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Abstract

We propose replacing scene text in videos using deep
style transfer and learned photometric transformations.
Building on recent progress on still image text replacement,
we present extensions that alter text while preserving the ap-
pearance and motion characteristics of the original video.
Compared to the problem of still image text replacement,
our method addresses additional challenges introduced by
video, namely effects induced by changing lighting, motion
blur, diverse variations in camera-object pose over time,
and preservation of temporal consistency. We parse the
problem into three steps. First, the text in all frames is
normalized to a frontal pose using a spatio-temporal trans-
former network. Second, the text is replaced in a single
reference frame using a state-of-art still-image text replace-
ment method. Finally, the new text is transferred from the
reference to remaining frames using a novel learned image
transformation network that captures lighting and blur ef-
fects in a temporally consistent manner. Results on syn-
thetic and challenging real videos show realistic text trans-
fer, competitive quantitative and qualitative performance,
and superior inference speed relative to alternatives. We in-
troduce new synthetic and real-world datasets with paired
text objects. To the best of our knowledge this is the first
attempt at deep video text replacement.

1. Introduction
We address the problem of realistically altering scene

text in videos. Our primary application is to create person-
alized content for marketing and promotional purposes. An
example would be to replace a word on a store sign with a
personalized name or message, as shown in Figure 1. Other
applications include language translation, text redaction for

*Corresponding author: bg.vijay.k@gmail.com

Figure 1: Our method replaces the scene text in the original
video (”COFFEE” in upper row) with a personalized string
(”ROBERT” in bottom row) while preserving the original
geometry, appearance, and temporal properties.

privacy, and augmented reality. For research purposes, the
ability to realistically manipulate scene text also enables
augmentation of datasets for training text detection, recog-
nition, tracking, erasure, and adversarial attack detection.
Traditionally text editing in images is performed manually
by graphic artists, a process that typically entails a long
painstaking process to ensure the original geometry, style
and appearance are preserved. For videos, this effort would
be considerably more arduous.
Recently several attempts have been made to automate text
replacement in still images based on principles of deep
style transfer ([22], [1], [31], [26], [29]). We leverage this
progress to tackle the problem of text replacement in videos.
In addition to the challenges faced in the still image case,
video text replacement must respect temporal consistency
and model effects such as lighting changes, blur induced by
camera and object motion. Furthermore, over the course of
the video, the pose of the camera relative to the text object
can vary widely, and hence text replacement must be able to
handle diverse geometries. A logical method to solving the
problem would be to train an image-based text style trans-
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fer module on individual frames, while incorporating tem-
poral consistency constraints in the network loss. The prob-
lem with such an approach is that the network performing
text style transfer (an already non-trivial task) is now ad-
ditionally burdened with handling geometric and motion-
induced effects encountered in video. We show in experi-
ments that current still-image text replacement techniques
such as [26, 13] do not robustly handle such effects. We
therefore take a different approach. We first extract text re-
gions of interest (ROI) and train a spatio-temporal trans-
former network (STTN) to frontalize the ROIs in a tempo-
rally consistent manner. We then scan the video and select
a reference frame with high text quality, measured in terms
of text sharpness, size, and geometry. We perform still-
image text replacement on this frame using a state-of-art
method SRNet [26] trained on video frames. We then trans-
fer the new text onto other frames with a novel text prop-
agation module (TPM) that takes into account changes in
lighting and blur effects with respect to the reference frame.
TPM takes as input the reference and current frame from
the original video, infers an image transformation between
the pair, and applies it to the altered reference frame gener-
ated by SRNet. Crucially, TPM takes temporal consistency
into account when learning pairwise image transforms. Our
framework, dubbed STRIVE (Scene Text Replacement In
VidEos) is summarized in Figure 2.
To our knowledge this is the first attempt at replacing scene
text in videos. We make the following contributions:
1) A modular pipeline that disentangles the problem of text
replacement in a single reference frame from modeling the
flow of the replaced text within the scene over time. Such a
parsing of the problem into simpler subtasks serves to both
simplify training and reduce computations during inference.
2) A learned parametric differential image transformation
that captures temporal photometric changes between a pair
of aligned ROIs in the original video, and applies it to ROIs
in the text-altered video. The transform consists of a learn-
able blur/sharpness operator, and is trained on synthetic data
and fine-tuned via self-supervision on real-world images.
3) New synthetic and real-world datasets comprising a di-
versity of annotated scene text objects in videos. A sub-
set of the videos comprise triplets of ROIs with aligned
source text, target text, and plain background. The
datasets are available at https://striveiccv2021.
github.io/STRIVE-ICCV2021/.

2. Related Work

2.1. Style Transfer

Our approach has its roots in deep neural style transfer
[5], [12]. Specifically pix2pix [13] forms the backbone for
image-to-image transfer tasks and will be used as a baseline
in our experiments. Extensions to style transfer for videos

have been proposed by several researchers, whereby tem-
poral consistency constraints are added to the style losses
applied on individual frames [11], [8]. We disentangle style
transfer from geometric and photometric variations encoun-
tered in video, and apply temporal consistency constraints
on the latter.

2.2. Scene Text Detection, Recognition

Text replacement relies upon successful text detection
and recognition. As expected, deep learning methods define
the state of art for both image and video input [36],[24],[3].
We use the video text detection module within the Amazon
ReKognition toolbox to extract text ROIs for our pipeline.
Related efforts to synthesize realistic scene text for training
models include [33], [16], [34].

2.3. Scene Text Replacement

Recently, deep neural techniques have been proposed for
editing scene text in still images. These fall into two cate-
gories: techniques that replace individual characters ([22],
[1], [31], [30], [32]), and those that replace entire words
([26], [29]). While the approaches vary in the types of ef-
fects that can be modeled, the main steps are: i) inpainting
to erase existing text [23]; ii) transfer of input text style to
new characters or words; iii) a fusion step to combine fore-
ground and background regions for realistic outputs. Since
it is difficult to acquire paired text data in real world scenes,
existing methods are trained on synthetic datasets. The clos-
est application we are aware of is the camera mode in the
Google Translate app, which overlays language translations
on scene text in the camera preview mode. Since the pri-
mary purpose is translation, there is no attempt to strictly
match the appearance of the original text.

2.4. Learning Image Transformations

Our text propagation module (TPM) learns photometric
transformations between a reference and a non-reference
frame. Several works have tackled a similar problem in
the context of image enhancement. Gharbi et al. [6]
learn to automatically enhance images by training a deep
bilateral transform network from paired (pre- and post-
enhancement) training data. Related works [7], [2] learn to
predict a parameterized transformation from a pair of low-
resolution images and apply this to the high resolution ver-
sion. The transform models complex photo enhancement
operators with a ”recipe” of local affine transforms. We
draw inspiration from these techniques to learn a paramet-
ric transform between reference and non-reference frames
in the original video, with several key differences. First,
in previous works, the transformation learned from image
I1 to its enhanced version I2 is then applied on a high-
resolution version of I1. Each transform is thus intimately
tied to a specific image. In our case the transform learned
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Figure 2: Overview of STRIVE. Text region of interest (ROI) is extracted from each frame and frontalized using a spatiotem-
poral transformation network (STTN) with parameters θ. Next a reference frame is selected and text is replaced using SRNet.
The new text is transferred to other frames via a novel text propagation module (TPM), and reinserted into the frame after
reverting to the original pose via STTN−1.

from an image pair with source scene text is applied to a dif-
ferent image with target text, and hence its structure must be
abstracted from the original image content. Secondly, while
previous efforts are aimed at learning image enhancement
operations, our purpose is to model changes in lighting and
camera motion encountered across video frames, which of-
ten include distortions such as image blurring. Finally our
transformations must exhibit temporal consistency, which is
not applicable for still-image transforms.

2.5. Image blur estimation and correction

Techniques have been proposed for using deep CNNs to
estimate blur kernels from images and videos with the goal
of blind image deblurring [28], [27], [35]. Our blur esti-
mation in TPM adopts a similar approach, however with a
different purpose of estimating a differential blur transform
between a pair of images, rather than estimating blur in an
absolute sense from a single image.

3. Methodology
Referring to Fig. 2, we first extract tight ROIs (i.e.

bounding boxes) for the source text from the input video us-
ing the Amazon Rekognition API. All operations described
next are carried out on the ROIs.

3.1. Reference Frame Selection

We select a single reference frame for text replacement.
To ensure successful text style transfer, we desire a frame
wherein the source text clearly legible, of high contrast, and
maximally frontal in pose. We compute four metrics on
the text ROI. 1) Only samples with optical character recog-
nition (OCR) confidence greater than 0.99 (as reported by
ReKognition) are considered. This eliminates excessively
blurry, distorted or occluded text objects. 2) Image sharp-
ness is measured as the variance of the Laplacian of the lu-
minance image [21], and the top 10 frames with the highest

sharpness scores are selected. 3) The image is binarized
using Otsu’s algorithm [18] and the normalized interclass
variance s1 between foreground and background regions is
obtained as a measure of text contrast. 4) The ratio s2 of the
area of the tight ROI bounding box to the area of the sub-
suming axis-aligned rectangle is calculated as an estimate
of frontal pose. A composite text quality score is computed
as α1s1 + α2s2 and the frame with the highest score is se-
lected as the reference frame. Both α1 and α2 are heuristi-
cally chosen based on visual evaluation of replaced text on
random videos.

3.2. Pose Normalization

Text objects in videos can undergo diverse geometric dis-
tortions due to varying object pose relative to the camera.
To minimize the effect of this distortion on text style trans-
fer, we normalize and align the source text in all ROIs to
a canonical frontal pose before the replacement operation.
This enables both robust text style transfer on the reference
frame, and the propagation of the replaced text onto the re-
maining frames via learned image transforms. We make a
simplifying assumption that the scene text is on a planar
surface. This covers many common cases such as street and
store signage, banners, etc. Under the planar assumption,
pose alignment is accomplished via a perspective transform.
We adopt and extend the Spatial Transformer Network [14]
(STN) as a learned approach to perspective correction that
is computationally efficient at runtime. STN predicts the
parameters θ of a geometric correction transform via a lo-
calization network, and applies the transform to the image
via grid generation and resampling operators. The original
STN is trained as part of a supervised classification task.
We adopt the same network architecture, but instead explic-
itly train it to produce temporally consistent frontal ROIs.
We obtain binary masks of text ROIs with Mask R-CNN
[9]. The training samples comprise a stack of distorted input
ROI masks and a frontal ROI mask of synthetic text serving
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as the target label. The net is trained on the following loss:

LSTTN = Lθ + λ1Lpix + λ2Lt (1)

where the first two terms are from the original model: Lθ
is the mean-squared error (MSE) between the true and pre-
dicted homography parameter vector θ, and Lpix is the pix-
elwise MSE between predicted and true text ROIs. We
use L2 norm for the above losses following the practice of
Nguyen et al. [17] and DeTone et al. [4]; this choice pro-
duced good results in our experiments. Additionally we in-
troduce temporal consistency loss Lt, defined as the MSE
between θ for adjacent video frames: Lt =

∑
j |θi − θj |2,

where index i denotes current frame and the summation is
over a number of neighboring frames j ̸= i. This term en-
sures that perspective correction parameters vary smoothly
over adjacent frames. Fig. 2 shows how the spatiotemporal
transform network (STTN ) is incorporated into the overall
framework. After text replacement, the ROI is sent through
the inverse perspective transform (STTN−1) to restore it
to the original scene geometry and inserted into the original
frames to produce the output video.

3.3. Text Replacement in Reference Frame

We select SRNet [26] to replace text in the reference
frame. In principle, any state-of-art still-image text replace-
ment technique can be used. SRNet takes the input ROI
and the target text in the form of a mask, and executes sub-
networks for background generation, foreground creation
via transfer of style from source to target text, and blend-
ing of background and foreground to produce the target text
ROI. We train SRNet on video frames from our datasets.
During training we introduce additional augmentations for
perspective distortion, and motion and out-of-focus blur en-
countered in videos.

3.4. Text Propagation

The main novel element of our work is text propagation
from reference frame to the rest of the video via TPM.
Our key insight is to avoid repeatedly performing text
replacement on every frame, and instead to solve the
simpler problem of learning the changes in text appearance
over the video. We posit that the image transformation
between two video frames within a localized text ROI
can be adequately modeled in terms of simple parametric
changes in lighting and image sharpness due to changes in
camera/object/lighting conditions over time. An advantage
of our approach is that we are able to use self-supervision
to learn the parameters of the model without relying on a
large set of paired videos and labels. In detail, let IR and Ii
be respectively the ROIs from the reference and ith frame
containing the source text in the input video. Similarly let
I ′R and I ′i be corresponding ROIs of the target text in the
output video. All ROI’s are pose-corrected and aligned by

Figure 3: Text Propagation Module (TPM) derives a local
image transform between reference and non-reference ROIs
in the original video (”Ball”) and applies the transform to
the reference ROI (”Prom”) in the altered video. The trans-
form comprises a Lighting Correction Module (LCM) fol-
lowed by a Blur Prediction Network (BPN).

STTN, and are scaled to a fixed canonical image dimension
prior to TPM processing. A parametric transform is learned
between IR and Ii, and is then applied to I ′R to predict I ′i .
This transform comprises two stages, a lighting correction
module (LCM) and differential blur prediction network
(BPN), as shown in Fig. 3.
The LCM captures appearance differences between ref-
erence and current ROI due to changes in illumination,
including shadows and shading. Since the color of an
object is a product of its reflectance and the illumination,
we surmise that to first order, changes in light reflected off
a fixed text object can be modeled by independent channel-
wise scaling of R, G, and B channels in a spatially varying
manner. Namely, changes in lighting between two aligned
ROIs can be obtained from their ratio Ii/IR, which is then
multiplied by I ′R to obtain the lighting-corrected output for
I ′i . In practice despite the fact that IR and Ii are aligned via
STTN, even minor imperfections in alignment can result
in gross errors in the ratio map particularly around text
edges. Such errors become even more noticeable when
applying ratio correction to new text in I ′R. To address
this issue, we assume that scene text is commonly placed
on a smooth background, and apply inpainting to obtain
estimates of the plain background, denoted IRp and Iip.
We use the deep inpainting module within SRNet for this
purpose. The ratio of the inpainted versions defines a
multiplicative correction to I ′R (see Fig. 3). In practice
we compute the ratio (Iip + ϵ)/(IRp + ϵ), where a small
ϵ avoids singularities near zero. The implicit assumption
with the ratio model is that the reflective properties of the
foreground text and background are similar. Further, to
ensure temporal robustness we compute a weighted average
of inpainted ROIs over N neighboring frames before
computing the ratio. The latter is multiplied by both the
original and altered reference frames IR and I ′R to produce
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lighting-corrected versions that are then passed to the blur
prediction network.

BPN is a novel CNN-based method for predicting a
transformation between a pair of images that can result
from spatial aberrations, including motion blur, out-of-
focus blur, and resolution differences due to varying
distances between camera and text object. We model
possible frame-to-frame distortions within a local text ROI
using the following transformation:

Ii(x, y) = (1 +w)IR(x, y)−wIR(x, y) ∗Gσ,ρ(x, y) (2)

where w ∈ [−1, 1] and Gσ,ρ is an oriented 2D Gaussian
filter rotated by angle ρ:

Gσ,ρ(x, y) = Ke
−( x′2

σ2
x
+ y′2

σ2
y
)

(3)

where K is a normalizing constant, x′ = x cos ρ + y sin ρ
and y′ = −x sin ρ+ y cos ρ. The case of σx ≈ σy yields an
isotropic point spread function (PSF) modeling out-of-focus
blur and resolution differences, while a significant differ-
ence between these two parameters models an anisotropic
blur in direction ρ, encountered with typical camera or ob-
ject motion. As w varies from -1 to 0 to 1, the transfor-
mation varies from image sharpening to identity to image
blurring. (Image sharpening with w < 0 is occasionally
required if the current frame is sharper than the reference
frame.) BPN takes one reference frame IR and a sliding
window of N frames Ii around the current (i-th) time in-
stance, and predictsN sets of parameters ψ = [σx, σy, ρ, w]
that best transforms IR to theN output frames (with respect
to spatial frequency characteristics) via the blur model of
Eqn. (2). The network thus takes in N+1 image inputs and
predicts 4N parameters. Predicting transforms on frame
stacks ensures temporal consistency. The network archi-
tecture comprises a ResNet18 backbone [10], an average
pooling layer and two fully connected layers, as shown in
Fig. 3. The training loss is defined as:

LBPN = λψLψ + λRLR + λTLT (4)

where Lψ is the squared error loss between the true and
predicted parameter vectors ψ; LR is the mean-squared im-
age reconstruction error between predicted and true ROIs
Ii; and LT is a temporal consistency loss that discourages
large fluctuations in ψ over time: LT =

∑
j |ψi − ψj |2,

where index i denotes current frame and the summation is
over N -1 neighboring frames j ̸= i. The predicted Ii is
obtained by applying the blur model in Eqn (2) and (3) with
parameters ψ to IR. Note that the blur model is differen-
tiable w.r.t. ψ and thus can be applied within the training
loop.

BPN is trained in two stages, as illustrated in Fig. 4.

Figure 4: Training of BPN. In Stage 1, a blur model (1)
with known parameters is applied to reference IR. The in-
put and outputs are passed to BPN which learns to regress
the parameters on losses Lψ , LR, LT . In Stage 2, frame tu-
ples from real videos are passed to BPN which regresses pa-
rameters via self-supervision on LR and LT applying blur
model (2). N=3 in this illustration.

In the first stage, Eqn (2) with known parameters ψ is ap-
plied to reference ROIs IR from synthetic videos to obtain
training pairs (IR, Ii). In this phase, all three loss terms
in Eqn (4) are minimized. As part of augmentation, inputs
Ii are warped with translational jitter in x and y directions
to immunize the network to minor mis-alignments between
Ii and IR encountered in real video frames. In the second
phase, BPN is fine-tuned via self-supervision with (IR, Ii)
tuples extracted from real-world videos. Here only LR and
LT are minimized since the true ψ are unknown. During
inference, the ROI pair (IR, Ii) from the original video is
passed through BPN, and the predicted parameters are used
to apply Eqn (2) to the altered ROI I ′R to produce the ROI
I ′R for the current (i-th) frame, as shown in Fig. 3.

4. Experimental Results

To our knowledge there are no existing datasets or
benchmarks for the problem of video text replacement. We
thus evaluate our technique against still image replacement
baselines trained and applied on video frames. Note that
advances in still-image replacement are an enabler rather
than competitor to STRIVE, since we rely on the still
transfer for the reference frame.

4.1. Datasets and Experimental Setup

1. Synthtext: We have developed a dataset of 120 syn-
thetic videos using the Unity simulator. Indoor and out-
door scenes are modeled with diverse text styles against var-
ied backgrounds, captured with different lighting, camera
and object motion characteristics. A given scene is gen-
erated with multiple text strings, providing many source-
target pairs for training and testing our models. Unlike
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Figure 5: Example video frames from Synthtext (top 2
rows) and Robotext (bottom row).

existing synthetic datasets comprising clean frontal ROIs,
our video simulations produce ROIs with realistic geomet-
ric and photometric distortions, including motion blur and
shadows. Fig. 5 shows examples.

2. Robotext: We acquire first-of-a-kind videos captured
by a Google Pixel 2 XL smartphone mounted on a Create2
robotic platform. The robot is programmed to travel in ran-
dom trajectories around a gallery of text posters mounted in
a large indoor hall. Trajectories include linear and curved
paths at varying travel speeds. The posters are designed
such that different words of the same style and background
are adjacent to each other, to train text replacement models,
as shown in Fig. 5. This dataset comprises approximately
5000 short video clips.
3. Realworld: We have collected challenging real-world

videos in indoor and outdoor environments including cam-
era motion related to walking and driving. We drew from
two sources. The first is the ”Text in Videos” dataset from
the ICDAR 2015 Robust Reading Competition [15] com-
prising 25 videos of scene text captured in the wild. From
these, we curated a subset of 15 videos of sufficient quality
for our task. Additionally we collected our own dataset of
22 videos of similar scene content and diversity as the IC-
DAR set.
All datasets are annotated with bounding boxes around text
objects in each frame using AWS ReKognition software.
Pix2pix and SRNet are trained on frames from 1000 video
clips from Synthtext and Robotext following the pro-
tocols of the original implementations [13], [26], with
additional augmentations for pose variations. STTN is
trained on frames from 100 video clips from Synthtext and
Robotext with frontal stylized text masks serving as train-
ing targets. For reference frame selection, parameters α1

and α2 (see Section 3.1) were selected as 0.7 and 0.3 based

on cross-validation experiments. Stage 1 of BPN is trained
on 100 videos from Synthtext, with 10% of the training
data used for validation. Stage 2 is trained on 900 videos
from Robotext and a subset of 25 videos from Synthtext.
Both stages are trained with 100 epochs. We use a neigh-
borhood of N=3 consecutive frames for imposing temporal
consistency. The ADAM optimizer is used with a learning
rate of 0.0005 for stage 1 and 0.0003 for stage 2. All im-
plementations are in the Pytorch framework [19] with GPU
acceleration, and all tests reported below are performed on
independent datasets.

4.2. Evaluation Metrics

1. We compute MSE, peak signal-to-noise ratio (PSNR),
and average structural similarity (SSIM) scores [25] be-
tween estimated and ground-truth ROIs for frames from
synthetic test videos.
2. We evaluate OCR accuracy of ReKognition on video text
in real scenes. We measure the number of word-level errors
on the target text as a fraction of the number of frames in
which the source text was correctly recognized.
3. We evaluate high-frequency jitter of the target text by
analyzing bounding box coordinates returned by ReKog-
nition from altered videos. Let a box vertex have time-
varying coordinates [x(t),y(t)]. We extract a high pass
signal [x̃(t),ỹ(t)] by subtracting a lowpass-filtered version,
and computing the root mean of x̃2(t) + ỹ2(t) as a measure
of temporal jitter.
4. We perform timing analysis, simulating the personalized
marketing scenario where a single input video is used to
generate K altered output copies, each with a different tar-
get text string. We measure average frame rate over 20 ran-
domly selected input videos on a Linux machine running
Ubuntu 16.04 with a single GeForce GTX GPU.

4.3. Quantitative Analysis

Reconstruction performance on synthetic videos is
shown in the first 3 columns of Table 1. Our first result
is an ablation study on the effect of reference frame se-
lection (disabled by always selecting the first frame as the
reference). We see that this step has a noticeable effect in
reconstruction accuracy (“w/o ref frame” in Table 1). As
seen in Fig. 9, SRNet struggles to correctly replace small
or strongly distorted text, and our reference frame selection
criteria avoid selecting such frames for text replacement.
Next we examine the impact of BPN (disabled by setting
w = 0 in Eq. (2). As seen in Table 1, BPN also plays a
crucial role (“w/o BPN” in Table 1). The most pronounced
benefit is seen for videos that contain significant motion or
focus blur, as shown in Fig. 6 where BPN accurately models
focus blur.

Next, we compare STRIVE with two competing alter-
natives. The first is a pix2pix baseline [13] trained on in-
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Figure 6: BPN ablation: input ROI (left), output ROI with-
out BPN (middle), output with BPN (right).
Method MSE ↓ PSNR ↑ SSIM ↑ OCR ↑ Jitter ↓
Pix2pix [13] 0.0593 12.27 0.531 - -
SRNet [26] 0.0227 16.44 0.598 0.771 5.10
w/o ref frame 0.0203 16.93 0.596 - -
w/o BPN 0.0203 16.93 0.594 - -
STRIVE 0.0186 17.31 0.604 0.957 1.48

Table 1: Quantitative results on Synthtext (first 3 columns)
and Robotext and Realworld videos (last 2 columns). For
MSE and jitter, smaller is better; for PSNR, SSIM, OCR
greater is better.

dividual video frames. To give pix2pix a fair chance at
transferring text on videos, during training we supply the
network with 3 consecutive frames and incorporate a tem-
poral coherence constraint that penalizes MSE loss between
the current output and its two neighboring frames. The sec-
ond (and stronger) baseline is SRNet trained and applied on
individual video frames. As seen in Table 1, STRIVE out-
performs both methods in terms of MSE, PSNR, SSIM.
We compare STRIVE with frame-wise SRNet in terms of

OCR accuracy on real and synthetic videos. From column
4 of Table 1, STRIVE significantly outperforms SRNet. We
owe this largely to the failure of SRNet to replace text un-
der strong geometric distortions and photometric blur. Fi-
nally we compare temporal smoothness of the replaced text
in column 5 of Table 1 and observe that STRIVE produces
substantially less jitter, owed to temporal consistency con-
straints that are absent in per-frame SRNet. The jitter is
clearly evident when viewing the videos (see the supple-
mental section).
In comparing the three methods, pix2pix attempts holistic
transfer, accounting for text style, color, background, ge-
ometry, and lighting. SRNet decouples the transfer of fore-
ground text from background, which helps performance.
STRIVE benefits from an additional level of disentan-
glement, namely separation of single-image transfer from
modeling of geometric and appearance variations over time.
Interestingly, frame-wise SRNet offers a form of ablation,
as it is essentially STRIVE without the pose normalization
and text propagation step.
We perform inference timing tests for different output run
lengths (K=1, 50, 100) of output videos created from a
given input video. The average SRNet inference speed
is 1.67 frames per second (fps) for all K, while STRIVE
achieves faster rates of 2.11, 7.83, and 8.01 fps for K =
1, 50, 100 respectively. This is because STRIVE performs
expensive text replacement only on one reference frame.

x-y misalignment w σx σy ρ
0 0.14 1.18 1.19 44.76
+/- 5 0.15 1.18 1.21 45.3

Table 2: Mean absolute error in blur parameter predictions
without and with alignment error (ρ is specified in degrees).

Figure 7: Results of BPN simulation. From top to bottom,
transforms applied are identity, sharpening, motion blur,
and two different levels of isotropic Gaussian blur. Left,
middle and right columns indicate input, blur model output,
and BPN output.

Furthermore, parameters for all text propagation functions
(STTN, lighting, blur model in Eqn 2) are computed once
offline per input video, and reused in runtime for all K out-
put copies. In contrast, framewise SRNet must replace text
in every frame in every video, and hence suffers from the
same low throughput for all run lengths.

4.4. BPN Simulation

We study BPN’s ability to predict the parameters of the
blur model (Eqn 2) from image pairs. An independent test
set of text ROIs from 995 frames covering 5 different scenes
from both synthetic and real datasets are used. Model pa-
rameters ψ are chosen at random in the following ranges:
w ∈ (−1, 1), σx, σy ∈ (0, 5), ρ ∈ (0, 180), and the
blur model is applied with these parameters to the ROIs
to produce transformed outputs. The original and trans-
formed images are sent through BPN and predicted parame-
ters are compared to ground truth. Regression performance
is shown in Table 2. From observing real videos, we noted
translational alignment errors in the order of 0-5 pixels be-
tween reference and non-reference ROI. Hence we report
BPN performance for both ideal alignment and random sim-
ulated x-y jitter between 0-5 pixels. We note that network
predictions are robust to such misalignment. The high er-
rors for ρ are presumably due to the fact that blur angle
estimation becomes ill-conditioned for near-isotropic ker-
nels. Qualitative results are shown in Fig. 7 confirming that
BPN effectively models a variety of differential blurring and
sharpening transformations between frames.

4.5. Qualitative Evaluation

Fig. 8 demonstrates TPM on Robotext and Realworld
videos. Effects of varying lighting and text sharpness as the
robot moves across the scene are effectively incorporated
into the altered video. Additionally we estimated blur of

14555



Figure 8: Results of TPM on Robotext (upper half)
and Realworld (lower half). First/second row are origi-
nal/altered video. Frames are in temporal sequence but not
consecutive. Reference frame marked in green.

Figure 9: Comparison of original video frames (upper),
STRIVE (middle) and SRNet outputs (lower) [26] for a
Synthtext scene. Zoomed ROI insets are in lower right.

the text ROIs using variance of Laplacian [20]. The Pear-
son correlation coefficient between blur scores of original
vs. replaced ROIs is 0.9912 indicating effective blur trans-
fer. Figure 9 compares STRIVE and SRNet outputs for a
Synthtext video. As seen in the zoomed insets, SRNet
is unable to cope with strong perspective (although being
trained with such examples), and even when replacement
is successful, the geometry is incorrect. STRIVE achieves
both accurate text replacement and geometry by solving
each task individually. Figure 10 shows results for real-
world videos. The first scene encounters out-of-focus blur.
STRIVE is able to model this effect and maintain charac-
ter integrity, while SRNet outputs are distorted. The next
two scenes are from the ICDAR dataset, where videos are
captured with human walking motion. The fourth scene is
captured in a moving vehicle with atmospheric noise. In
all cases, STRIVE is visibly superior to SRNet in preserv-
ing text integrity and the geometric and photometric effects
of the original scene. The supplemental section contains
videos of challenging realistic scenarios with moving shad-
ows, focus blur, human and vehicle motion. As seen in the
videos, SRNet exhibits considerable jitter that is avoided by
STRIVE, thanks to temporal smoothness constraints.

Figure 10: Comparison of original (upper), STRIVE (mid-
dle) and SRNet (lower) [26] frames for real videos. Zoomed
ROI insets are shown in lower right for selected scenes.

5. Conclusions

We propose an effective and efficient method to replace
text in videos by decoupling still-image text transfer from
temporal changes in geometry and appearance. The latter
are modeled via a novel learnable transform that captures
photometric differences between pairs of video frames.
This type of differential transform learning has broad appli-
cability for image and video editing. We offer new datasets
for further progress in text-related video tasks. The effi-
cacy of STRIVE relies on certain assumptions, including
planar geometry and spectral coherence between text and
background. We argue that these assumptions are not ex-
cessively limiting as such cases are commonly encountered
in real world scenes. Future work includes generalizing the
approach to handle occlusions, non-planar surfaces, self-lit
text, and to non-text objects such as graphics and 3D shapes.
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