feature spaces [14, 12, 13] or the human
body shape (i.e., the human body is viewed as a manifold)
[2, 28]. Huang et al. proposed several networks on non lin-
ear manifolds. In [14], they introduced the first network ar-
chitecture to perform deep learning on the Grassmann man-
ifold. They presented competitive results on three datasets
of emotion recognition, action recognition and face verifi-
cation, respectively. Along similar lines, an architecture on
the manifold of SPD matrices was proposed in [12], and
similar experimental evaluation proved the effectiveness of
this approach. Recently, the same authors proposed an ar-
chitecture on Lie groups with application to skeleton-based
action recognition [13]. These approaches investigate the
non-linearity of various feature spaces, but did not consider
shape spaces. Limited efforts have recently been made to
design deep architectures on some shape-preshape spaces.
Friji et al. [10] proposed a deep architecture on the sphere
for modeling unit-norm skeletons with application to action
recognition. Along similar lines, Hosni et al. [11] extended
the auto-encoder to a shape space with application to gait
recognition.

3. Modeling of shape space trajectories
We use the landmark shape based representation of the

human skeleton, and geometric tools from Kendall’s shape
analysis [18] to model skeleton shapes and their temporal
evolution. Every point in the shape space represents a sin-
gle static action shape, and the distance between two such
points illustrates the magnitude of shape discrepancies be-
tween the respective shapes.

Each skeleton X in an action sequence is represented as
a set of n landmarks in R3, i.e., X ∈ Rn×3. In our frame-
work, we model skeletal shape sequences and use Kendall’s
shape representation to achieve the required invariances
with respect to translation, scale and rotation. First, we per-
form data interpolation via cubic splines, to have the same
number of frames for each sequence, rather than the com-
monly used zero-padding technique.

Translation and scale variabilities can be removed from
the representation space via normalization as follows. Let

H denote the (n − 1) × n sub-matrix of a Helmert matrix,
as detailed in [18], where the first row is removed. In order
to center a skeleton X , we pre-multiply it by H , HX ∈
R(n−1)×3; then, HX contains the centered Euclidean coor-
dinates of X . Let C0 = {HX ∈ R(n−1)×3|X ∈ Rn×3},
which is a 3(n− 1) dimensional vector space, which can be
identified with R3(n−1). Using the standard Euclidean in-
ner product (norm) on C0, we scale all centered skeletons to
have unit norm. As a result, we define the pre-shape space
as C = {HX ∈ C0|∥HX∥2 = (HX)T (HX) = 1}; due
to the unit norm constraint, C is a (3n − 4)-dimensional
unit sphere in R3(n−1). Henceforth, we will refer to an
element of C as X̃ , i.e., a centered and unit norm skele-
ton. The tangent space at any pre-shape X̃ is given by
TX̃(C) = {V ∈ R3n−4|⟨V,X⟩ = V TX = 0}.

In subsequent analyses, our representation of skeleton
sequences further passes to the tangent space. Thus, it is
useful to define three Riemannian geometric tools that allow
one to map points 1) from the pre-shape space to a tangent
space, 2) from a tangent space to the pre-shape space, and 3)
between different tangent spaces. Task 1) can be achieved
via the logarithmic map, logX̃ : C → TX̃(C), defined as
(for X̃, Ỹ ∈ C):

logX̃(Ỹ ) =
θ

sin(θ)
(Ỹ − cos(θ)X̃), (1)

where θ = cos−1
(
⟨X̃, Ỹ ⟩

)
is the arc-length distance be-

tween X̃ and Ỹ on C. Task 2) is carried out via the expo-
nential map, expX̃ : TX̃(C) → C, defined as (for X̃ ∈ C
and V ∈ TX̃(C)):

Ỹ = cos(∥V ∥)X̃ + sin(∥V ∥) V

∥V ∥
, (2)

where ∥V ∥ =
√
V TV as before. Finally, for task 3), we

use parallel transport, which, in short, defines an isometric
mapping between tangent spaces. The parallel transport,
PTX̃→Ỹ : TX̃(C) → TỸ (C) is defined as (for X̃, Ỹ ∈ C
and U ∈ TX̃(C)):

PTX̃→Ỹ (U) = U−
⟨logX̃(Ỹ ), U⟩

θ

(
logỸ (X̃) + logX̃(Ỹ )

)
,

(3)
where ⟨·, ·⟩ and θ are the standard Euclidean inner product
and the distance between X̃ and Ỹ on C, respectively, as
before.

While translation and scale can be dealt with through
normalization, rotation variability in Kendall’s framework
is removed algebraically using the notion of equivalence
classes. The rotation group in R3 is given by SO(3) =
{O ∈ R3×3|OTO = I, det(O) = 1}. For O ∈ SO(3)
and X̃ ∈ C, the action of the rotation group is given by
matrix multiplication, i.e., OX̃ is a rotation of X̃ . Let
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Figure 1. Illustration of KShapeNet full architecture and different blocks: 1- Modeling of the input sequence as trajectories on Kendall
shape space. 2- Projection on the tangent space 3-Deep learning architecture embedding the rigid and non-rigid transformation layer.

[X̃] = {OX̃|O ∈ SO(3), X̃ ∈ C} denote an equivalence
class of a pre-shape X̃ . Then, Kendall’s shape space is the
quotient space C/SO(3). Rotation variability is removed
in a pairwise manner (or with respect to a given template),
by optimally aligning two configurations X̃ and Ỹ via Pro-
crustes analysis [18]; we omit the details of this process here
for brevity. After optimal rotation, one can use the same
Riemannian geometric tools as on the pre-shape space C,
e.g., Equations 1-3, to model shapes of skeleton landmark
configurations.

4. Shape space deep architecture
The proposed deep learning architecture of Kendall’s

Shape Space Network, KShapeNet, is illustrated in Fig. 1.
Input skeleton sequences are first modeled as trajectories

on C, after which each skeleton X̃ is mapped to a common
tangent space TX̃0

(C) at a reference shape X̃0.The refer-
ence shape X̃0 is defined as a pre-selected skeleton repre-
senting the neutral pose. Then, a transformation layer is
built in this tangent space to increase global or local dis-
similarities between class actions. This layer is followed
by a CONV Block and a one-layer LSTM network, which
learns the temporal dynamics of the sequences. As output, a
fully connected block yields the corresponding action class.
The CONV block consists of two 1D convolution layers fol-
lowed by a pooling layer. For end-to-end network training,
we use the cross-entropy loss as the training loss.

4.1. Optimization over rigid transformations

To optimize over rigid transformations, 3D rotations are
applied to individual skeletons across sequences within this
layer, and are updated during the training step.

Let Ỹi denote the ith centered, unit norm skeleton in a
sequence S, and Ŷi its representative in the tangent space
(reshaped from a 3(n− 3) vector into a 3× (n− 1) matrix
represented in the ambient coordinates). The transformation
layer is performed on each sequence resulting in a hidden

output h, given by:

hi = OiŶi (4)

where Oi ∈ SO(3). In the back-propagation phase, the
gradient descent adapts the kernels Oi directly so that they
may not lie in SO(3). To ensure that the updated kernels lie
in SO(3), we propose a second variant of this layer, denoted
angle-based, where the optimization is performed over the
rotation angles. Rotation matrices are then generated in the
feed-forward pass.

Figure 2. Optimization over rigid transformation: 3D rotations of
the entire skeleton are applied during the training step.

Fig. 2 illustrates how this first category of optimization
deals with the skeleton as one rigid entity, i.e., each trans-
formation used for this optimization is applied to the whole
skeleton.

4.2. Optimization over non rigid transformations

The optimization over local transformations is per-
formed by finding the best rotations of 3D skeleton joints,
with respect to the x, y and z axes, that improve perfor-
mance on the action recognition task.

Let Ỹi denote the ith centered, unit norm skeleton in a
sequence S, Ŷi its representative in the tangent space (re-
shaped from a 3(n − 3) vector into a 3 × (n − 1) matrix
represented in the ambient coordinates), and qji ∈ R3 the
jth joint of Ŷi. The transformation layer is performed on
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each sequence resulting in a hidden output h, given by:

hi = {Oi,jq
j
i }

n
j=1, (5)

where Oi,j ∈ SO(3).
Similarly to the rigid transformation case, an angle-

based optimization variant is proposed to ensure that each
Oi,j is a rotation matrix. In Section 5, we perform a study
that compares the two variants for optimization over rigid
and non rigid transformations: 1) the variant that allows the
network to use general kernels as 3 × 3 matrices (not nec-
essarily rotation matrices), and 2) the angle-based approach
that constrains the network to allow rotation matrices only.

Figure 3. Optimization over non rigid transformation: 3D rotations
are applied to joints during training step.

Fig. 3 depicts that, in contrast to optimization over rigid
transformations, this second category of optimization deals
with the skeleton as a non rigid entity, i.e., each transfor-
mation used for this optimization is applied on each joint
individually.

5. Experimental results
First, in Section 5.1, we first describe the datasets used to

validate our architecture and experimental settings. For the
demonstration of KShapeNet efficiency, an ablation study is
presented in Section 5.2 with the discussion of the impact of
intermediate layers, i.e., the transformation layer and loga-
rithmic map layer. Then, in Section 5.3, we compare the
performance of action recognition of the KShapeNet archi-
tecture to state-of-the-art approaches on the same datasets.
We conclude in Section 5.4 with the comparison and discus-
sion of the different variants of the transformation as well as
the projection on tangent space layers. The implementation
code will be publicly released.

5.1. Datasets and settings

We evaluate the effectiveness of our KShapeNet
framework on two large scale state-of-the-art datasets,
NTU-RGB+D and NTU-RGB+D120.

NTU-RGB+D [31] is one of the largest 3D human
action recognition datasets. It consists of 56,000 action
clips of 60 classes. 40 participants have been asked to

perform these actions in a constrained lab environment,
with three camera views recorded simultaneously. The
Kinect sensors estimate and record the 3D coordinates
of 25 joints in the 3D camera’s coordinate system. For
standard assessment, we utilize two state-of-the-art pro-
tocols: cross-subject (CS) and cross-view (CV). In the
cross-subject protocol, the 40 subjects are split into training
and testing sets (20 subjects each) made up of 40,320 and
16,560 samples, respectively. In the cross-view protocol,
we select the samples from cameras 2 and 3 for training,
and the samples from camera 1 for testing. The training set
then consists of the front and two side views of the actions,
while the testing set incorporates left and right 45 degree
views of the actions. For this assessment, the training and
testing sets have 37,920 and 18,960 samples, respectively.

NTU120 RGB+D (NTU120) [24] is an extension of
NTU60. It is the largest RGB+D dataset for 3D action
recognition with 114,480 skeleton sequences. It contains
120 action classes performed by 106 distinct human sub-
jects. For this dataset, the two protocols used for evaluation
are cross-subject (CS) and cross-setup (Cset). For the
cross-subject setting, half of the 106 subjects are used for
training and the rest for testing. For the cross-setup setting,
half of the setups are used for training and the rest for
testing.

For the KShapeNet implementation, we set the number
of frames to 100, and the batch size to 64 for the NTU
dataset and 32 for the NTU 120 dataset. To estimate the
model’s parameters, we use the cross-entropy loss function
and set the number of epochs to 30. The Adam optimizer is
adapted to train the network, and the initial learning rate is
fixed to 1×10−4 for both datasets. For training the network,
we used a machine with a processor speed of 3.40 GHz,
memory of 32 GB and an NVIDIA GTX 1070 Ti GPU.

5.2. Ablation study

In order to validate the effectiveness of the proposed
framework and highlight the impact of each processing
block, we performed an ablation study by gradually adding
1) the projection to tangent space block, and 2) the trans-
formation layer. Table 1 reports the results of this study
on the NTU and NTU120 datasets. In the first row, la-
beled ”Baseline”, we illustrate the results of the deep net-
work (CNN-LSTM used in KShapeNet) obtained with input
data represented on the pre-shape space (without moving to
the linear tangent space) and without the optimization over
rigid or non rigid transformations. The baseline architecture
actually presents fairly satisfactory results. However, they
are not competitive to those produced by state-of-the-art ap-
proaches.

The second row of Table 1 depicts the results achieved by
adding the transformation layer to the baseline architecture.
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Dataset NTU-RGB+D NTU-RGB+D120

Protocol CS CV CS Cset
Baseline 85.1 91.2 56.0 63.5
Transformation layer only 89.6 91.5 57.2 63.8
Projection to tangent space
only

94.1 95.5 63.9 65.3

Ours (KShapeNet) 97.0 98.5 90.6 86.7

Table 1. Ablation study results on the NTU and NTU120 datasets
(% accuracy).

The transformation layer adopted here considers optimiza-
tion over non rigid transformations using the angle-based
variant. Further discussion about the choice of this configu-
ration is presented in Section 5.4.2. With reference to the
”Baseline” results, the transformation layer improves the
recognition performance by 4.5% for CS and by 0.3% for
CV on the NTU dataset, and by 1.2% for CS and 0.3% for
Cset on the NTU120. As explained in Section 4, this con-
figuration of the transformation layer optimizes over non
rigid transformations, hence urging the network to find the
best local rotations that are applied to the the skeleton se-
quences; this justifies the improvement of action recogni-
tion accuracy.

In the third row of Table 1, we present the results ob-
tained by only adding the projection to tangent space block
to the baseline model. The tangent space projection pro-
vides significant improvements in recognition performance,
jumping from 85.1% to 94.1% for the CS protocol on the
NTU dataset. The increase in accuracy due to the projec-
tion of skeleton sequences to the tangent space is the result
of a new skeleton representation in this Euclidean space, al-
lowing for the definition of a linear distance metric between
skeleton shapes.

In the fourth row of Table 1, we report the final results
produced by the KShapeNet framework, embedding both
the projection on tangent space block and the transforma-
tion layer. KShapeNet results in a significant improvement
over the baseline model, and most importantly, further in-
creases recognition accuracy over the two models with indi-
vidually added components (the projection on tangent space
block or transformation layer). It is worth to point out that
the combination of both components empowers the network
to properly discriminate action classes. For instance, for the
CS protocol on the NTU dataset, the accuracy increase due
to the additional transformation layer was only 4.5% and
the increase due to the projection to tangent space block
was only 9%. The addition of both the transformation layer
and the projection to tangent space block (i.e., KShapeNet)
increased recognition accuracy by more than 11%. Ac-
cordingly, we conclude that the efficiency of KShapeNet is
not only due to the advanced feature extraction capacity of

the CNN-LSTM network, but equally due to the convenient
data representation of skeleton shapes in the linear tangent
space and the optimization over local rotational transforma-
tions.

5.3. Comparison to state-of-the-art approaches

In this section, we compare the performance of the pro-
posed framework to state-of-the-art approaches on the two
datasets, NTU and NTU 120.

Table 2 shows the results of the top performing state-
of-the-art approaches on the NTU dataset, and compares
them to the results of KShapeNet. In this table, we distin-
guish between three classes of action recognition methods:
deep learning methods, Riemannian methods and hybrid
(deep Riemannian) methods; our framework, KShapeNet,
falls into the third category. The results demonstrate that
KShapeNet consistently outperforms deep learning (lever-
aging CNNs and RNNs), Riemannian, and even hybrid ap-
proaches. Indeed, our method outperforms the best of these
state-of-the-art approaches by 7.3% and 0.1% on the CS
and CV settings, respectively. Comparing to the hybrid
method of [13], in which the authors incorporate the Lie
group structure into a deep network architecture using ro-
tation mapping layers, our approach increases recognition
accuracy by more than 35%.

Table 3 compares recognition accuracies between the
most effective state-of-the-art approaches and KShapeNet
on the NTU 120 dataset [27]. KShapeNet achieves compet-
itive recognition results under the Cset protocol and outper-
forms the competitors under the CS protocol by 3.7%.

5.4. Additional studies

Next, we present intermediate experiments that were per-
formed during the design of KShapeNet. In particular, we
discuss the different configurations that were tested in terms
of the variants of the transformation layer and the projection
onto tangent space block.

5.4.1 Comparison of preprocessing techniques

It is worth-noting that we used the code of Maosen et al.
[20] to generate input data for our algorithm: (1) to extract
skeleton bodies and frames, (2) to extract joint coordinates,
and (3) to split sequences into training and test sets for the
different protocols. As an additional important data pro-
cessing step, we interpolated the data using cubic splines
to estimate equally-spaced skeleton trajectories, with con-
stant change between frames. For comparison, we tested the
network by zero padding the missing frames instead of in-
terpolation. Since this operation results in frames that con-
tain “wrong” data, the network is misled during the learning
stage and the performance deteriorates. Table 4 reports the
recognition results on the NTU RGB+D dataset with zero
padding and with interpolation.
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NTU-RGB+D Dataset
Deep learning methods Cross Subject Cross View
Directed Graph Neural Networks[32] 89.9% 96.1%
Two stream adaptive GCN[33] 88.5% 95.1%
LSTM based RNN[47] 89.2% 95.0%
AGC-LSTM(Joints&Part)[34] 89.2% 95.0%
Riemannian methods Cross Subject Cross View
Lie Group [40] 50.1% 52.8%
Intrinsic SCDL [36] 73.89% 82.95%
Deep Riemannian methods Cross Subject Cross View
Deep learning on SO(3)n [13] 61.37% 66.95%
Ours (KShapeNet) 97.0% 98.5%

Table 2. Comparison to state-of-the-art top performing approaches on the NTU dataset.

NTU-RGB+D Dataset120
Method Cross Subject Cross Setup
Tree Structure + CNN[3] 67.9% 62.8%
SkeleMotion[4] 67.7% 66.9%
Body Pose Evolution Map[26] 64.6% 66.9%
MS-G3D Net[27] 86.9% 88.4%
Ours (KShapeNet) 90.6% 86.7%

Table 3. Comparison to state-of-the-art top performing approaches on the NTU 120 dataset.

Protocol CS CV
Zero padding 81.3% 85.1%
Interpolation 97.0% 98.5%

Table 4. Comparison of results with zero padding and with inter-
polation on NTU RGB+D.

5.4.2 Comparison of transformation layer variants

Table 5 presents a comparison of the four different variants
of the transformation layer, based on the recognition results
of KShapeNet, for the NTU and NTU120 datasets. Each
row in Table 5 refers to one of the four tested settings of the
transformation layer: 1) optimization over rigid transfor-
mations using the rotation matrix based variant (Rigid Ma-
trix), 2) optimization over rigid transformations using the
angle-based variant (Rigid Angle), 3) optimization over non
rigid transformations using the rotation matrix based vari-
ant (NonRigid Matrix), and 4) optimization over non rigid
transformations using the angle-based variant (NonRigid).

At a global level, we notice that the transformation layer
(with only one exception) preserves state-of-the-art results
on the NTU and NTU120 datasets; this means that perfor-
mance is better on the CV protocol than the CS protocol
for NTU, and it is better on the CS protocol than the Cset
protocol for NTU120. At a granular level, we highlight
two different behaviors of the optimization over rigid trans-

Dataset NTU-RGB+D NTU-RGB+D120

Protocol CS CV CS Cset
Rigid Matrix based 97.0 97.1 90.2 85.9
Rigid Angle based 96.9 96.3 89.1 84.9
NonRigid Matrix based 96.8 96.9 90.6 84.3
NonRigid Angle based 97.0 98.5 90.6 86.7

Table 5. Comparison of different variants of the transformation
layer (% accuracy).

formations and the optimization over non rigid transforma-
tions, with regards to the two different variants: rotation
matrix-based and angle-based. On the one hand, the rota-
tion matrix-based variant, which gives the network the lib-
erty to optimize matrix coefficients without any constraints
(updated matrices may not be in SO(3)), yields better re-
sults for the optimization over rigid transformations than for
the optimization over non rigid ones. On the other hand, the
angle-based variant, which only updates the angles resulting
in elements of SO(3), performs worse for rigid transforma-
tions than non rigid ones.

Rigid transformations, i.e., rotations of the entire skele-
ton, are characterized by preserving the skeleton’s shape,
distance and angle properties (i.e., all joints move in the
same direction by the same amount). We argue that, for
this reason, the rotation matrix-based variant is more ad-
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equate for the optimization over such transformations. In
other words, the rigid transformation is not subject to shape
and angle variations, and the network tends to perceive the
transformations applied to the skeleton as a one entity oper-
ation. Therefore, it is more efficient to allow the network to
freely optimize over matrices during the back forward phase
without the orthogonality constraint. As a result of the non
rigid transformations, i.e., different rotations applied to all
of the joints, the shape and angle properties of the skeletons
are not preserved at each pass. Beyond the first feed for-
ward pass, the network will alter the representation of each
sequence. Thus, for the optimization over non rigid trans-
formations, it is more convenient to constrain the network
to allow rotations only. The rotation matrices are generated
based on updated rotation angles, always resulting in ele-
ments of SO(3).

For the final configuration of KShapeNet, we chose to
optimize over non rigid transformations using the angle-
based variant, allowing flexible modeling of inter-joint
transformations; the corresponding recognition results are
highlighted in bold in Table 5.

5.4.3 Comparison of projection to tangent space meth-
ods

As another intermediate experiment, we tested two variants
of the projection to tangent space block. The first variant
uses the logarithmic map to project all skeleton sequences
to a single tangent space defined at a neutral reference skele-
ton. In this variant, the distances between skeleton shapes
computed in the tangent space are different than those com-
puted directly on Kendall’s shape space, which introduces
distortion (the only distances that are preserved after the
projection are those from the reference to each projected
shape). The issue is exacerbated when projecting skele-
ton shapes that are far away from the reference skeleton.
Since all first frames of all skeleton sequences in the two
datasets are neutral, i.e., they are very close to each other
on Kendall’s shape space, we considered that we can al-
ternatively map each sequence to the tangent space defined
at the skeleton shape corresponding to its first frame; we
again use the logarithmic map for this projection. The pit-
falls of this second variant are twofold: 1) distance compu-
tations are no longer executed between points in the same
Euclidean space, but between points in a set of ”nearby”
planes, and 2) the tangent spaces generally have different
coordinate systems.

To push the capabilities of our model, we next tried to
incorporate parallel transport (PT) (refer to Section 3) as
an alternative approach to map the skeleton sequences from
the preshape space to the tangent space. In this approach,
we first compute the shooting vectors between each con-
secutive frame within each sequence (using the logarithmic
map). We then use PT to map these shooting vectors to

Dataset NTU-RGB+D
Protocol CS CV
Log map 97.0 98.5
Parallel Transport 96.8 96.7

Table 6. Comparison of performance when projecting to tangent
space at the same reference skeleton using the logarithmic map
and when using parallel transport (% accuracy).

the tangent space at the reference skeleton shape. Table
6 presents the results of applying the one-shot logarithmic
map and the PT approach on the NTU dataset.

Theoretically, PT should perform better than the direct
projection to a tangent space at the reference skeleton shape
since it remedies the distortion issues mentioned earlier.
Nevertheless, as shown in Table 6, the simpler approach,
paradoxically, tends to outperform the PT approach based
on overall accuracy. In our implementation, the mapping to
the tangent space iterations were not performed along the
whole geodesic path, because this would have been compu-
tationally expensive. In fact, considering the computation-
accuracy improvement trade-off, we decided that it was not
worth to iterate the PT mapping along the entire geodesic
path. This in part justifies the better performance of the
simple logarithmic map to a common reference point over
the more complicated PT approach.

At the end of the various experiments, we decided to
adopt the following configurations for KShapeNet: projec-
tion on the tangent space using the logarithmic map with
reference to the first frame, and optimization over non rigid
transformations using the angle-based variant ( which cor-
responding results are cited in Table 2 and Table 3).

6. Conclusion

In this paper, we proposed a geometric deep architec-
ture, KShapeNet, for action recognition based on model-
ing human actions on Kendall’s shape space. As part of
our framework, we introduced a novel transformation layer
to increase global or local dissimilarities between different
types of actions. In the transformation layer, we optimize
over rigid and non rigid transformations. In addition, we
explored the use of two optimization variants: 1) rotation
matrix-based, and 2) angle-based. We showed that the first
variant ”rotation matrix-based” is better suited for optimiz-
ing rigid transformations, while the second variant ”angle-
based” is more efficient for optimizing non rigid transfor-
mations. Extensive experiments, conducted on two chal-
lenging large benchmark datasets for action recognition,
demonstrate that the proposed framework, KShapeNet, is
exceeding state-of-the-art approaches recognition rates for
the majority of configurations.
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