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Abstract

There has been a booming demand for integrating Con-
volutional Neural Networks (CNNs) powered functionali-
ties into Internet-of-Thing (IoT) devices to enable ubiqui-
tous intelligent “IoT cameras”. However, more extensive
applications of such IoT systems are still limited by two
challenges. First, some applications, especially medicine-
and wearable-related ones, impose stringent requirements
on the camera form factor. Second, powerful CNNs of-
ten require considerable storage and energy cost, whereas
IoT devices often suffer from limited resources. PhlatCam,
with its form factor potentially reduced by orders of magni-
tude, has emerged as a promising solution to the first afore-
mentioned challenge, while the second one remains a bot-
tleneck. Existing compression techniques, which can po-
tentially tackle the second challenge, are far from realiz-
ing the full potential in storage and energy reduction, be-
cause they mostly focus on the CNN algorithm itself. To this
end, this work proposes SACoD, a Sensor Algorithm Co-
Design framework to develop more efficient CNN-powered
PhlatCam. In particular, the mask coded in the Phlat-
Cam sensor and the backend CNN model are jointly op-
timized in terms of both model parameters and architec-
tures via differential neural architecture search. Extensive
experiments including both simulation and physical mea-
surement on manufactured masks show that the proposed
SACoD framework achieves aggressive model compression
and energy savings while maintaining or even boosting the
task accuracy, when benchmarking over two state-of-the-
art (SOTA) designs with six datasets across four different
vision tasks including classification, segmentation, image
translation, and face recognition. Our codes are available
at: https://github.com/RICE-EIC/SACoD.

1. Introduction
Recent CNN breakthroughs trigger a growing demand

for intelligent IoT devices, such as wearables and biology

devices (e.g., swallowed endoscopes). However, two ma-
jor challenges are hampering more extensive applications
of CNN-powered IoT devices. First, some applications, es-
pecially medicine- and biology-related ones, impose strict
requirements on the form factor, especially the thickness,
which are often too stringent for existing lens-based imag-
ing systems. Second, powerful CNNs often come at a con-
siderable cost, whereas IoT devices are subject to limited
resources [23, 21, 26, 43, 38].

For the first challenge, lensless imaging systems [3, 32,
1, 2, 4] have emerged as a promising rescue. For exam-
ple, PhlatCam [4] replaces the focal lenses with a set of
phase masks, which encodes the incoming light instead of
directly focusing it. The encoded information can be either
computationally decoded to reconstruct the images or pro-
cessed specifically for different applications. Such lensless
imaging systems can be made much smaller and thinner, be-
cause the phase masks are smaller than the focal lens, and
they can be placed much closer to the sensors and fabricated
with much lower costs. For the second challenge, many re-
cent works focus on designing CNNs with improved hard-
ware efficiency, i.e., by applying generic neural architecture
search (NAS) to find efficient CNNs.

As such, a naive way to address the two aforementioned
challenges simultaneously is to introduce lensless cameras
as the signal acquisition frontend and then apply NAS to op-
timize the backend CNN. However, such approaches would
result in disjoint optimization that can be far from optimal.
A generic NAS would treat the camera as given, and only
optimize the CNN. Likewise, existing phase mask designs
for lensless cameras treat the CNNs as given, and only opti-
mize the masks. Such disjoint optimization fails to (1) take
advantage of the masks’ potential computational capacity,
with which the NAS optimization can be fundamentally im-
proved, and (2) perform an end-to-end optimization.

[4] shows that, under some assumptions, the phase
masks in PhlatCam essentially perform 2D convolutions on
the incoming lights, and the convolution kernel is encoded
in the masks. Moreover, unlike other convolutional layers,
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the phase masks’ convolutions are almost free (i.e., do not
consume additional energy, computation power, or storage),
regardless of what value each mask takes. Therefore, we
aim to incorporate the phase mask design into NAS to en-
able an end-to-end optimization of the sensing-processing
pipeline, while exempting a portion of the pipeline from
the efficiency penalties. Such co-designs are expected to
achieve better accuracy and efficiency tradeoffs.

To this end, we propose a Sensor Algorithm Co-Design
(SACoD) framework to enable more energy-efficient CNN-
powered IoT devices. While we develop and evaluate
SACoD in the context of PhlatCam [4] based imaging sys-
tems, it is generally applicable to different sensing and intel-
ligent processing systems. The successful proposal, design,
and validation of SACoD is expected to positively impact
many real-world applications by enabling CNNs to be more
extensively deployed into IoT devices equipped with intel-
ligent sensors. Our main contributions are:

• We propose SACoD, a novel co-design framework that
jointly optimizes the sensor and neural networks to en-
able more energy-efficient CNN-powered IoT devices.
To our best knowledge, SACoD is the first to propose
sensor algorithm co-design for CNN inferences.

• We develop an effective design of the optical layer to
(1) exploit its potential computation capability and (2)
enable co-search of the optical layer and backend al-
gorithm. We then characterize the trade-off between
accuracy and the required area of the corresponding
imaging systems to demonstrate its effectiveness un-
der practical size constraints.

• Extensive experiments and ablation studies validate
that SACoD consistently achieves reduced hardware
costs/area while offering a comparable or even better
task accuracy, when evaluated over two SOTA lensless
imaging systems on four vision tasks (classification,
segmentation, image translation, and face recognition)
and six datasets. Experiments with fabricated masks
are also provided to validate SACoD’s advantages un-
der the physical measurements.

2. Related works
Neural architecture search. Recently NAS [45, 47] has

attracted increasing attention. It eliminates the handcraft-
ing process and automatically searches for neural architec-
tures. Existing NAS techniques can be divided into three
categories, evolution-based, reinforcement-learning (RL)-
based, and one-shot NAS. As the computational overheads
of evolution- or RL-based approaches can be unacceptably
high, many techniques [5, 6, 24, 25, 30, 41] have been pro-
posed to reduce the searching cost, among which differen-
tiable architecture search (DARTS) has gained intensive in-
terests. While being conceptually general, SACoD in this

Figure 1: A fabricated phase mask used in the PhlatCam
lensless imaging system [4].

paper adopts the DARTS method, where a super-network
is optimized during search and the strongest sub-network
is preserved and then retrained. The readers are referred
to [15] for more details about NAS.

Lensless imaging systems. To eliminate the size or
thickness burden caused by the lens, various lensless imag-
ing systems have been developed. While lensless imag-
ing systems have been widely used for capturing X-ray and
gamma-ray [14, 7], it is still in an exploring stage for visi-
ble spectrum uses [3, 32, 2, 4]. In general, lensless imaging
systems capture the scene either directly on the sensor or
after being modulated by a mask element.

In this paper, we focus on a specific lensless imaging
system based on phase masks called PhlatCam [4], which
is a general-purpose framework to create phase masks that
can achieve desired sharp point-spread-functions (PSFs). A
phase mask modulates the phase of incident lights, and al-
lows most of the light to pass through, providing a high
signal-to-noise ratio. Hence, they are desirable for low light
scenarios and photon-limited imaging. Fig. 1 shows a fab-
ricated phase mask, which is essentially a transparent mate-
rial with different thicknesses at different locations. Based
on this lensless imaging system, we develop and validate
our SACoD framework, aiming to explore and demonstrate
the feasibility and advantages of sensor-algorithm co-design
for enabling more efficient CNN-powered IoT solutions.

Sensor-algorithm co-training. There have recently
been some attempts that try to jointly optimize the sen-
sor parameters and the neural network backend. For lens-
based image systems, novel lens designs are introduced and
trained concurrently with the neural network backend to
jointly optimize for image reconstruction [33], depth esti-
mation [9], and high-dynamic-range imaging [27]. Similar
approaches have also been applied to other imaging sys-
tems, including cameras with color multiplexing [8], Phase-
Cam3D [40], and Single Photon Avalanche Photodiodes
cameras [35]. Yet these methods still consider the neural
network architecture as fixed, and do not explore the poten-
tial of sensor-algorithm co-design.

3. The proposed SACoD framework
This section presents our SACoD framework. We first

outline the framework and introduce the optical sensing
frontend, and then describe how we implement SACoD’s
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Figure 2: (a) An overview of the proposed SACoD framework, and (b) the proposed optical design as an interface between
the frontend and backend of the SACoD pipeline, in which we take a two-channel mask as an example.

optimization algorithm. Finally, we provide discussions on
the specificity and generality of SACoD generated masks.

3.1. SACoD: Framework setup

Overview. The SACoD framework shown in Fig. 2 (a)
consists of two modules, an optical sensing frontend and
a neural network backend. The coded masks of PhlatCam
in the sensor are jointly optimized with the backend using
a SOTA differential NAS algorithm [25], where the coded
masks, together with the neural network weights, are re-
garded as network parameters.

Framework formulation. Specifically, the first mod-
ule, i.e., the optical sensing frontend, is denoted as O(⋅;m),
where m = m(x, y) denotes the phase mask values. The
optical layer is based on the PhlatCam system [4]. It re-
ceives the light signal from the object in front of the camera,
processes the signal using the phase masks, and generates
the sensor output. The second module, i.e. the neural net-
work backend, is denoted as F (⋅;w,α), where w represents
weights of the neural network, and α parameterizes the ar-
chitecture. The neural network backend receives the sensor
signal and produces an output for the intended applications.

Formally, we denote the light signal as I(x, y) ∈

RH×W×3, where x and y are the coordinate indices and
H and W represent the height and width of the range of
light that the camera can receive, respectively. The light
signal contains RGB channel, and hence the last dimen-
sion is 3. Denoting the signal received at the sensor as
Z(x, y) ∈ RH

′×W ′×N , where H
′ and W

′ represent the height
and width, respectively, N as the number of channels, and Y

as the final output of the neural network backend, we have:

Z = O(I;m), Y = F (Z;w,α). (1)

The following subsections will introduce the form of
O(⋅;m) and how to determine m, w, and α.

3.2. SACoD: The optical sensing frontend

Frontend formulation. Assuming that the light signal
I(x, y) comes from an object whose distance to the cam-

era is d, and that the depth of the object is relatively small,
O(⋅;m) takes the following convolutional form [4]:

Z(x, y) = O(I;m) = p(x, y;m, d) ∗ I(x, y), (2)

where ∗ denotes 2D convolution, p(x, y;m, z) is called the
point spread function (PSF) of the phase mask, which is
determined by the phase mask m(x, y) and the distance d.

Once we optimize the PSF, the phase masks are designed
for the PSF and a chosen d. The fabricated mask then pro-
duces the PSF at the given d. For the fabricated system
shown in Sec. 4.5, d is set to be 2 mm for making our system
much thinner than conventional cameras (thickness ranges
between 7-20 mm). The mask is fixed at distance d to the
sensor during operation, and thus the convolution property
will continue to hold. According to Eq. (2), the optical layer
can be regarded as a special convolutional layer. Note that
one phase mask can only perform a single-channel convolu-
tion with a positive kernel, thus it takes two phase masks to
implement a single-channel convolution with a real-valued
kernel, where one implements the positive part of the kernel
and the other implements the negative part. For example, in
order to construct a three-channel convolutional layer with
real-valued kernels, we need six masks in the imaging sys-
tem. In addition, the input light has three color channels (R,
G, and B), and each phase mask operates on all the color
channels. Therefore, a three-channel convolution will pro-
duce a total of nine feature maps (FMs).

Optical layer design. To reorganize the rendered FMs
as the input for the CNN backend, we propose the optical
layer design in Fig. 2 (b) which takes a two-channel mask
as an example. Specifically, it accumulates the FMs across
the same color and outputs a 3-channel FM, which is still
in an RGB-like shape. We adopt this design since it applies
independent transformations on the RGB channels to main-
tain the original channel-wise discriminative information.

3.3. SACoD: The formulation and algorithm

SACoD formulation. Here we introduce the formula-
tion and optimization of SACoD which aims to simultane-
ously optimize the phase mask m, and the neural network’s
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architecture α, and the neural network’s weights w. For-
mally, SACoD aims to solve:

min
α

Lval (m∗(α),w∗(α),α) + λLe(α), (3)

m
∗(α),w∗(α) = argmin

{m,w}
Ltr(m,w,α). (4)

Ltr and Lval are task-specific performance losses evaluated
on the training and validation set, respectively, Le is the ef-
ficiency loss (e.g. model size, computational cost, or energy
consumption), and λ is the tuning parameter trading-off the
accuracy and efficiency. Following the same parameteri-
zation scheme in DARTS [25], α denotes the weights of
different candidate operations.

Modifications over DARTS. SACoD integrates two ma-
jor modifications as compared to the original DARTS [25]
framework. The first difference is that the efficiency loss
Le, measured by the sum of each layer’s computational
cost weighted by the network parameter α, is introduced.
More importantly, the second and major difference is that
the phase mask m is optimized jointly in the framework. It
is worth pointing out that although mathematically similar,
m

∗ and w
∗ have different degrees of dependencies on α.

Specifically, w∗ is directly impacted by α because α gov-
erns which subset of the w is ultimately used, while m

∗ is
only indirectly influenced by α. Therefore, incorporating
m will largely improve the tradeoff between the model per-
formance and model complexity. Note that SACoD is natu-
rally compatible with other NAS methods. We adopt differ-
ential NAS for the fast generation of the optical mask and
network. When using other NAS methods, e.g., RL-based
NAS [46], we still observe similar system performance
(within 0.3% accuracy on CIFAR-100), but the search time
increases to 8 GPU-days from 0.5 GPU-days.

Two-stage workflow. The whole co-design process can
be divided into two stages: a searching stage and a training
stage. In the searching stage, we apply the alternate gra-
dient descent of Eq. (3) and Eq. (4) to search for the opti-
mal network architecture α

∗. In the training stage, the opti-
mal mask and weights are determined by optimizing Eq. (4)
conditioning on the optimal network architecture α

∗.

3.4. SACoD: Discussions

Specificity of SACoD generated masks. As formulated
in Eq. (3), α controls the searched network structure, which
favors different distributions of phase masks m

∗. To val-
idate the influence of α on m

∗, we fabricate the physical
masks under various settings and observe that the optimal
masks for different searched networks are quite different,
which are visualized in the Appendix. In addition, we eval-
uate SACoD generated masks against the transferred masks
from other tasks in Sec. 4.6 to show the necessity of specif-
ically customizing the masks for each target task.

Generality of SACoD generated masks. Considering
(1) the captured features of the first several layers in CNNs

are general and can be transferred among tasks [42], and (2)
the masks are jointly optimized with both the network struc-
ture and the network weights in SACoD, it can be expected
that SACoD’s generated masks are able to learn to adapt
to the general features of CNNs and thus can achieve better
generality and transferability among vision tasks, compared
with the masks based on fixed filters like Gabor-mask [10].
This advantage of SACoD is validated in Sec. 4.6.

Generality vs. specificity. There always exists a trade-
off between the achieved performance and the manufacture
cost in practical uses of intelligent sensors, i.e., the bene-
fits of higher accuracy and lower energy of specifically de-
signed masks for the target task versus their higher man-
ufacture cost compared with one-for-all fixed mask (such
as Gabor-mask [10]). Fortunately, one key highlight of
SACoD is that it achieves such high specificity at extremely
low manufacture costs, as each mask costs one order of
magnitude lower than lens-based cameras [3] in addition to
PhlatCam’s advantageous thin feature, indicating SACoD’s
general applicability on IoT applications.

4. Experiments results
This section presents evaluation results of SACoD ap-

plied on PhlatCam. We first describe the experiment set-
tings in Sec. 4.1, and then benchmark SACoD over SOTA
lensless imaging systems on classification tasks, IoT appli-
cations, and other vision tasks in Sec. 4.2, 4.3, 4.4, respec-
tively. We next show the effectiveness of the physically fab-
ricated masks generated by SACoD in Sec. 4.5 and provide
various ablation studies of SACoD in Sec. 4.6.

4.1. Experiment setup
Optical layer constraints. As mentioned, the optical

layer first performs convolutional operations on the input
scene optically, the outputs of which are then processed by
the backend neural network. The physical device construc-
tion imposes design constraints on the optical layer design.
Specifically, since the phase mask is placed closer to the
sensor, the optically achievable kernel size cannot be arbi-
trarily small [4]. Here, we adopt kernel sizes that are not
smaller than 7x7. Additionally, since all the designed masks
are sharing the same sensor area, the number of masks can-
not be large due to the limited sensor area. Here, we con-
strain the number of masks to be no more than six. We
adopt simulated masks in Sec. 4.2∼ Sec.4.4 and evaluate on
physically fabricated masks in Sec. 4.5.

Algorithm setting. Datasets: we evaluate SACoD on a
total of four vision tasks with six datasets: two classifi-
cation datasets CIFAR-10/100, two IoT datasets including
FlatCam Face [36] and Head Pose [17], one segmentation
dataset Cityscapes [13], and one unpaired image translation
dataset horse2zebra [44]. The same and standard data aug-
mentation (e.g., random crop and normalization) is adopted
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Figure 3: Accuracy vs. FLOPs/energy trade-offs of SACoD and the baselines on CIFAR-10/100.

for both SACoD and the baselines. Baselines: we evaluate
SACoD against two SOTA lensless imaging systems:

• Gabor-mask System: we fix the optical layer to be the
Gabor-mask [10] and search for networks using the
same NAS method as SACoD.

• Co-train System: we fix the backend network to be a
SOTA CNN (e.g., MobileNetV2 [31] for the classifi-
cation task) and jointly train it with the optical layer.

Efficiency metrics: we consider both FLOPs (Floating Point
Operations) and energy cost based on real-device measure-
ments as the efficiency metrics. Specifically, we adopt the
NVIDIA JETSON TX2 [28], a popular IoT GPU, as the tar-
get platform, which is connected to a laptop with the real-
time energy cost being obtained via the sysfs [29] of the
embedded INA3221 [37] power rails monitor.

4.2. SACoD over SOTA imaging systems on classi-
fication tasks

Settings. In this set of experiments, we search for neu-
ral networks on CIFAR-10/100 for both the SACoD and
Gabor-mask systems, and quantize all the operations to 8-
bit using a SOTA quantization training method [20], which
is a common practice considering the constrained sources
on IoT devices. We adopt the search space and training set-
tings in [39] with minor changes, which are detailed in the
Appendix. Here the model adopted by the Co-train baseline
is MobileNetV2 [31]. To benchmark SACoD over SOTA
imaging systems, we fix the number of masks to be six
among all the settings, and then study their accuracy under
different FLOPs and energy costs. We control the FLOPs
of the SACoD and Gabor-mask systems by controlling λ
in Eq. (3) and that of the Co-train system by changing the
width multiplier [19].

Results analysis. Fig. 3 shows the trade-off between
the accuracy and required hardware costs in terms of both
FLOPs and energy cost for the SACoD and the two base-
line lensless imaging systems on CIFAR-10/100. We can
see that SACoD consistently requires reduced FLOPs and
energy cost while achieving a comparable or higher accu-
racy over the baselines. On CIFAR-10, SACoD achieves
a 44.1% and 70.9% reduction in FLOPs, and a 27.6%

and 48.4% reduction in energy, while offering a +0.01%
and +1.45% higher accuracy, compared with the Co-train
and Gabor-mask baselines, respectively; On CIFAR-100,
SACoD reduces the FLOPs by 62.9% and 64.1%, and en-
ergy cost by 49.7% and 50.9%, while achieving a +0.71%
and +5.46% higher accuracy, compared to the Co-train and
Gabor-mask baselines, respectively. This set of experiments
validates that the end-to-end optimization engine in SACoD
indeed can lead to superior performance in both task perfor-
mance and hardware efficiency.

Impractical 
sensor area

- 80.0%+ 1.05%

- 60.0%

Figure 4: Achieved accuracy and sensor/mask area under
various number of masks on CIFAR-10.

Considering that the form factor or area is another in-
fluential design factor in lensless IoT imaging systems, we
evaluate SACoD over the baselines in terms of the trade-
off between accuracy and area by controlling the number
of masks in the optical layer, and summarize the results
in Fig. 4. We can see that the proposed SACoD achieves
the best accuracy-area tradeoffs among all the designs un-
der the same number of masks (and thus area) and the
same model size. In particular, SACoD achieves a 60.0%
and 80.0% reduction in area while offering a +0.01% and
+1.05% higher accuracy, compared with the Co-train and
Gabor-mask baselines, respectively. As the sensor area be-
comes impractical with more masks, we constrain the num-
ber of masks to be no more than six in other experiments.

4.3. SACoD over SOTA imaging systems on IoT
applications

Here we benchmark SACoD over the SOTA baselines
on two IoT applications (including FlatCam Face recog-
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Figure 5: Accuracy vs. FLOPs/energy of SACoD over the baselines on two IoT tasks.

nition [36] and Head Pose detection [17]) to evaluate its
effectiveness on real-world IoT tasks. Here we adopt the
same search space as in Sec. 4.2 and further constrain the
FLOPs of the derived backend CNNs to see if SACoD is
still applicable to extremely energy-constrained scenarios.
As shown in Fig. 5, we can see that again SACoD consis-
tently outperforms the baselines under all settings in terms
of accuracy-cost tradeoffs. Specifically, compared with the
Co-train baseline, SACoD achieves a 59.5% and 57.1% re-
duction in FLOPs, a 32.9% and 30.1% reduction in energy
cost with a +0.11% and +0.07% higher accuracy, on the
FlatCam Face and Head Pose datasets, respectively. Mean-
while, compared with the Gabor-mask baseline, SACoD
shows a better scalability to more energy-constrained sce-
narios: when the FLOPs or energy constraint is extremely
low, SACoD achieves a +8.75% and +5.85% higher accu-
racy, under the same FLOPs/energy cost on the FlatCam
Face and Head Pose datasets, respectively, indicating its su-
periority in more real-world IoT applications.

4.4. SACoD over SOTA imaging systems on other
vision tasks

Considering the diverse applications of IoT devices,
we also evaluate SACoD on other vision tasks in-

Table 1: SACoD over SOTA baselines on a segmentation
task with the Cityscapes dataset.

Method
2 masks 4 masks 6 masks

mIOU GFLOPs mIOU GFLOPs mIOU GFLOPs

Co-train 69.0 435.0 69.6 435.0 68.8 435.0
Gabor-mask 65.8 45.64 66.1 38.32 67.3 36.34

SACoD 69.8 36.17 70.4 33.56 71.6 29.51

Table 2: SACoD over SOTA baselines on unpaired image
translation tasks. Row 2-4: zebra2horse dataset; Row 5-7:
horse2zebra dataset. Lower FID indicates better results.

Method
2 masks 4 masks 6 masks

FID GFLOPs FID GFLOPs FID GFLOPs

Co-train 147.03 54.17 140.70 54.17 139.83 54.17
Gabor-mask 137.79 6.89 141.11 5.04 145.87 7.15

SACoD 136.35 5.93 136.41 3.89 138.23 3.57

Co-train 66.82 54.17 61.21 54.17 68.26 54.17
Gabor-mask 91.87 5.87 106.27 4.34 88.36 4.72

SACoD 89.80 3.70 86.00 3.82 87.10 4.03

Source image Co-train Gabor-mask SACoD
54.17 GFLOPs 7.15 GFLOPs 3.57 GFLOPs

Source image Co-train Gabor-mask SACoD
54.17 GFLOPs 4.72 GFLOPs 4.03 GFLOPs

Figure 6: Visualizations of the translation results on the ze-
bra2horse (row 1) and horse2zebra (row 2) tasks under six
masks. The resulting FLOPs of each method are annotated.

cluding one segmentation dataset (Cityscapes [13]) and
one unpaired image translation dataset (zebra2horse and
horse2zebra [44]), which require a more challenging trade-
off on CNN-powered intelligent IoT devices.

Settings. We adopt the SOTA search spaces and settings
in [12] for the segmentation task and [16] for the unpaired
image translation task. The models adopted for the Co-train
baseline are DeepLabV3 [11] with a ResNet-50 [18] back-
bone and CycleGAN [44] for the segmentation and image
translation tasks, respectively. More details can be found in
the Appendix.

Results on the segmentation task. Tab. 1 shows
that SACoD achieves the highest mean Intersection Over
Union (mIOU) under all the mask constraints, while requir-
ing the smallest FLOPs. Specifically, SACoD achieves a
0.8%∼4.3% higher mIOU and 12.4%∼93.2% reduction in
FLOPs over the Co-train and Gabor-mask baselines, respec-
tively, under all the mask settings.

Results on the image translation task. We show both
the quantitative results in Tab. 2 and the visualization ef-
fects in Fig. 6 as the former cannot always capture the im-
age quality. Tab. 2 shows that SACoD requires the small-
est FLOPs under all the six cases, while Fig. 6 shows
that SACoD provides notably the best visualization effect
among all the methods. In particular, compared with the
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Figure 7: Fabricated masks.
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Figure 8: Visualizing the searched PSFs and the corresponding fabricated ones.

Gabor-mask baseline, SACoD achieves a 12.0% ∼ 50.1%
reduction in FLOPs with a 1.26 ∼ 20.27 better FID (the
lower, the better), while providing notably better visualiza-
tion effects; compared with the Co-train baseline, SACoD
reduces the FLOPs by 92.56% ∼ 93.4% and offers better
visualization effects with more fine-grained textures.

The evaluation results on the above two vision tasks
consistently validate SACoD’s superiority over the base-
line systems and indicate its general applicability in a wide
range of IoT applications driven by intelligent sensors.

Table 3: Accuracy comparison of SACoD and Gabor-mask
using the simulated and fabricated masks based on a real-
world PhlatCam imaging system with CIFAR-10.

Method Simulated (%) Fabricated (%) Gap (%)

Gabor-mask 91.71 87.17 4.54
SACoD 94.41 90.02 4.39

Improvement + 2.70 + 2.85 - 0.15

4.5. SACoD with physically fabricated masks

Settings. To evaluate the performance of SACoD in
real-world prototyped PhlatCam imaging system, we fur-
ther fabricate the physical masks based on the PSF of the
searched optical layer by SACoD. We then capture the
real measurements of the CIFAR-10 dataset by displaying
images on a monitor and capturing them using our pro-
totyped PhlatCam imaging system with fabricated masks.
The CMOS sensor in our prototype has a Bayer RGB fil-
ter array, so the sensor measurements after the mask can
be split to different raw RGB color channels. Hence, our
raw measurements have RGB channels as shown in Fig. 2
(b). All the backend models are under similar FLOPs (the
rightmost points in Fig. 3).

Fabricated masks: Each phase mask is of size
600µm×600µm. At a time, 6 phase masks corresponding
to 6 small filters are fabricated onto the same glass substrate
in Fig. 7, which evenly fill the space of the sensor. Particu-
larly, the 6 phase masks are fabricated in a 2 × 3 array with
an even spacing of 4.4 mm.

Visualizing fabricated masks. Fig. 7 shows the mi-
croscope image of the six fabricated masks, under which
SACoD achieves an accuracy of 94.43% on CIFAR-10, and
Fig. 8 compares the visualization of the simulated and fab-
ricated PSFs, in which the top/bottom row shows the pos-
itive/negative masks and the columns from the left to the
right represent the three RGB-channels respectively. From
Fig. 8, we can observe that the fabricated PSFs generally
keep the original shape as compared to the simulated ones,
while slightly shift in the brightness of some pixels.

Real measured accuracy. We compare the accuracy of
the SACoD and Gabor-mask systems with simulated and
fabricated masks in Tab. 3 and observe that (1) our SACoD
still outperforms the Gabor-mask system with a +2.85%
higher accuracy under fabricated-mask measurements, in-
dicating the consistency of SACoD’s superiority in both
simulated and fabricated systems, and (2) both systems suf-
fer from a 4% accuracy drop after fabrication and SACoD
shows a slightly less accuracy drop (0.15%). We would like
to clarify that the large accuracy drop could be attributed to
non-idealities in in-house fabrication and other experimen-
tal errors such as mask-sensor alignments, which have been
observed before, e.g., [22] shows that only 88% of the cor-
rectly classified images by the optimal model can be still
correctly classified on MNIST when using real-fabricated
masks. It can be expected that with industry-standard fab-
rication and manufacturing quality, the resulting accuracy
drops after fabrication can be alleviated.

truck dog airplane Flatcam Face

Figure 9: Visualizing the captured images by physically
fabricated masks on CIFAR-10/Flatcam Face.

Real-world images captured by the fabricated masks.
We visualize the images captured by fabricated masks gen-
erated by SACoD on CIFAR-10 and Flatcam Face in Fig. 9.
Since the PSFs of different color channels are different ac-
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Table 4: Accuracy when using Gabor-mask, SACoD’s gen-
erated masks transferred from those dedicated for the Flat-
Cam Face dataset, and SACoD’s generated masks cus-
tomized for the target tasks on the CIFAR-10/100 dataset.

Method CIFAR-10 Acc (%) CIFAR-100 Acc (%)

Gabor-mask 91.71 68.85
SACoD (from FlatCam Face) 93.10 72.50

SACoD (customized) 94.41 76.67

cording to Fig. 8, the captured images show a color shift
over the original RGB images while still maintain good vi-
sual quality for recognition.

4.6. Ablation studies of SACoD

Generality vs. specificity. To evaluate the generality
and specificity of SACoD, we benchmark SACoD trans-
ferred from the FlatCam Face dataset against (1) SACoD
customized for each target task and (2) the Gabor-mask
baseline which is a general mask based on fixed filters, on
the CIFAR-10/100 dataset. All the backend models have
similar FLOPs (those corresponding to the rightmost points
in Fig. 3). As shown in Tab. 4, SACoD with masks trans-
ferred from those dedicated for the FlatCam Face dataset
achieves a +1.39% and +3.65% higher accuracy on CIFAR-
10/100, respectively, over that of Gabor-mask, while suffer-
ing from a -1.31%/4.17% accuracy drop on CIFAR-10/100,
as compared to SACoD customized for the target task. This
validates the assumption in Sec. 3.4 that SACoD’s gener-
ated masks show a better generality and transferability over
masks based on fixed filters like Gabor-mask, while speci-
ficity, i.e., customization for each target task, of SACoD
masks can further improve the achieved accuracy. One key
highlight is that SACoD achieves specificity at extremely
low manufacture costs, as each mask costs one order of
magnitude lower than lens-based cameras [3].

Feature extraction of SACoD. To further explore the
reason behind SACoD’s success, we compare the discrimi-
native power of the features captured by the optical layers of
SACoD and the Gabor-mask baseline. Specifically, follow-
ing [34], we average the optical layer’s activations over the
output channels to obtain a vector and use the corresponding
softmax value as the feature distribution for each input im-
age. We then calculate the KL divergence between the fea-
ture distribution from different classes to see how discrim-
inative the features are. Fig. 10 visualizes the average KL
divergence (over 100 randomly selected images) between
every two classes on the test dataset of CIFAR-10. We
can see that the feature distribution difference of SACoD
between different classes is notably and consistently larger
than that of the Gabor-mask baseline, further verifying that
the optical layer of SACoD can more effectively extract the
discriminative information from the input and thus reduce
the required computations of the backend CNN.

SACoD vs. lens-based systems. To fairly benchmark

Figure 10: KL divergence of the output distribution between
different classes captured by the searched optical layer of
SACoD and Gabor-mask on CIFAR-10, where the x-axis
and y-axis are the class id, and the heatmap value denotes
the magnitude of KL divergence.

against lens-based systems, we remove the optical layer and
its associated constraints, and search for the optimal net-
work within the same the search space [39]. We find that
under a slightly reduced FLOPs (154M FLOPs vs. 158M
FLOPs), SACoD achieves a 0.39% and 0.62% lower accu-
racy on CIFAR-10 and CIFAR-100, respectively, while re-
ducing the thickness of the imaging systems by 10× which
makes it possible to be integrated into more IoT applica-
tions. This set of experiments shows that our proposed
SACoD can offer similar task performance and hardware
efficiency as compared to lens-based systems, while being
able to shrink the thickness of the system by one order.

5. Conclusion
We propose SACoD, a sensor algorithm co-design

framework, to enable more energy-efficient and robust
CNN-powered IoT systems, and validate it in the context
of PhlatCam. A novel end-to-end co-search algorithm is
presented to jointly optimize the coded mask of PhlatCam
in the sensor and the backend CNN. Extensive experiments
and ablation studies validate the superiority of SACoD in
terms of both task performance and hardware efficiency
as well as the its general applicability, when evaluated
over SOTA lensless imaging systems on various tasks and
datasets. The success demonstration of the sensor algorithm
co-design principle in SACoD can positively impact many
real-world IoT applications demanding intelligent sensors.
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