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Abstract

Deep learning (DL)-based methods have achieved great
success in solving the ill-posed JPEG compression artifacts
removal problem. However, as most DL architectures are
designed to directly learn pixel-level mapping relationship-
s, they largely ignore semantic-level information and lack
sufficient interpretability. To address the above issues, in
this work, we propose an interpretable deep network to
learn both pixel-level regressive prior and semantic-level
discriminative prior. Specifically, we design a variation-
al model to formulate the image de-blocking problem and
propose two prior terms for the image content and gradi-
ent, respectively. The content-relevant prior is formulated
as a DL-based image-to-image regressor to perform as a
de-blocker from the pixel-level. The gradient-relevant pri-
or serves as a DL-based classifier to distinguish whether
the image is compressed from the semantic-level. To effec-
tively solve the variational model, we design an alternating
minimization algorithm and unfold it into a deep network
architecture. In this way, not only the interpretability of the
deep network is increased, but also the dual priors can be
well estimated from training samples. By integrating the t-
wo priors into a single framework, the image de-blocking
problem can be well-constrained, leading to a better per-
formance. Experiments on benchmarks and real-world use
cases demonstrate the superiority of our method to the ex-
isting state-of-the-art approaches.

1. Introduction

With the rapid development of consumer devices (e.g.,
digital cameras and smartphones) and wireless network,
the number of images and videos has achieved explosive
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growth, which has brought more pressure and challenges
to storage and transmission systems. To save the storage
capacity and transmission bandwidth, captured images and
videos are usually compressed to reduce information re-
dundancy. Lossy compression algorithms, e.g., Joint Pho-
tographic Experts Group (JPEG) [43] and High Efficien-
cy Video Coding (HEVC) [41], have been widely explored
to achieve this goal. However, due to the inevitable sig-
nal loss during compression, these compression algorithms
usually generate visually unpleasing compression artifact-
s. These artifacts not only decrease the visual quality, but
also degrade the performance of downstream computer vi-
sion systems, especially at high compression ratios. There-
fore, removing compression artifacts is an important post-
processing task and has attracted more attention in recent
years [20,30]. We refer the reader to review articles [28,30]
for more details. In this paper, we focus on alleviating still
image degradation caused by JPEG compression, which is
one of the most prevalent compression standards.

JPEG compression first applies the discrete cosine trans-
formation (DCT) on 8 x 8 pixel blocks. Then, these DCT co-
efficients are coarsely quantized to remove high-frequency
details to save space. Due to the independent processing on
each pixel block and the removal of high-frequency details,
compressed images usually suffer from blocking and blur-
ring artifacts. In addition, using a large quantization step,
banding artifacts will appear in smooth areas. Some recent
studies have proposed methods to remove undesirable JPEG
compression artifacts. According to the design mechanism,
these methods can be roughly classified into two categories:
model-based methods and deep learning (DL)-based meth-
ods. Early model-based works perform filtering to remove
compression artifacts. For instance, Foi et al. [12] propose
a shape-adaptive DCT filtering method for compression ar-
tifacts reduction. On the other hand, since multiple latent
clear versions can be estimated from a single compressed
image, this task is essentially an ill-posed inverse problem,
which requires prior knowledge to constrain it. Along this
research direction, many researchers formulate this prob-
lem as a minimization of a variational model with favor-
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able prior terms. Based on the maximum a posterior (MAP)
framework, many prior models, e.g., quantization step [55],
sparse representation [3] and low rank [59], have been de-
veloped. Although these model-driven methods have shown
good performance, the representation abilities of handcraft-
ed priors are limited, which leads to unstable results when
processing compressed images with complex structures.

In the past few years, DL-based methods have achieved
significant progress of JEPG artifacts removal [8, 57, 63].
Due to the powerful nonlinear capacity [16,21,22,29, 53]
and huge amounts of training data, these methods can learn
the inverse mapping of compression degradations, and thus
produce better results than model-driven methods. Howev-
er, most of current DL-based methods adopt feed-forward
networks to directly predict clear images, making them like
black boxes and lack interpretability. In addition, since
these DL-based methods only learn pixel-level mappings,
semantic-level information is not fully explored and exploit-
ed, which further limits their performance improvement.

Different from these methods, we propose an inter-
pretable deep network by combining advantages of both the
model-based methods and data-driven DL models. Specif-
ically, we introduce an effective algorithm with DL to
learn a pixel-level regressive prior for image content and
a semantic-level discriminative prior for image gradient, re-
spectively. First, we model the content-relevant prior as an
image-to-image regressor to perform de-blocking, and de-
sign the gradient-relevant prior as binary classifier to distin-
guish whether the image is compressed. Then, the image
de-blocking problem is formulated as a minimization of a
variational model with the two proposed priors. To effec-
tively solve the model, we design an alternating minimiza-
tion scheme based on the gradient descent technique and
half-quadratic splitting method. Finally, the iterative algo-
rithm is unfolded into a deep network architecture, in which
the two priors can be automatically learned through an ef-
fective network training strategy. We show that our method
is able to predict visually pleasing de-blocked images while
removing undesirable JPEG artifacts sufficiently. The con-
tributions of this work are as follows:

e We propose two effective priors to describe the image
content and image gradient from the pixel-level and
semantic-level, respectively. By using the two priors as
the regularizer, we introduce a new variational model
for the JPEG compression artifacts removal.

e We propose an alternating minimization algorithm,
which is based on the gradient descent technique and
half-quadratic splitting method, to solve the variational
model. By unfolding the algorithm, we design a new
deep network architecture for the image de-blocking
problem. In this way, the two proposed priors can be
automatically estimated from training samples. In ad-

dition, since the feed-forward process mimics the pro-
cessing flow of the alternating minimization algorithm,
the interpretability of the deep model is increased.

e We collect a new dataset containing compressed/clear
image pairs based on the popular online social soft-
ware WeChat. This dataset aims to complement the ex-
isting Twitter dataset [8] to serve the relevant research
communities. Extensive experiments show that our
proposed network performs favorably against state-of-
the-arts on both benchmarks and real-world use cases.

2. Related work
2.1. Model-based methods

In early studies, image filtering technologies are widely
explored to explicitly remove compression artifacts. For in-
stance, a quadratic programming technology with an adap-
tive is proposed in [36] to remove blocking artifacts and
preserve image details. An adaptive neighborhood for s-
moothing and conducting post-filtering in shifted windows
is introduced in method [54]. Yoo et al. [49] utilize group-
based filtering to improve the correlation between image
blocks and reduce blocking artifacts. Foi et al. [12] achieve
both the image de-noising and de-blocking by conducting
filtering in the shape-adaptive DCT domain.

On the other hand, prior knowledge also plays a vital role
in this task since it is an ill-posed inverse problem. Many
researchers make great effort to explore effective priors to
constrain the solution space. As one of the most important
priors, the quantization step can be utilized to estimate the
range of the DCT coefficients of the clear image to con-
strain the de-blocked result [35, 55]. Other image priors,
e.g., sparse representation [3,4,40,52], low rank [59], non-
local self-similarity [60] and graph [34], are also explored
and exploited. Li et al. [27] combine image decomposition
algorithm and sparse prior to achieve both JPEG artifact-
s removal and image enhancement. Liu et al. [35] improve
image de-blocking by exploiting the sparsity in both the im-
age and DCT domains. In [37], a graph-based low-rank
prior is introduced to reflect the manifold structures of im-
age patches. Zhang et al. [59] reduce compression artifacts
by exploring the non-local similarity in the DCT domain.
Liu et al. [34] propose a graph smoothness prior to joint-
ly reduce compression artifacts and improve contrast based
on the Retinex theory. Although these model-based meth-
ods are flexible and have good interpretability, they usual-
ly have limited representation capabilities with handcrafted
filters and priors.

2.2. Deep learning-based methods

In the past few years, deep learning has made break-
through progress in JPEG compression artifacts removal.
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Due to the powerful nonlinear representation ability, DL-
based methods usually have better performance than model-
based ones. Dong et al. [8] introduce the first DL-based
method by designing a four-layer CNNs architecture, which
makes a breakthrough progress in compression artifacts
removal. Inspired by the residual learning, several deep
network architectures are well designed for JPEG com-
pression artifacts removal and relevant restoration tasks
[18,32,42,57,62,63]. Fan et al. [11] construct a decouple
learning framework by incorporating different parameter-
ized image operators for various image restoration tasks. To
produce visually pleasing results, the generative adversarial
networks (GANS) are utilized to capture the underlying da-
ta distribution to generate vivid image textures [14, 15,20].
Yoo et al. [48] achieve image de-blocking by estimating fre-
quency distribution of local patches. Kim et al. [23] propose
a pseudo-blind de-blocking method, in which the quality
factor is estimated for both blind and non-blind de-blocking.
Many dual domain learning-based methods [5,10,19,61] are
also introduced by considering the DCT-relevant prior.

Recently, many researchers attempt to combine both the
domain knowledge and deep learning for various image
restoration tasks. Wang et al. [45] build a dual domain net-
work by using the DCT-pixel domain sparse coding and the
learned iterative shrinkage thresholding algorithm. Chen et
al. [6] design a deep network based on the classic iterative
nonlinear reaction diffusion for effective and efficient image
restoration. In [7, 1 3], the authors adopt the classic convolu-
tional sparse coding to solve the image de-blocking. Yang
et al. [46] use sparsely sampled measurements for image re-
construction by combining compressive sensing theory and
deep learning. Under the alternative minimization frame-
work, deep CNNs are also utilized to learn priors and per-
form as the regularizer [9,31,33,56,58]. Our method shares
these similar spirits, but different from the above approach-
es that only learn pixel-level mapping relationships, we fur-
ther introduce semantic-level information to better handle
the JPEG compression artifacts removal.

3. Methodology
3.1. Motivation

In general, JPEG artifacts removal aims to obtain the
clear image x from its compressed observation y = x + v,
where v contains compression artifacts and residual image
content. Since this task is an ill-posed inverse problem,
from a Bayesian perspective, the clear image can be ob-
tained by solving a MAP problem:

arg maxlog p(y [x) + log p(x), (1)

where log p(y |x) and log p(x) denote the data likelihood
and the prior terms, respectively. Formally, by performing

a negative logarithmic transformation, Equation (1) can be
reformulated as an energy minimization variational model:

argmax |y — x[|3 + Af(x), @)

where f(x) denotes the regularizer associated with the prior
log p(x), and X is a trade-off parameter. It is clear that the
regularizer plays a vital role in obtaining high-quality solu-
tions. In model-based optimization methods, many regular-
izers have been explored, e.g., low rank [59] and nonlocal
self-similarity [60]. While these methods are usually time-
consuming with handcrafted priors that are not powerful e-
nough for good performance. Therefore, with the powerful
nonlinear capabilities, deep unfolding networks [7, 1 3] have
been explored to extract the priors from training samples.

Albeit improvement in interpretability and performance,
existing deep unfolding methods only design pixel-level
regression networks for the regularization term, semantic-
level information is not fully utilized. Affected by com-
pression artifacts (e.g., blocking, blurring and banding), the
overall quality of the JPEG compressed image will be sig-
nificantly lower than its clear counterpart. In other words,
it should be easy to distinguish whether the image has been
compressed from the semantic-level. This observation mo-
tivates us to introduce a semantic-level discriminative prior
to complement existing methods for image de-blocking.

In addition, according to our domain knowledge, most
compression artifacts have a greater impact on the high-
frequency part than the low-frequency part. As shown in
Figure 1, due to the inherent sparsity of gradients, the his-
togram on the gradient domain has stronger regularity than
the image domain. Moreover, the histogram of the com-
pressed gradients Vy is much sparser than the clear gradi-
ents VX, as shown in Figure 1. This is because the quanti-
zation intervals are much larger in high-frequency part than
those in low-frequency part, which results in significan-
t changes in the high-frequency part before and after com-
pression. Therefore, we argue that using the high-frequency
part of the image can provide better discriminative informa-
tion. Based on the above observation, we design a semantic-
level prior and apply it to the image gradient, which is
the most commonly used high-frequency image informa-
tion [38]. By adding the semantic-level discriminative prior
to Equation (2), our final variational model is:

argmax [y — x||5 + Arf, (%) + Ao fs(VX),  (3)

where V is the differential operator. f,(-) and f,(-) mean
the regularizers to deliver the pixel-level regressive prior
and semantic-level discriminative prior, respectively.

3.2. Optimization

To construct a step-by-step corresponding deep unfold-
ing network architecture for Equation (3), we first design an
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Figure 1: Statistical histogram. From left to right: y; x;
histograms of y and x; histograms of Vy and Vx.

effective alternating minimization algorithm to obtain the
unfolding inference. By introducing two auxiliary variables
u and g, Equation (3) can be rewritten as a non-constrained
optimization problem:

2 2 2
arg max [ly — x||; + afju—x[; + Blg - Vx|

x,u,g

+>\1fp(u)+)\2fs(g)7 (4)

where « and 3 are penalty parameters. Equation (4) can be
addressed by alternatively solving sub-problems:

argmaxa”u—xk,l”g+>\1fp(u)» o)
argmax § ||g — Vxg_1 |5 + Ao fs(g), ©)
g

2 2 2
argmax ||y — x||; + o flug —x[l5 + 8llgr — Vx|,
X
)

where k = 1,2, ..., K is the iteration. Below, we detail the
updates for each sub-problem.

1) Solving u The sub-problem (5) is a proximity oper-
ator of f,(u) and corresponds to de-block the image xj_1.
The solution can be expressed as:

uy = deblocker(xx—1), )

where deblocker(-) can be arbitrary image de-blocking al-
gorithms. In this paper, we design a deep convolutional neu-
ral networks to perform the de-blocker. In this way, compli-
cated image content-relevant priors can be directly learned

from training data without manual design.

2) Solving g Since we want to introduce semantic-level
discriminative information for image de-blocking, fs(g) is
designed as a binary classifier since classification is the
most fundamental semantic-related analysis. Therefore, un-
like solving u that directly deploys an image-to-image re-
gression network, we follow Li ef al. [26] and adopt the
back-propagation to compute the derivative of fs(g). The
solution for solving g is:

. - - ofse )
gi) =¥ —n BV — Vaxko1) + M=
98k
9

where d € {h, v} are the horizontal and vertical directions,
respectively. 7 is the step size, and j is the inner iteration.
To fit with the overall energy minimization, we intentionally

label clear images as 0 (negative) and compressed images as
1 (positive). In this way, during the optimization, Equation
(9) provides semantic determining for g whether increas-
ing or decreasing its value will improve the clarity, which

complements the pixel-level constraints in Equation (8).

3) Solving x Since Equation (7) is a least squares prob-
lem, it has a closed form solution. To speed up the process,
we adopt Fast Fourier Transformation (FFT) to diagonalize
the differential operator so that large-matrix inversion can
be avoided. By setting the first-order derivative to zero, the
solution of Equation (7) is:

- (9(.\/) +aZ () + 8 (Sacgnny 77 (Va) F(g1)) >
X = ’

FM) +aF D)+ 8 (Sacpnu (Vo) F(Va))
(10)

where I is the identity matrix, .% is the FFT operator, .%*

is the complex conjugate operator, .% ~! is the inverse FFT
operator, Vj, and V,, are the horizontal and vertical differ-
ential operators, respectively. Since all calculations are per-
formed pixel-wise, the update of x can be efficiently com-
puted. However, if complex handcrafted de-blocker and
classifier are used, the entire optimization process will be
computationally expensive. Therefore, we unfold the above
algorithm into a deep network to gain advantages from both
model-based optimization and data-driven deep learning.

3.3. Deep unfolding network

As shown in Figure 2, our deep unfolding network con-
tains K stages, which are intentionally designed to corre-
spond to K iterations in the optimization algorithm. In
each network stage, two auxiliary variables are first updat-
ed, and then the de-blocked image is calculated. Therefore,
the question left to us now is how to design the pixel-level
regularizer f,(-) and the semantic-level regularizer f(-).

De-blocker f,(-) To achieve an image-to-image regres-
sion for exploring pixel-level content-relevant prior, we first
design a basic unit and then adopt it to construct the de-
blocker. Due to different quantization steps, compression
artifacts at different spatial scales will appear. Therefore,
to capture both global and multi-scale local spatial infor-
mation, we utilize the non-local operation [62] and dilated
convolutions [50] to form the basic unit. Specifically, in
each basic unit, we first deploy the non-local operation to
capture global spatial information. Similar with [62], the
non-local operation is performed as:

Moyt = My + 0(Mi ) v (M) T €M, )W, (1)

where M;,, and M,,,; are the input and output features;
0(-), v(-) and &(-) are 1 x 1 convolutions to reduce the
channel number; 1 is the transpose operation; Wisal x 1
convolution to perform a hidden-to-output operation. We
re-ordered (Av1)¢ to O(vT¢) according to the associative
rule, which can greatly reduce computation complexity by
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Figure 2: The framework of our network with K stages. Each stage consists of three operations to accomplish the update of
u, g and x. The overall optimization process and illustration are shown on the top row and bottom row, respectively.

avoiding large matrix calculation. Then, these global spa-
tial information is sent into three cascaded dilated convo-
lutional layers with different dilation factors. In this way,
the basic unit can capture wide-range spatial information
and enable a single network to handle multiple quantiza-
tion steps. Finally, we utilize the basic unit to construct the
de-blocker. Note that we adopt dense structures [22] and
skip-connections to avoid gradient vanishing and propagate
image detail to improve the de-blocking performance.

Classifier f;(-) To further utilize semantic information
for image de-blocking, we build a DL-based binary clas-
sifier, which receives the image gradients as the input and
outputs a single scalar, to represent the probability of being
compressed. Specifically, we adopt six standard convolu-
tional layers (with non-linear activations), one global aver-
age pooling layer, and two fully-connected layers to con-
struct the classifier. The output scalar is processed by a sig-
moid non-linear function to facilitate the binary prediction.
Note that the global average pooling operation can convert a
feature map into a single scalar, which allows our classifier
to handle input gradients of arbitrary sizes. Moreover, since
the entire classifier is differentiable, it can participate in the
calculation of Equation (9) to update g.

As shown in Figure 2, by plugging the de-blocker and
classifier into the optimization, the deep unfolding network
can be constructed. It should be indicated that our network
has a good interpretability, i.e., each network module corre-
sponds to each step in the optimization. The de-blocker ac-
complishes the exploration of image content-relevant prior
to achieve the function of Equation (8), which is to remove
JPEG artifacts. The classifier accomplishes the exploration
of image gradient-relevant prior and participates in the cal-

culation of Equation (9) so that the gradients can be updated
along the direction of ‘clarity’. By taking both pixel-level
and semantic-level information into consideration, the de-
blocked image can be obtained by Equation (10).

3.4. Implementation details

Since our deep unfolding network contains a large num-
ber of parameters, it is impractical to manually determine
these parameters. Therefore, we make all the learnable pa-
rameters be automatically learned from the training sam-
ples. We enforce the de-blocker and the classifier to share
their own parameters to reduce the number of parameters
and thus avoid over-fitting. For the weights in Equations (8)
to (10), we let them be discriminatively learned.

In this paper, we adopt a two-stage training strategy to
train our deep unfolding network. In the first stage, we only
train the classifier via the binary cross entropy loss function:

Zcr = —% z log(z;) + (1 — ZAz) log(1 —z), (12)

i=1

where [V is the number of training samples, z; is the output
. AL A
scalar of the classifier, and z; is the label. We set z; = 1 for

compressed images and é\z = 0 for clear images. In the sec-
ond stage, the parameters of the trained classifier are frozen,
and the remaining parameters in the network are trained by
using mean absolute error (MAE).

In our deep unfolding network, all convolutional kernel
sizes are set as 3 X 3. The number of feature maps of de-
blocker and classifier are 112 and 32, respectively. We set
K = 5and J = 3, and use the classic ReLLU [25] as the
nonlinear activation. The dilation factors are set as 1, 3 and
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Table 1: PSNR | SSIM | PSNR-B values and parameter numbers comparisons. The best and the second best results are

boldfaced and underlined. Our network achieves the best overall results with tolerable parameter numbers.

Dataset Quality SADCT [12] LD [27] PCA [40] ARCNN [8] TNRD [6] DnCNN [57]
10 28.88 | 0.8071 | 28.16  28.39]0.7997 | 27.59  29.32|0.8002 | 29.08 29.03|0.7929 | 28.76  29.28 | 0.7992 | 29.04  29.40 | 0.8026 | 29.13
Classic5 20 30.92|0.8663 [ 29.75 30.30 | 0.8584 [29.37 31.56|0.8584 |31.12 31.15|0.8517 | 30.59 31.47|0.8576 |31.05 31.63|0.8610 | 31.19
30 32.14]0.8914 | 30.83 31.47|0.8830|30.17 32.86]0.8838|32.31 32.51|0.8806|31.98 32.78|0.8837|32.24 32.91]0.8861 | 32.38
10 28.65|0.8093 | 28.01 28.26 | 0.8052 | 27.68  29.01 | 0.8090 | 28.83  28.96 | 0.8076 | 28.77 29.14 | 0.8111 | 28.88 29.19]0.8123 | 28.90
LIVE] 20 30.8110.8781|29.82 30.19|0.8715]29.64 31.28|0.8746|30.72 31.29|0.8733]30.79 31.46|0.8769 | 31.04 31.59]0.8802 | 31.07
30 32.0810.9078 | 30.92 29.41|0.8960 | 29.36  32.62]0.9034 | 32.18 32.67 | 0.9043 | 32.22 32.84|0.9059 | 32.28  32.98 | 0.9090 | 32.34
10 28.23]0.778027.38  28.03 | 0.7824 | 27.29  28.64 | 0.7793 | 28.01 28.56 | 0.7907 | 27.87 28.60 | 0.7926 | 27.95 28.84 | 0.8006 | 28.44
BSD500 20 30.09 | 0.8510 | 28.61  29.82|0.8514 [28.43 30.73 | 0.851029.42 30.43|0.8594 [29.10 30.51|0.8611 |29.34 31.05|0.8741 | 30.29
30 31.21]0.8838 |29.34 30.87|0.8719]29.15 31.99]0.8840 | 30.84 31.52]0.8904|29.92 31.58|0.8902|30.02 32.36|0.9049 | 31.43
Twitter 27.61|0.7281 | 27.53 27.58 [0.7274 | 27.49 27.71|0.7302 | 27.66  27.54|0.7295 | 27.49 27.60 | 0.7272 | 27.52 27.63|0.7294 | 27.54
WeChat 29.60 | 0.7995]29.59  29.48 | 0.7956 | 29.47  29.63 | 0.7994 | 29.60 29.30 | 0.7987 | 29.29  26.64 | 0.7908 | 26.63  29.57 | 0.7982 | 29.57
# Params (x 10°) — — — 1.06 0.21 6.69
Dataset Quality LPIO [11] M-Net [42] DCSC[13] RNAN [62] RDN [63] Proposed
10 29.35|0.8015]29.04 29.69 | 0.8107 | 29.31 29.62|0.8270]29.30 29.87|0.8278 |29.42 30.03 | 0.8194 | 29.59  30.26 | 0.8403 | 30.05
Classic5 20 31.5810.8567 | 31.12  31.90 | 0.8658 | 31.29  31.81]0.8804 | 31.34 32.11|0.8693 |31.26 32.19|0.8704 | 31.53 32.40 | 0.8881 | 31.96
30 32.86]0.8835|32.28 32.97|0.8881[32.49 33.06]0.9030 | 32.49 33.38|0.8924 |32.35 33.46|0.893232.59 33.56 | 0.9080 | 32.90
10 29.17|0.8119 | 28.89  29.45]0.8193|29.04 29.34|0.8317 129.01 29.63|0.8239|29.13 29.70 | 0.8252]29.37 29.75]0.8395 | 29.51
LIVE1 20 31.52|0.8766 | 31.07 31.83|0.8846 | 31.14 31.70 | 0.8960 | 31.18  32.03 | 0.8877 [ 31.12 32.10 | 0.8886 | 31.29  32.06 | 0.9009 | 31.62
30 32.9910.9074 | 32.31 33.07|0.9108 | 32.47 33.07 | 0.9218 | 32.43  33.45|0.9149 [ 32.22 33.54|0.9156 | 32.62 33.43 | 0.9254 | 32.81
10 28.81|0.7815]28.39 28.96 | 0.8039 | 28.56 28.95|0.8050 | 28.55 29.08 | 0.8054 | 28.48 29.24 | 0.8080 | 28.71  29.48 | 0.8146 | 29.13
BSD500 20 30.9210.8551 |30.07 31.05|0.8742]30.36 31.13]0.8758 | 30.41 31.25]0.8751]30.27 31.48|0.8789|30.45 31.65 | 0.8825 | 30.96
30 32.3110.8866 | 31.27 32.61|0.9072 | 31.15 32.42]0.9057 | 31.52 32.70 | 0.9068 | 31.33  32.83|0.9076 | 31.60 32.93 | 0.9108 | 31.97
Twitter 27.47|0.7333 | 27.41  27.98 0.7441 | 27.87 27.63|0.7313 |27.43 27.43|0.7183 |27.42 27.44|0.7190 | 27.39  28.27 | 0.7498 | 28.26
WeChat 28.90 | 0.8000 | 28.90  29.82 | 0.8067 | 29.82  29.58 | 0.8004 | 29.58  29.56 | 0.7996 | 29.56  29.57 | 0.8000 | 29.51  30.16 | 0.8196 | 30.13

# Params (x 10°)

13.94

6.67

3.21

74.09

220.03

88.21

5. To train the network, we use the Matlab JPEG encoder to
generate JPEG compressed images. The JPEG quality fac-
tors (QF) are set to 10, 20 and 30. We use both the training
and testing sets from BSD500 [2] as our training set. The
training process is conducted on the Y channel image of Y-
CrCb space. We randomly generate 64 x 64 training patch
pairs with a batch size of 10. We adopt the Adam solver [24]
as the optimizer, and the learning rate is fixed to 104, We
use TensorFlow [ 1] to implement our network. Note that we
only train one single model to handle all the JPEG compres-
sion factors. We initialize xo = y and gflo,l = VgXr_1,and
all weights in Equations (8) to (10) are initialized as 0.01.

4. Experimental results

We compare our network with three model-driven meth-
ods: Shape-Adaptive DCT (SADCT) [12] , Layer Decom-
position (LD) [27] and PCA basis Learning (PCA) [40],
and several deep learning-based methods: Artifacts Reduc-
tion Convolutional Neural Network (ARCNN) [8], Train-
able Nonlinear Reaction Diffusion (TNRD) [6], Denois-
ing Convolutional Neural Network (DnCNN) [57], Learn-
ing Parameterized Image Operators (LPIO) [ 1], Memory
Network (M-Net) [42], Deep Convolutional Sparse Coding
(DCSC) [13], Residual Non-local Attention Networks (R-
NAN) [62] and Residual Dense Network (RDN) [63].

4.1. Comparisons on synthetic datasets

We first report the comparison results on the three wide-
ly used synthetic datasets, i.e., 5 images in Classic5 [51],
29 images in LIVE] [39] and 100 images in the validation
set of BSD500 [2]. We adpot the PSNR, SSIM [44], and
PSNR-B [47] for quantitative evaluations. Since PSNR-B
is more sensitive to blocking artifacts than PSNR and S-
SIM, it is recommended [8] for use in this de-blocking prob-
lem. Table 1 reports the quantitative results and our network
achieves the best overall results on all synthetic datasets.
Particularly, for the Classic5 dataset with QF = 10, the av-
erage gains of our method over the recently proposed RD-
N [63] are respectively 0.23dB in PSNR, 0.0209 in SSIM,
and 0.46dB in PSNR-B. When compared with the other ap-
proaches, our method is far ahead. Note that we only train
one model to cover all three QFs, which substantiates the
flexibility and effectiveness of our method, in diverse JPEG
artifacts contained in these datasets.

In Figure 3, we show two visual comparisons and it is
clear that other compared methods can effectively remove
most compression artifacts but fail to recover image detail-
s. While our network can finely recover the image textures
with a better visual quality. This is because our method
learns the dual priors, which enables the network to simul-
taneously utilize the low-level pixel information and high-
level semantic information. In this way, not only the image

4001



QF=10 SADCT[I?]

Example in ‘Classic5’

LPIO[11]

QF =20 SADCT [12]
‘t‘

1

Example in ‘LIVED’
Figure 3: Visual comparisons on different synthetic datasets with different JPEG quality factors.

LPIO[11]

content-related compression artifacts are removed, but also
the image gradient-related clarity is recovered.

4.2. Comparisons on real-world use cases

Online social media softwares have been widely used
for message publishing and sharing. To reduce transmis-
sion and storage consumption, these platforms usually com-
presses and re-scales the original images on the server-side.
This leads to undesired and unavoidable compression arti-
facts appearance when users view the posted images. To
complement the existing Twitter dataset [8] and serve the
relevant research communities on this issue in real scenar-
ios, we manually construct a new dataset based on the pop-
ular social media WeChat. The dataset contains 300 images
and their WeChat-compressed versions'. To avoid out-of-
memory caused by excessive image resolution, we first ran-
domly crop the images and then perform the de-blocking
operation and measurement calculation. We show quanti-
tative results in Table 1, in which our model consistently
generates the best overall performance due to the effective
dual priors. Figure 4 shows two visual comparisons. Due to
different compression strategies, it is clear that the two com-
pressed images contain different appearances of artifacts,
and our method still achieves a superior performance than
other compared methods. It is observed that our method can
generate clearer results than other competing ones.

4.3. Analysis

Analysis on classifier fs(-) We first visualize the deriva-
tive of the classifier at different stages in Figure 5. By re-
ferring to Vg, the areas of large derivative values, which
are normalized for visualization, of g are basically the same

I'The dataset can be found at: https://xueyangfu.github.io/

LD [27]
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Figure 5: Visualizations of the denvatlve of the classifier.

as the areas of compression artifacts. Since the gradient
represents the increasing direction of the function, using E-
quation (9) can update g along the direction of less artifacts.

In Figure 6, we visualize the activations of the last con-
volutional layer in the classifier. It is clear that our classi-
fier can effectively distinguish clear images and their com-
pressed versions generated from different platforms. Since
we use the classifier to explore gradient-relevant priors, the
differences between compressed and clear activations are
mainly concentrated in areas such as image texture and
structure, and edges of compression artifacts. This proves
that using our gradient-relevant prior can provide the net-
work with constraints related to ‘clarity’.

We also show one visual result in Figure 7 to demon-
strate the effect of fs(-). It is clear that using only pixel-
level f,(-) can obtain a de-blocked result with blurred
edges. By adding the semantic-level f,(-), the edges be-
come more clear with a better visual quality.

Analysis on de-blocker f,(-) For the pixel-level de-
blocker, we compare with the scenarios by using three oper-
ators. Specifically, we test the handcrafted ¢; sparsity [17],
the DL-based DnCNN [57], and our default f,(-). Table 2
shows the quantitative comparisons on BSD500 (QF = 10),
and using our fy(-) achieves the best results. Compared
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Figure 4: Visual comparisons on two real-world use cases.
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Figure 6: Activations of a feature map in the classifier.
From top to bottom: BSD500, Twitter and WeChat.

(a) Compressed

(b) Without f,(-) (c) With fs(+)
Figure 7: Effectiveness of f,(-).

with the other two de-blockers, our f,(-) can extract both
global and multi-scale local features. This is particularly
suitable for image de-blocking since compression artifacts
usually have the appearance of different spatial scales.
Analysis on stage K We also analyze the effect of stage
number K and show the quantitative results on BSD500 (QF
= 10) in Figure 8. Using K = 1 as a baseline, it is clear
that the performance has an obvious improvement with 3
stages. When K = 7, the quantitative results show a slight
decreasing trend, which may be caused by the difficulty of

Table 2: Comparisons on using different de-blockers.

Proximal operators ‘ PSNR SSIM PNSR-B
£y sparsity [17] 28.18  0.7985 27.28
DnCNN [57] 28.97 0.8094 27.95
Our f,(+) 29.48 0.8146 29.13
30 0.82
T2 ﬁ O
g /__‘ %o.a
T 28, >
> —-PSNR 0.79
—-PSNR-B —e-SSIM

27
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Stage number K Stage number K

Figure 8: Quantitative results on different stage numbers K.

gradient propagation due to the increased stage. Therefore,
we set K = 5 as the default stage number.

5. Conclusion

In this paper, we propose two data-driven priors for
JPEG compression artifacts removal. Specifically, we de-
sign one pixel-level prior and one semantic-level prior to
provide regressive and discriminative information, respec-
tively. We then embed these two priors into a variational
model and develop an alternative optimization algorithm to
solve it. This optimization algorithm is further unfolded
into a deep network, in which the dual priors can be ef-
fectively explored from training samples. Experiments on
benchmarks and real-world use cases show that our method
performs favorably against state-of-the-art methods.
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