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Figure 1: 3D-FRONT is a new, large-scale, and comprehensive repository of synthetic indoor scenes with professionally and
distinctively designed layouts, a large number (18,968) of rooms populated with 3D furniture objects that are stylistically
compatible and endowed with high-quality textures. All freely available to the academic community and beyond.

Abstract
We introduce 3D-FRONT (3D Furnished Rooms with

layOuts and semaNTics), a new, large-scale, and compre-
hensive repository of synthetic indoor scenes highlighted
by professionally designed layouts and a large number of
rooms populated by high-quality textured 3D models with
style compatibility. From layout semantics down to texture
details of individual objects, our dataset is freely available
to the academic community and beyond. Currently, 3D-
FRONT contains 6,813 CAD houses, where 18,968 rooms
diversely furnished by 3D objects, far surpassing all pub-
licly available scene datasets. The 13,151 furniture objects
all come with high-quality textures. While the floorplans
and layout designs (i.e., furniture arrangements) are di-
rectly sourced from professional creations, the interior de-
signs in terms of furniture styles, color, and textures have
been carefully curated based on a recommender system we

develop to attain consistent styles as expert designs. Fur-
thermore, we release Trescope, a light-weight rendering
tool, to support benchmark rendering of 2D images and
annotations from 3D-FRONT. We demonstrate two appli-
cations, interior scene synthesis and texture synthesis, that
are especially tailored to the strengths of our new dataset.

1. Introduction
The computer vision community has invested much ef-

fort into the study of 3D indoor scenes, from 3D reconstruc-
tion, visual SLAM, and navigation, to scene understanding,
affordance analysis, and generative modeling. With data-
driven and learning-based approaches receiving more and
more attention in recent years, there has been a steady ac-
cumulation of indoor scene datasets [27, 36, 43, 4, 19, 6, 9,
18, 23, 49, 24] to drive the deep learning revolution that has
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Dataset Layout Design #3DFRs #CAD models Model Textures 3D Annotation
NYU-Depth v2 [27] Real scan N/A N/A No texture Raw RGB-D

TUM [36] Real scan N/A N/A No texture Raw RGB-D
SUN3D [43] Real scan 254 N/A No texture Raw PCD

S3DIS [4] Real scan 270 N/A No texture Raw PCD
3DSSG [38] Real scan 478 N/A Rec. from Scan Raw Mesh

SceneNN [19] Real scan 100 N/R Rec. from Scan Raw Mesh
Matterport3D [6] Real scan 2,056 N/A Rec. from Scan Raw Mesh

ScanNet [9] Real scan 1,506 296 Rec. from Scan Raw Mesh
Scan2CAD [5] Real scan 1,506 3,049 No texture Mesh

OpenRooms [24] Real scan 1,068 2,500 Amateur Mesh
SceneNet [18] Professional 57 N/R No texture Mesh

InteriorNet [23] Professional N/A N/A No texture N/A
Hypersim [30] Professional N/A N/A Per-pixel color RGB-D

Structured3D [49] Professional N/A N/A No texture 3D structures
3D-FRONT Professional 18,968 13,151 Professional Mesh

Table 1: Comparison between prominent 3D indoor scene datasets, where “#3DFRs” represents the number of rooms or
scenes populated with 3D furniture objects, “N/A” = “not available”, “N/R” = “not reported”, “Raw Mesh” denotes machine
reconstructed meshes, and “Raw PCD” refers to reconstructed point clouds. For model textures, “Rec. from Scan” is the
result of reconstruction from raw RGB-D data, while “Amateur” and “Professional” refer to who designed the textures. The
“3D structures” annotatd by Structured3D [49] contain information on primitives including 3D boxes and their relations.

redefined the landscape of indoor scene processing.
Existing 3D scene datasets all fall into two broadly cat-

egories: acquired (via scanning and reconstruction) vs. de-
signed (i.e., synthetic scenes created by humans). In terms
of data volume, the largest repository is ScanNet [9] which
consists of 2.5M RGB-D images from 1,513 scanned real
scenes acquired by commodity sensors, in 707 distinct
spaces. The 3D scenes, including textured 3D objects, were
recovered by state-of-the-art 3D reconstruction techniques
from the raw scans, which are typically noisy and incom-
plete. As a result, the reconstructed meshes are often of low
quality, both in geometric fidelity and texture quality.

In the world of synthetic 3D indoor scene datasets, the
recent exit by SUNCG [34] has left an apparent void in the
community. Most recently, Structured3D [49] and Open-
Room [24] have emerged as promising alternatives. In
addition to providing professionally designed room lay-
outs, Structured3D [49] aims to provide large-scale photo-
realistic scene images with rich 3D structure annotations.
However, the actual 3D furniture objects populating the
scenes are not included in the dataset. OpenRoom [24]
replaces detected objects in a set of 1,068 scanned scenes
from ScanNet [9] with CAD models from ShapeNet [7]. A
major contribution of this dataset is to provide ground-truth
annotations of complex material parameters for the CAD
objects. However, the dataset has not been released at this
point and according to the authors’ account, only 2.5K CAD
models were annotated with material properties.

In this paper, we introduce 3D-FRONT (3D Furnished
Rooms with layOuts and semaNTics), a new, large-scale,

and comprehensive repository of synthetic 3D indoor
scenes. It contains professionally and distinctively designed
layouts spanning 31 scene categories (or room types), ob-
ject semantics (e.g., category, style, and material labels),
and a large number (18,968) of rooms populated with 3D
furniture objects. Most importantly, these 3D furniture ob-
jects are all endowed with high-quality textures, thanks to
3D-FUTURE [14], a recently released dataset of quality 3D
furniture used in industrial productions. Furthermore, the
selection of furniture objects from 3D-FUTURE to popu-
late the scenes in 3D-FRONT has been inpired by expert
interior designs. Specifically, the selection is based on a
recommender system learned from the expert designs, while
taking into account of furniture styles both in terms of ge-
ometry and texture. As a result, the furnished rooms in 3D-
FRONT consist of stylistically compatible objects adhering
to the design inspirations.

In Table 1, we present essential information for the cur-
rent public release of 3D-FRONT and compare to other
prominent indoor scene datasets. As we can see, the most
compelling feature of our dataset is the large number of
3D furnished rooms, which far surpasses all the other pub-
licly available datasets. Style compatibility, as well as the
high texture quality, of the furniture objects in each scene
(see middle of Figure 1) is another unique attribute of 3D-
FRONT. On top of all these, the total number of rooms with
professionally designed layouts is 45,000, in which 18,968
rooms are fully populated with 3D furniture shapes. Last
but not least, we share Trescope, a light-weight rendering
tool, with the community so that the users of 3D-FRONT
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can easily capture their desired 2D renderings and annota-
tions to guide their image-driven learning tasks. We will
continuously improve 3D-FRONT by providing much en-
riched texture and 3D geometry contents.

We anticipate that 3D-FRONT, being as comprehensive
as it is, will enable and further drive a whole suite of AI-
powered and data-driven scene analysis and modeling ap-
plications. We demonstrate two applications which cannot
be well supported by other publicly available datasets —
these applications are best served by having a large num-
ber of high-quality textured mesh models with style consis-
tency, a unique feature of 3D-FRONT. One such applica-
tion is learning to texture 3D objects in indoor scenes. In
another, by learning the layout of 3D furniture in each room
with [40], we can coherently predict and arrange functional
furniture for an empty room.

2. Related Work

Over the past years, a large number of RGB-D bench-
marks have been constructed and made publicly available
[21, 3, 27, 36, 43, 33, 19, 6, 9, 18, 26, 23, 49, 24, 4, 32,
35, 42, 11, 17, 47, 38, 2]. Current 3D scene datasets are
mainly collected based on scanning and reconstruction or
human creation. These datasets thus fall into two broadly
categories: Acquired vs. Designed.

Acquired Scenes. To construct “Acquired” datasets, re-
searchers capture RGB-D videos, reconstruct the scene
meshes, and manually label the frames or the reconstructed
scenes. For example, NYU-Depth v2 [27] gathered 464
short RGB-D sequences from different rooms via Kinect,
where 1,449 images are selected and labeled with pixel-
level annotations. SUN RGB-D [33] collected 10,335
RGB-D images and provided more 2.5D annotations, such
as 2D polygons and 3D bounding boxes correspondences,
room layouts, and scene categories. These datasets may
lack the physical relationship between the frames and
the scene space’s real 3D structure. To address the is-
sue, SUN3D [43] developed an interactive reconstruction
pipeline to recover the 3D scene structures for 254 different
spaces in 41 buildings, in which 8 scenes are provided with
semantic labels for 3D point clouds and camera poses. Sce-
neNN [19] improved the pipeline by recovering mesh sur-
faces instead of point clouds for 100 scans. Further, one of
the largest “Scanned” datasets, i.e., ScanNet [9], has been
established. It reconstructed 1,513 rooms based on 2.5M
RGB-D views, and labeled rich 3D annotations, including
estimated 3D camera poses, surface reconstructions, seman-
tic segmentation, and 2D-3D alignments.

Since 3D scene reconstruction with fine geometric and
textures details is still a challenging problem with the depth
cameras on the shelf such as Kinect, the mesh qualities in
these scene dataset are usually not as good as the synthetic

data. Besides, some of the 3D annotations may be unreli-
able or imprecise due to the reconstruction error, such as
camera pose and 2D-3D alignment.

Designed Scenes. Another type of scene dataset is from
the human creation with professional design software as
this 3D-FRONT. In addition to 3D-FRONT, there is one
synthetic (designed) dataset that shares both the layout and
the well-posited 3D CAD mesh models, i.e., SceneNet [18]
with providing 59 scenes. Several other synthetic bench-
marks share 2D and 2.5D contents based on designed syn-
thetic scenes. For example, InteriorNet [23] released 15k
sequences and 5M images, which are rendered from their
large-scale scene packages. Further, Structure3D [49] pro-
vided 21,835 panoramic images with the corresponding
structure annotations, such as panoramic layouts, depth,
surface normal. Recently, Li et al. [24] built OpenRooms,
a synthetic benchmark based on ScanNet, and planned to
share rendered images with their high-quality SVBRDF and
spatially-varying lighting. Also, Hypersim [30] presented a
photorealistic synthetic dataset for holistic indoor scene un-
derstanding, focusing on providing per-pixel depth and dis-
entangled illuminance and reflectance properties over scene
images designed by professional artists.

These large-scale synthetic datasets have not made the
completed scene packages, including the floorplans’ mesh,
the large amount of involved CAD models with fine geo-
metric and texture details, and the layout with design ideas,
publicly available. In contrast, 3D-FRONT shares every-
thing that is used to construct houses, from real layouts
to interior design ideas and involved objects. The holis-
tic repository of indoor scene packages enables a robot to
navigate in them. It also allows the researchers to render
whatever information they need for new subjects studying.

3. Building 3D-FRONT

Creating a large-scale 3D scene repository is a non-
trivial task. Our 3D-FRONT project has been built on a
large volume (about 60K) of professionally designed houses
and 1M 3D CAD meshes. While we are unable to publish
all these meshes, due to copyright restrictions, all the mod-
els and learning algorithms employed during the data col-
lection progress have been trained on the large database. As
shown in Figures 2, we start from some house collections,
create room suites, optimize the layout, verify the created
interior designs. In the following, we will detail the pipeline
as well as the techniques involved.

3.1. Room Suite Creation

Given a CAD house and its professional design ideas,
we automatically create room suites for the scenes. Here, a
room consist of the category labels of objects that are sug-
gested to put in, and their positions, orientations, sizes, and
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Figure 2: Pipeline of building 3D-FRONT. We start from an empty house with professional design ideas, create the room
suites, optimize the layouts (e.g., to resolve artifacts highlighed in the red boxes), and finally verify the furnished rooms.
Here, the design ideas for a room consist of the category labels of objects that are suggested to put in, and their positions,
orientations, sizes, and styles.

styles. Taking a bedroom as an example, we first randomly
select a seed object, e.g., a bed, from a 3D model pool ac-
cording to the suggested size and style of the design ideas.
We then recurrently identify the visually matched furniture
according to the room suite thus far until the room is filled.

We mainly rely on the Furnishing Suite Composition
(FSC) approach in 3D-FUTURE [14] to create visually
compatible suites. Specifically, leveraging on the large-
scale expert scene designs, we carry out two tasks, i.e., mask
prediction and suite compatibility scoring, to model visual
compatibility. The first task predicts the masked (removed)
furniture given other objects in a suite. And the second task
evaluates the compatibility score of the input suite. We uti-
lize a textured image to represent each object (furniture), as
shown in Figure 2 (Room Suite Creation). The two tasks
optimize a visual embedding network (VEN) [31] and two
transformer architectures [37, 10], so that the trained VEN
can extract informative visual feature for each object. With
the learned visual representation and the given attributes,
including category, style, color, material, and size, for each
object. FSC trains gradient boosting decision trees (GBDT)
[13] to infer decision rules based on these information, and
post a logistic regression (LR) layer to estimate the compa-
rability scores of the room suites. These two techniques are
integrated as the GBDT-LR model.

FSC first adopts the visual embedding extracted from
VEN to perform a primary ranking, then employs the
trained GBDT-LR model to re-rank the selected candidates
for online recommendation. We improve the primary rank-
ing stage by considering graph auto-encoder techniques [8].
In detail, we define an undirected graph G = {V, E}, and
learn a graph auto-encoder (GAE) for visual compatibility
prediction following [8]. The graph nodes are all the in-
volved objects in the designed house database. Each node

is represented with a feature vector extracted from VEN.
Each edge’s weight is equal to 1 if the two objects are vi-
sually appealing, and 0 otherwise. With the graph, we first
learn a graph convolutional network (GCN) [20] as an en-
coder to propagate neighborhood information to obtain new
representations, depending on the connections. Then, we
adopt a fully connected layer as a decoder to reconstruct
the weight matrix. When building 3D-FRONT, we use the
trained models to perform recommendation from the furni-
ture shapes shared by 3D-FUTURE [14].

3.2. Layout Optimization and Verification

We observed that with the room suites constructed us-
ing the techniques described so far, placing objects into the
corresponding rooms according to their suggested positions
and orientations, various layout artifacts still remained. For
example, a bed may overlap with its nearby nightstand in
the 3D space. Other examples are highlighted in red boxes
in Figure 2. One of the main reasons is that it is difficult to
find a visually matched furniture based on concurrent room
suite that, at the same time, has the same size required by
the design ideas — there is potential conflict between style
and size compatibilities. To this end, we apply the layout
optimization algorithm proposed in [41].

Specifically, we start from the initially created designs,
and slightly modify the object positions in the room suites
in order to satisfy several layout constraints in [41], includ-
ing pairwise distance, focal point distance, distance to wall,
accessibility, and collision. These constraints were con-
structed based on statistics of the design rules from our syn-
thetic house database. Since the intial layouts often provide
a good starting point, we only optimize the defined energy
function in up to 50 iterations. On average, the optimization
only takes 10s for each room.
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Figure 3: House Examples in 3D-FRONT. The left column shows the top-down views of three houses. The middle column
presents several rooms contained in these houses, including bedrooms, living rooms, dining rooms, etc. The interior design
ideas at the right column summarize the textured objects involved in the rooms and their high-quality 3D CAD models.

We further manually verify the created designs and re-
move the unsatisfied ones to ensure dataset quality. To facil-
itate the reviewing step, we develop a light-weight renderer
Trescope that enables the reviewers to browse the synthetic
houses online in an interactive manner. Note that, Trescope
supports offline benchmark rendering on local machines for
3D-FRONT. The renderer will be shared so that users of
3D-FRONT can capture their desired renderings such as im-
ages, depth, normal, and segmentation.

4. Validation and Assessment

In this section, we offer several means to validate and as-
sess the way our dataset was built and the quality and utility
of the data. Applications are discussed in Section 5.

Evaluation of recommender system. We collected 8K
room designs and their design logs from the online deign
platform1 of Alibaba Topping Homestyler for our evalua-
tion. We discuss several metrics, including Area Under The
Curve (AUC) [12], 1-N Average Rank (1-N Avg Rank), N-
1 Average Rank (N-1 Avg Rank), 1-N Hit@10, and 1-N
Hit@20. These metrics are calculated based on experts’ on-
line logs. To explain these measurements, we take a room

1https://www.shejijia.com/

suite (Bed, Nightstand, Chair) ⇔ (A, B, C) as an exam-
ple, where a designer chooses the objects A, B, and C in
order. 1-N Avg Rank means that we recurrently perform
recommendations (A) → Nightstand and (A, B) → Chair,
respectively, and compute the average rank (B and C). Here,
Nightstand and Chair are the required categories, and B and
C are the specific objects. N-1 denotes that we recommend
each object given the other two. Hit@K calculates the TopK
recall accuracy. For (A, B) → Chair, a correct recommen-
dation in TopK means that C ranks less than K. We refer to
the supplementary material for more details about the rec-
ommendation process and these metrics.

The qualitative scores are reported in Table 2. Generally,
incorporating GAE [8] with the original FSC [14] would
yield improvements on all metrics. We point out that both
FSC and its improved version (FSC+GAE) can generate
high-quality room suites, though it seems that the perfor-
mance numbers of 1-N Hit@10 (33.6%∼36.1%) and 1-N
Avg Rank (41.6∼37.3) are not significant. But it should
note that our 3D pool contains more than 1M models. The
vast collection makes the visual compatibility inspired rec-
ommendation task extremely challenging, though we have
filtered out invalid items in the retrieval sequences accord-
ing to the fine-grained category labels. It’s also worth to
mention that, after layout optimization and verification, our
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Figure 4: Statistics of room numbers per house. 3D-
FRONT contains 6,813 distinct houses constructed by
44,427 rooms. There are 6.5 rooms per house on average.

Metrics FSC [14] FSC + GAE [8]

↑
AUC 0.766 0.772

1-N Hit@10 33.6% 36.1%
1-N Hit@20 61.3% 64.3%

↓ 1-N Avg Rank 41.6 37.3
N-1 Avg Rank 26.7 24.1

Table 2: Evaluating the Pipeline. ↑: higher is better. ↓:
lower is better. We perform recommendation based on a
extremely large 3D pool (about 1M models). When calcu-
lating these scores, invalid items in the retrieval sequences
have been filtered out based on fine-grained category labels.

AI created designs (room suites + professional design ideas)
have been used for VR shopping by eCommerce merchants.
The rate of our high-quality designs (or customer preferred
designs) is 88%, while it is only 71% for designs from ju-
nior designers. The comparison may not fair for junior de-
signers since we reuse expert design ideas. It shows the
good quality of the scene designs in 3D-FRONT.

User study. We conduct a series of user studies, on Ama-
zon Mechanical Turk (AMT), to assess the quality of the
data provided by 3D-FRONT, in comparison with SUNCG
[34]. The quality criteria considered include those related
to scene layouts (in terms of plausibility, design quality, and
richness of texture) and individual objects (in terms of tex-
ture quality and preferability), as well as style compatibility.
We refer to the supplementary material for more details on
each study. As for the user study setting, we randomly sam-
pled 90 pairs of scenes and 30 pairs of 3D models from 3D-
FRONT and SUNCG based on scene type and model cate-
gory. Each pair was labeled by 20 master-level annotators
in AMT. Thus, the scene and model scores are calculated
using 1,800 and 600 feedback, respectively.

Figure 5: Distribution of the room scenes available in
3D-FRONT, organized by type. There are 44,427 rooms
in total. A large percentage of rooms (indicated by dark
color) in the top part are diversely furnished (18,968). These
rooms, such as bedrooms, living rooms, dinging rooms, and
study rooms, are the activity spaces where people tend to
spend most of their times living indoors.

Questions 3D-FRONT

Scene

Plausible Layout 62.5%
Design Quality 69.2%
Richer Texture 70.0%

Style Compatibility 65.4%

3D Model Richer Texture 65.4%
Preferable 61.5%

Table 3: User studies on data quality: 3D-FRONT
vs. SUNCG. The reported percentages indicate how many
users on AMT chose scenes/models from 3D-FRONT when
presented questions regarding the quality criteria.

From the scores reported in Table 3, we see that for each
quality criterion assessed, the majority of Turkers (between
60% and 70%), preferred data presented by 3D-FRONT. We
believe that higher-quality datasets would not only lead to
improved performance of algorithms which are trained on
these datasets, but also enable new applications. It should
also be evident that most, if not all, applications in the com-
puter vision and graphics community which had utilized
SUNCG, would also be well supported by 3D-FRONT.

Properties of 3D-FRONT. One of the most desirable fea-
tures of our dataset is that it publically shares all the es-
sential data that would enable the modeling of high-quality
indoor scene, from layout semantics down to stylistic and
texture details of individual objects. While the layout ideas
are directly sourced from professional designs, the interior
designs are transferred from expert creations followed by a
post verification process. Figure 3 shows some additional
house examples from our dataset.
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Figure 6: Interior Scene Synthesis. Several scenes pro-
duced by a state-of-the-art network trained on SUNCG (a)
and 3D-FRONT (b), respectively. The results were syn-
thesized from randomly chosen empty rooms. In each set,
the first row is for bedrooms and the second row for living
rooms. The 3D-FRONT results tend to show a richer variety
of objects and more plausible scene layouts. A user study on
AMT shows the majority of Turkers (64.8%) prefers scenes
synthesized by the 3D-FRONT model.

3D-FRONT enables a variety of AI-powered tasks re-
lated to 3D scenes, including data-driven designing stud-
ies, such as floorplan synthesis, interior scene synthesis,
and scene suites compatibility prediction, that other scene
datasets do not support adequately. It also benefits the study
of 3D scene understanding subjects, such as SLAM, 3D
scene reconstruction, and 3D scene segmentation.

Figures 4 and 5 reveal some statistics of our dataset, with
more that can be found in the supplementary material. Fur-
ther, we assign camera viewpoints to furnished the scenes
and release Trescope, a light-weight rendering tool com-
patible with 3D-FRONT. These would allow users of 3D-
FRONT to easily render images and annotations to support
their 2D vision studies. We refer to the supplementary mate-
rial for how we generate camera viewpoints for rooms. Last
but not least, we will continuously improve 3D-FRONT by
adding more features. A certain plan is to share more en-
riched texture and 3D geometry contents.

MMD- MMD- COV- COV-
CD ↓ EMD ↓ CD ↑ EMD ↑

SUNCG [34] 0.3642 1.1490 45.65 46.72
3D-FRONT 0.3371 1.1049 50.01 52.91

Table 4: Evaluting diversity of scenes synthesized by
models trained on 3D-FRONT vs. SUNCG.

5. Applications
We present two applications, interior scene synthesis and

object texturing in scene contexts, to demonstrate the util-
ity of our dataset. This only represents a small sampler of
applications that can benefit from 3D-FRONT.

5.1. Interior Scene Synthesis

The past several years have seen an explosion of inter-
est in studying interior scene synthesis. As demonstrated
in [40, 29, 22, 39, 48, 15, 45, 46], automatically synthe-
sizing plausible rooms would benefits various applications
like virtual reality and augmented reality. The main goal
of current scene synthesis methods is to coherently predict
and arrange functional furniture shapes. The extensive pro-
fessional layout designs provided by 3D-FRONT may be
immensely valuable to support the development of learning-
based methods for this synthesis task.

Our demonstration uses the state-of-the-art neural scene
synthesis method of Wang et al. [40], where each 3D scene
is represented in an orthographic top-down view, which
constitutes depth, room mask, wall mask, object mask, and
orientation. Their method trains a deep convolutional neu-
ral network to iteratively capture scene priors, so as to de-
cide whether to add a next object, what category of ob-
ject to add and where, and finally insert an instance of
that object category with estimated rotation into the scene.
Following [40], we conduct our experiment on two scene
types, i.e., bedroom (Bedroom, MasterBedRoom, and Sec-
ondBedRoom) and living room (LivingRoom and Living-
DiningRoom), and remove the rooms whose width or length
is larger than 6 meters. As a result, we obtain 6,230 bed-
rooms and 645 living rooms, with 6,070 / 485 rooms for
training and 160 / 160 rooms for evaluation. We refer to
[40] for more details on training and test settings.

We evaluate diversity of the synthesized results us-
ing converge (COV) and minimum matching distance
(MMD) [1] measured by Chamfer Distance (CD) or Earth-
Mover Distance (EMD) between scenes synthesized by
models trained on 3D-FRONT and on SUNCG, respec-
tively. The results were generated from empty rooms in
the combined test set of 3D-FRONT and SUNCG. For each
synthesized scene, we randomly sample 100K points and
calculate these metrics against the ground truth. Recall that
lower MMD and higher COV indicate better synthesis abil-
ity of a method. Quantitative comparisons in Table 4 show
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the dataset advantage of 3D-FRONT over SUNCG. A qual-
itative comparison is shown in Figure 6.

In addition, we conduct a user study on AMT where
Turkers were asked to choose scenes synthesized by [40],
from randomly choosen empty rooms, that are deemed to
be more “plausible”; see supplementary material for details.
From the user feedback, we find that layouts synthesized
by the model trained on 3D-FRONT were chosen 64.8% of
the time (vs. 35.2% for SUNCG). All these results strongly
demonstrate the utility of our new dataset, over other alter-
natives, for the important scene synthesis task.

5.2. Texturing 3D Models in Indoor Scenes

The quality, richness, and compatibility of object tex-
tures in an indoor scene can greatly enhance its realism. The
textured 3D models available from 3D-FRONT fulfill these
very characteristics, and we expect our dataset to benefit the
development of many data-driven scene texture synthesis
algorithms. In comparison to texturing a single 3D object
[28, 16, 25], doing the same to an object in the context of
an indoor scene must take into account that scene context to
ensure both quality and visual compatibility.

We extend a recent generative model for textured
meshes, TM-Net [16], to the 3D scene texturing task. TM-
Net represents 3D shape parts with their structural de-
formable boxes, thus enables to generate part-level struc-
tural texture atlases for the given untextured 3D shapes.
When applying it to the 3D scene configuration, we en-
force the texture coherence between 3D objects by ran-
domly choosing a shape in the scene, extracting its texture’s
VGG feature, and finally using the feature to guide the gen-
eration of other objects’ textures in the training setting. Af-
ter training the generative models, we synthesize texture for
a random shape, and use it as a condition for other objects’
texture generation to keep the consistency.

We conduct a simple experiment to validate the advan-
tage of 3D-FRONT, as training data for TM-Net, for the
generation of chair textures given table textures as a condi-
tion or guidance. Comparisons are made to ShapeNet [7],
which also contains textured 3D models and can serve as
the training data. Figure 7 presents some qualitative results
where the table-chair settings were sampled from dining
rooms. TM-Net trained on 3D-FRONT tends to generate
richer and more diverse textures, as can be verified by both
a quantitative test and a user study. Specifically, the model
trained on 3D-FRONT yields a LPIPS [44] score of 0.289,
which outperforms its ShapeNet counterpart, which has a
score of 0.215, where we recall that LPIPS is a measure of
the diversity of generated textures. Our user study on AMT,
where users were asked to select which generated textures
were “richer”, also shows that results by TM-Net trained on
3D-FRONT were selected 61.1% of the time (vs. 38.9% for
ShapeNet); see supplementary material for more details.

Figure 7: Texturing 3D models in indoor scenes. The de-
fault textures (b) were provided by the 3D-FRONT dataset.
In (c) and (d), we show chair textures generated by TM-Net,
conditioned on given textures for the table. The network
was trained on ShapeNet (c) or 3D-FRONT (d).

6. Conclusion and future work

We present 3D-FRONT, a new large-scale dataset of syn-
thetic 3D indoor scenes. Up to now, there have been a vari-
ety of 3D scene datasets established to serve different pur-
poses. Some focus on photorealistic renderings of artist-
created scenes, possibly with instance segmentations and
per-pixel material and illumination ground truth data, while
others acquire large volumes of raw scans of the world to
drive research in 3D scene reconstruction and modeling.
Compared to these efforts, 3D-FRONT offers the largest
publicly available collection of professional designed room
layouts instanced with high-quality textured CAD meshes.

One of our intentions was to fill a void in the vision
and graphics community after SUNCG became unavailable.
Yet, our dataset surpasses SUNCG in three aspects: profes-
sional vs. amateur layout designs, CAD model quality, and
style compatibility. We demonstrate that these distinctive
features enable several data-driven applications which were
not well supported by other datasets. In the future, we will
continuously improve 3D-FRONT by releasing an indus-
trial render engine (AceRay) and providing much enriched
texture and 3D geometry contents.
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